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The Adiabatic Theorem

Hamiltonian: A hermitian operator with eigenvalues describing
the energy eigenstates of the system.
A quantum system with a time-changing Hamiltonian will stay
in the same energy level if the rate-of-change is slow enough.

T � 2π~
∆

(with level separation ∆).
Consider:

Hi =

(
E0 δ
δ E1

)
, HT =

(
E1 δ
δ E0

)
H(s) = (1− s)Hi + sHT



Level Separation

For simplicity, take E0 = 0, E1 = 1.
Plot eigenvalues as a function of s ∈ [0, 1]
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With s varied over time T � 2π~

∆
, system will remain in the

same level.
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The Adiabatic Algorithm

Encode problem as SAT1

Each clause has a local Hamiltonian Hc encoding the
assignment of variables, HT =

∑
Hc

Initialize system into simple ground state of some
Hamiltonian H0.

Adiabatically evolve Hamiltonian to HT : system will be in
ground state encoding solution

H(0) = H0, H(T ) = HT

→ H(t/T = s) = (1− s)H0 + sHT

Vary s slowly enough such that system remains in ground
state

1Farhi, et al. 2000.
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Delay Factor

Schrodinger Equation

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉

Introduce a Delay Factor τ(s) indicating how slowly the
Hamiltonian varies2.

d

ds
|ψ(s)〉 = −iτ(s)H(s)|ψ(s)〉

Adiabatic evolution requires:

τ(s)�
‖ d
ds
H(s)‖2

g(s)2

Evolution time T proportional to separation g−2
min.

2Van Dam, Mosca, Vazirani, 2008.
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Adiabatic Complexity

Does not in general indicate 3-SAT soluble in polynomial time:
some problems have gmin exponentially small

But can recover Grover Search3

Consider

f(x) : {0, 1}n → R =

{
0 if x is the solution
1 otherwise

Final Hamiltonian Hx =
∑

z∈{0,1}n\{x}

|z〉〈z|

3Van Dam, Mosca, Vazirani, 2008.



Grover Search Complexity

Initial Hamiltonian with Hadamard |+〉n = |0̂〉n as ground
state.

H0 =
∑

z∈{0,1}n\{0n}

|ẑ〉〈ẑ|

Level separation of H(s) = (1− s)H0 + sHx

g(s) =

√
N + 4(N − 1)(s2 − s)

N

Looks like T ∝ g−2
min = O(N). But if we let the delay vary in

time:4

T =

∫ 1

s=0

ds

g(s)2
=
N · arctan(

√
N − 1)√

N − 1
= O(

√
N)

4Van Dam, Mosca, Vazirani, 2008.
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Adiabatic Universality

Can show that we can polynomially simulate a general
Quantum Circuit adiabatically

Quantum Circuit: L gates, state after gate ` is |α(`)〉
Adiabatically, could have final Hamiltonian HL with g.s.
|α(L)〉

Problems: Can’t always specify HL without knowing |α(L)〉



Adiabatic Universality

Kitaev’s history state

|η〉 =
1√
L+ 1

L∑
`=0

|α(`)〉 ⊗ |1l0L−`〉

Define final Hamiltonian Hf to have |η〉 as ground state.5

Initial Hamiltonian H0 has g.s. |α(0)〉 ⊗ |0L〉
Can construct H0 and Hf without knowing |α(L)〉
Measure: If clock is |1`〉 then other register carries result

Can simulate a QC using 5-local Hamiltonians in O(L5)

Can generalize to 3-local H, or a grid with two-local H and
six-state particles.

5Aharonov, et al. 2008.



Summary

Conclusions

Can implement quantum computations by adiabatic
evolution

Slowness of evolution related to complexity of the
problem (not known in general)

Recover O(
√
N) of Grover

Can implement any quantum circuit adiabatically
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