Adiabatic Quantum Computing

Charles Epstein

Massachusetts Institute of Technology

Quantum Complexity Theory 6.845 December 10, 2012

The Adiabatic Theorem
 The Adiabatic Algorithm
 Computational Complexity
 Notes on Adiabatic Universality

The Adiabatic Theorem
 The Adiabatic Algorithm
 Computational Complexity
 Notes on Adiabatic Universalit

Hamiltonian: A hermitian operator with eigenvalues describing the energy eigenstates of the system.

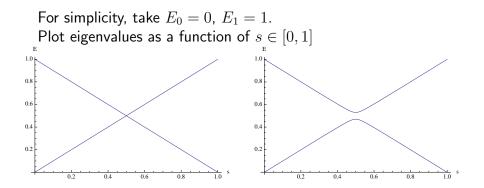
A quantum system with a time-changing Hamiltonian will stay in the same energy level if the rate-of-change is slow enough.

$$T \gg \frac{2\pi\hbar}{\Delta}$$

(with level separation Δ). Consider:

$$H_i = \begin{pmatrix} E_0 & \delta \\ \delta & E_1 \end{pmatrix}, H_T = \begin{pmatrix} E_1 & \delta \\ \delta & E_0 \end{pmatrix}$$
$$H(s) = (1-s)H_i + sH_T$$

Level Separation



 $\delta=0$ $\delta=0.03$ With s varied over time $T\gg\frac{2\pi\hbar}{\Delta}$, system will remain in the same level.

The Adiabatic Theorem
 The Adiabatic Algorithm
 Computational Complexity
 Notes on Adiabatic Univers

The Adiabatic Algorithm

- Encode problem as SAT¹
- Each clause has a local Hamiltonian H_c encoding the assignment of variables, $H_T = \sum H_c$
- Initialize system into simple ground state of some Hamiltonian H_0 .
- Adiabatically evolve Hamiltonian to H_T : system will be in ground state encoding solution

The Adiabatic Algorithm

- Encode problem as SAT¹
- Each clause has a local Hamiltonian H_c encoding the assignment of variables, $H_T = \sum H_c$
- Initialize system into simple ground state of some Hamiltonian H_0 .
- Adiabatically evolve Hamiltonian to H_T : system will be in ground state encoding solution

•
$$H(0) = H_0, \ H(T) = H_T$$

- $\rightarrow H(t/T=s) = (1-s)H_0 + sH_T$
- Vary s slowly enough such that system remains in ground state

¹Farhi, et al. 2000.

Delay Factor

Schrodinger Equation

$$i\frac{d}{dt}|\psi(t)\rangle = H(t)|\psi(t)\rangle$$

Introduce a Delay Factor $\tau(s)$ indicating how slowly the Hamiltonian varies².

$$\frac{d}{ds}|\psi(s)\rangle = -i\tau(s)H(s)|\psi(s)\rangle$$

Adiabatic evolution requires:

$$\tau(s) \gg \frac{\|\frac{d}{ds}H(s)\|_2}{g(s)^2}$$

Evolution time T proportional to separation g_{min}^{-2} .

²Van Dam, Mosca, Vazirani, 2008.

The Adiabatic Theorem
 The Adiabatic Algorithm
 Computational Complexity
 Notes on Adiabatic Universalit

Does not in general indicate 3-SAT soluble in polynomial time: some problems have g_{min} exponentially small

- But can recover Grover Search³
- Consider

$$f(x): \{0,1\}^n \to \mathbb{R} = \begin{cases} 0 & \text{if } x \text{ is the solution} \\ 1 & \text{otherwise} \end{cases}$$

Final Hamiltonian $H_x = \sum |z\rangle\langle z|$

$$\lim n_x = \sum_{z \in \{0,1\}^n \setminus \{x\}} |z|$$

³Van Dam, Mosca, Vazirani, 2008.

Grover Search Complexity

Initial Hamiltonian with Hadamard $|+\rangle^n = |\hat{0}\rangle^n$ as ground state.

$$H_0 = \sum_{z \in \{0,1\}^n \setminus \{0^n\}} |\hat{z}\rangle \langle \hat{z}|$$

Level separation of $H(s) = (1 - s)H_0 + sH_x$

$$g(s) = \sqrt{\frac{N+4(N-1)(s^2-s)}{N}}$$

Looks like $T\propto g_{min}^{-2}=O(N).$ But if we let the delay vary in time:⁴

$$T = \int_{s=0}^{1} \frac{ds}{g(s)^2} = \frac{N \cdot \arctan(\sqrt{N-1})}{\sqrt{N-1}} = O(\sqrt{N})$$

⁴Van Dam, Mosca, Vazirani, 2008.

The Adiabatic Theorem
 The Adiabatic Algorithm
 Computational Complexity
 Notes on Adiabatic Universality

Can show that we can polynomially simulate a general Quantum Circuit adiabatically

- Quantum Circuit: L gates, state after gate ℓ is $|\alpha(\ell)\rangle$
- Adiabatically, could have final Hamiltonian H_L with g.s. $|\alpha(L)\rangle$

Problems: Can't always specify H_L without knowing $|\alpha(L)\rangle$

Adiabatic Universality

Kitaev's history state

$$|\eta\rangle = \frac{1}{\sqrt{L+1}} \sum_{\ell=0}^{L} |\alpha(\ell)\rangle \otimes |1^{\ell} 0^{L-\ell}\rangle$$

- Define final Hamiltonian H_f to have $|\eta\rangle$ as ground state.⁵
- Initial Hamiltonian H_0 has g.s. $|lpha(0)
 angle\otimes|0^L
 angle$
- Can construct H_0 and H_f without knowing $|\alpha(L)\rangle$
- Measure: If clock is $|1^\ell
 angle$ then other register carries result

• Can simulate a QC using 5-local Hamiltonians in $O(L^5)$ Can generalize to 3-local H, or a grid with two-local H and six-state particles.

⁵Aharonov, et al. 2008.

Conclusions

- Can implement quantum computations by adiabatic evolution
- Slowness of evolution related to complexity of the problem (not known in general)
- Recover $O(\sqrt{N})$ of Grover
- Can implement any quantum circuit adiabatically