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@ Using the polynomial method: Q(n) for any q(n) > 0.

@ Additive adversary arguments:

» Reichardt’s characterization of Q(f) in terms of Adv*(f) holds only
in the bounded error case.
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» Decays rapidly with g(n).
» Gives a trivial constant bound even for g(n) = 1/y/n.
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Setup

@ Computing the parity function in the query model with error
probability 1/2 — g(n) where g(n) = o(1).
@ Using the polynomial method: Q(n) for any g(n) > 0.
@ Additive adversary arguments:
» Reichardt’s characterization of Q(f) in terms of Adv*(f) holds only

in the bounded error case.
Qi j2—q(n)(Parity,) > Advi5,_ . (Parity,) = ((q(n))?n)

» Decays rapidly with g(n).
» Gives a trivial constant bound even for g(n) = 1/y/n.

@ Question: Can we get a better lower bound using
adversary-based arguments ?
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@ Show a lower bound of Q(n) even for exponentially small g(n).

» Proof is based on a “quantum reduction” to the t-fold search
problem, with t = 0(n).
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@ Show a lower bound of Q(n) even for exponentially small q(n).

» Proof is based on a “quantum reduction” to the t-fold search
problem, with t = 0(n).
» Adaptation of the proof of Cleve et. al to our setup.
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Outline

@ Show a lower bound of Q(n) even for exponentially small q(n).

» Proof is based on a “quantum reduction” to the t-fold search

problem, with t = 0(n).
» Adaptation of the proof of Cleve et. al to our setup.
» Holds even for “weak” algorithms for parity.
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The quantum reduction

@ Notation

» For any S C [n], xs: Characteristic vector of S
» X|s: Restriction of x to the subset S.
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@ Notation

» For any S C [n], xs: Characteristic vector of S
» X|s: Restriction of x to the subset S.

@ Observation [Scott Aaronson]: for all x € {0,1}", we have
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The quantum reduction

@ Notation

» For any S C [n], xs: Characteristic vector of S
» X|s: Restriction of x to the subset S.

@ Observation [Scott Aaronson]: for all x € {0,1}", we have

1
van

3 (—1)PID Hylys) = |x)

Scin]

@ Given an algorithm that produces such a superposition with r(n)
queries, get an algorithm that recovers |x) with r(n) queries.
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The quantum reduction

@ Notation

» Forany S C [n], xs: Characteristic vector of S
» X|s: Restriction of x to the subset S.

@ Observation [Scott Aaronson]: for all x € {0,1}", we have

1
van

3 (—1)PID Hylys) = |x)

Scin]

@ Given an algorithm that produces such a superposition with r(n)
queries, get an algorithm that recovers |x) with r(n) queries.

@ Need to deal with garbage.
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The quantum reduction for coherent algorithms

@ A parity algorithm is coherent if on inputs x and S, it takes the
state |x)|xs)|2) to |x)|xs)|z + Para(x]s))-
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The quantum reduction for coherent algorithms

@ A parity algorithm is coherent if on inputs x and S, it takes the
state x)|xs)|2) to [x)|xs)|Z + Para(x|s)).
@ The reduction
» Start with the state |x)|0)©"[1).
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@ A parity algorithm is coherent if on inputs x and S, it takes the
state |x)|xs)|2) to |x)|xs)|z + Para(x]s))-
@ The reduction

» Start with the state |x)|0)®"|1).
» Hadamard the last n + 1 qubits:

1
Z (=1)%[x)|xs)|2)
V2ml  etoaym

» Apply the coherent parity algorithm and Hadamard the last (n+ 1)
qubits:

1
Ne Yo (RS ) Holxs) Hilz) = [x)1x)[1)
(z,xs)€{0, 1}
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The quantum reduction for coherent algorithms

@ A parity algorithm is coherent if on inputs x and S, it takes the
state |x)|xs)|2) to |x)|xs)|z + Para(x]s))-
@ The reduction

» Start with the state |x)|0)®"|1).
» Hadamard the last n + 1 qubits:

= Y Uk

(Z’XS)€{011 }n+1

» Apply the coherent parity algorithm and Hadamard the last (n+ 1)
qubits:

1
o Yo (RS ) Holxs) Hilz) = [x)1x)[1)
(z,xs)€{0, 1}

» Measure the middle n qubits in the standard basis: get x with
probability 1!
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The quantum reduction for coherent algorithms

@ Claim
» Let ¥ be any finite set.
» If there exists a coherent algorithm A that computes Parity, using
r(n) queries, then for any function f: {0,1}" — ¥, there is an
algorithm By that computes f exactly using r(n) queries.
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The quantum reduction for general algorithms

@ Claim
> Lett < 2, t=46(n).
» Let g(n) = Q(e~ /1)
» If A computes Parity, with error probability px(n) for every
x € {0,1}" and for all x with |x| = t,

1
on 2. Pus(M) <1/2-q(n)
Sc{o,1}

» Then, A makes Q(n) queries.

Adversary-Based Parity Lower Bounds with Small Probability Bias 7/10



The quantum reduction for general algorithms

@ Claim
> Lett < 2, t=46(n).
» Let g(n) = Q(e~ /1)
» If A computes Parity, with error probability px(n) for every
x € {0,1}" and for all x with |x| = t,

1
on 2. Pus(M) <1/2-q(n)
Sc{o,1}

» Then, A makes Q(n) queries.
@ Corollary
> Qy_-cn(Paritys) = ©(n) for any constant ¢ < .
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General parity algorithms

o A takes the state |x)|xs)|z)|0)|0)®" to

ay,slx)|xs)12)|Parn(X|s))|Jx,s) + bx,s|X)|xs)|2)|Parn(x]s)) | Kx.s)

where |by s? = px|(N), |ax,s? + [bx,sl* = 1 and |Jy s) and |K; s)
are unit vectors.
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General parity algorithms

o A takes the state |x)|xs)|z)|0)|0)®" to

ay,slx)|xs)12)|Parn(X|s))|Jx,s) + bx,s|X)|xs)|2)|Parn(x]s)) | Kx.s)

where |bx,S|2 = px|s(n)’ |ax,S|2 + |bx,S|2 =1and |JX,S> and |KX,S>
are unit vectors.

@ Apply a CNOT gate and uncompute A:
%) xs)|Z + Parn(x]s))|0) ") + v2by 5| My s )

where |M, s ,) satisfies the properties |My so) = —|My s 1) and
{IMy.5.0) } x,s is orthonormal.
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General parity algorithms

o A takes the state |x)|xs)|z)|0)|0)®" to

ay s|x)|xs)|z)|Parn(x|s))|Jx,s) + bx,s

X)|xs)|2)|Pary(x|s))|Kx.s)
where |bx,S|2 = px|s(n)’ |'ax,S|2 + |bx,S|2 =1and |JX,S> and |KX,S>
are unit vectors.

@ Apply a CNOT gate and uncompute A:

[X)|xs)|Z + Para(x|))|0)*" 1) + V2by 5| My s )

{IMy s0)}x,s is orthonormal.
o |x)|xs)|z + Para(x|g))|0)&w+1):

» Output of a coherent parity algorithm
» Not necessarily orthogonal to |My s )
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The quantum reduction for general algorithms

@ Apply Hadamard gate, the above algorithm and another
Hadamard gate: |x)|x)|1)[0)®(V+1) + |¢)

’
HI¢>|I§=HW( Y. (“1)%besIMes )3

z,xs)€{0, 1}

= % Z px\s(n)

xs€{0,1}"
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The quantum reduction for general algorithms

@ Apply Hadamard gate, the above algorithm and another
Hadamard gate: |x)|x)|1)[0)®(V+1) + |¢)

’
\I\¢>|\§=HW( Y. (“1)%besIMes )3

z,xs)€{0, 1}

= % Z px\s(n)

xs€{0,1}"

@ Pr[Obtaining x] > 4g?(n) whenever

s 2 bl < (3~ (M)
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The quantum reduction for general algorithms

@ Holevo’s theorem ?
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» nqueries to the oracle might give nlog n classical bits of
information.
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@ Holevo’s theorem ?

» nqueries to the oracle might give nlog n classical bits of
information.

@ The t-fold search problem

» Given x € {0,1}" and promised that |x| = t, find the subset J C [n]
of 1’s of x.
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» nqueries to the oracle might give nlog n classical bits of
information.

@ The t-fold search problem

» Given x € {0,1}" and promised that |x| = t, find the subset J C [n]
of 1’s of x.

@ Forevery t < /L andevery e =1 —Q(e™/8),
Q.(t-fold search) = Q(V/1n).

» Proof using the earliest version of the multiplicative adversary
method(Ambianis 2005, Spalek 2007)
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The quantum reduction for general algorithms

@ Holevo’s theorem ?

» nqueries to the oracle might give nlog n classical bits of
information.

@ The t-fold search problem

» Given x € {0,1}" and promised that |x| = t, find the subset J C [n]
of 1’s of x.

@ Forevery t < /L andevery e =1 —Q(e™/8),
Q.(t-fold search) = Q(V/1n).

» Proof using the earliest version of the multiplicative adversary
method(Ambianis 2005, Spalek 2007)

@ Conclude: The claim holds for all g(n) = Q(e~!/18).

Adversary-Based Parity Lower Bounds with Small Probability Bias 10/10



