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The Adiabatic Theorem

Hamiltonian: A hermitian operator with eigenvalues describing
the energy eigenstates of the system.

A quantum system with a time-changing Hamiltonian will stay
in the same energy level if the rate-of-change is slow enough.
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(with level separation A).

Consider:
[ Ey ¢ (B 6
Hi_((s E1>’HT_<5 Eo)

H(S) = (1 — S)HZ + SHT



Level Separation

For simplicity, take £y =0, F; = 1.
Plot eigenvalues as a function of s € [0, 1]

10k - 10

60=0 6 =0.03
With s varied over time T > %h, system will remain in the

same level.
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The Adiabatic Algorithm

@ Encode problem as SAT?

@ Each clause has a local Hamiltonian H,. encoding the
assignment of variables, Hr = > H.,

@ Initialize system into simple ground state of some
Hamiltonian Hj.

@ Adiabatically evolve Hamiltonian to Hp: system will be in
ground state encoding solution

LFarhi, et al. 2000.
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@ Encode problem as SAT?

@ Each clause has a local Hamiltonian H,. encoding the
assignment of variables, Hr = > H.,

@ Initialize system into simple ground state of some
Hamiltonian Hj.

@ Adiabatically evolve Hamiltonian to Hp: system will be in
ground state encoding solution

(*] H(O) :Ho, H(T) :HT

o —» H(t/T =s)=(1—s)Hy+ sHr

@ Vary s slowly enough such that system remains in ground
state

LFarhi, et al. 2000.



Delay Factor

Schrodinger Equation

d
z%w(t)) = H(t)|(1))

Introduce a Delay Factor 7(s) indicating how slowly the
Hamiltonian varies?.

L) = —ir(s) H W)

Adiabatic evolution requires:

155 H ()2
9(s)?

Evolution time 1" proportional to separation g;jn.

T(s) >

2\an Dam, Mosca, Vazirani, 2008.
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Adiabatic Complexity

Does not in general indicate 3-SAT soluble in polynomial time:
some problems have g,,;, exponentially small

@ But can recover Grover Search3

e Consider
n ~ | 0 if z is the solution
fla) 40,1} = R = { 1 otherwise
Final Hamiltonian H, = Z |2) (2]
ze{0,1}"\{z}

3Van Dam, Mosca, Vazirani, 2008.



Grover Search Complexity

Initial Hamiltonian with Hadamard |4)™ = |0)" as ground

state.
Ho= Y |9

z€{0,1}"\{0"}
Level separation of H(s) = (1 — s)Hy + sH,

ofs) = \/N—I—Zl(N]—Vl)(s?—s)

Looks like T oc g7, = O(N). But if we let the delay vary in
time:*

(' ds  N-arctan(v/N—1)
R e

4Van Dam, Mosca, Vazirani, 2008.
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Adiabatic Universality

Can show that we can polynomially simulate a general
Quantum Circuit adiabatically

@ Quantum Circuit: L gates, state after gate £ is |a({))
@ Adiabatically, could have final Hamiltonian H with g.s.
(L))

Problems: Can't always specify Hj, without knowing |c(L))



Adiabatic Universality

Kitaev's history state

n) = > la() @10 )

Define final Hamiltonian H to have |n) as ground state.”
Initial Hamiltonian Hy has g.s. |a(0)) ® |0L)

Can construct Hy and Hy without knowing |a(L))
Measure: If clock is |1°) then other register carries result
e Can simulate a QC using 5-local Hamiltonians in O(L?)

Can generalize to 3-local H, or a grid with two-local H and
six-state particles.

5Aharonov, et al. 2008.



Conclusions

@ Can implement quantum computations by adiabatic
evolution

@ Slowness of evolution related to complexity of the
problem (not known in general)

@ Recover O(v/N) of Grover

@ Can implement any quantum circuit adiabatically



	The Adiabatic Theorem
	The Adiabatic Algorithm
	Computational Complexity
	Notes on Adiabatic Universality

