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Setup

Computing the parity function in the query model with error
probability 1/2− q(n) where q(n) = o(1).

Using the polynomial method: Ω(n) for any q(n) ≥ 0.
Additive adversary arguments:

I Reichardt’s characterization of Q(f ) in terms of Adv±(f ) holds only
in the bounded error case.

Q1/2−q(n)(Parityn) ≥ Adv±1/2−q(n)(Parityn) = Ω((q(n))2n)

I Decays rapidly with q(n).
I Gives a trivial constant bound even for q(n) = 1/

√
n.

Question: Can we get a better lower bound using
adversary-based arguments ?
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Outline

Show a lower bound of Ω(n) even for exponentially small q(n).

I Proof is based on a “quantum reduction” to the t-fold search
problem, with t = θ(n).

I Adaptation of the proof of Cleve et. al to our setup.
I Holds even for “weak” algorithms for parity.
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The quantum reduction

Notation
I For any S ⊂ [n], χS: Characteristic vector of S
I x |S: Restriction of x to the subset S.

Observation [Scott Aaronson]: for all x ∈ {0,1}n, we have

1√
2n

∑
S⊂[n]

(−1)Parn(x |S)Hn|χS〉 = |x〉

Given an algorithm that produces such a superposition with r(n)
queries, get an algorithm that recovers |x〉 with r(n) queries.
Need to deal with garbage.
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The quantum reduction for coherent algorithms

A parity algorithm is coherent if on inputs x and S, it takes the
state |x〉|χS〉|z〉 to |x〉|χS〉|z + Parn(x |S)〉.

The reduction

I Start with the state |x〉|0〉⊗n|1〉.
I Hadamard the last n + 1 qubits:

1√
2n+1

∑
(z,χS)∈{0,1}n+1

(−1)z |x〉|χS〉|z〉

I Apply the coherent parity algorithm and Hadamard the last (n + 1)
qubits:

1√
2n+1

∑
(z,χS)∈{0,1}n+1

(−1)z+Parn(x|S)|x〉Hn|χS〉H1|z〉 = |x〉|x〉|1〉

I Measure the middle n qubits in the standard basis: get x with
probability 1!
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The quantum reduction for coherent algorithms

Claim
I Let ΣO be any finite set.
I If there exists a coherent algorithm A that computes Parityn using

r(n) queries, then for any function f : {0,1}n → ΣO , there is an
algorithm Bf that computes f exactly using r(n) queries.

Adversary-Based Parity Lower Bounds with Small Probability Bias 6 / 10



The quantum reduction for general algorithms

Claim
I Let t ≤ n

4e , t = θ(n).
I Let q(n) = Ω(e−t/16)
I If A computes Parityn with error probability px (n) for every

x ∈ {0,1}n and for all x with |x | = t ,

1
2n

∑
S⊂{0,1}n

px|S (n) ≤ 1/2− q(n)

I Then, A makes Ω(n) queries.

Corollary
I Q 1

2−e−c·n (Parityn) = Ω(n) for any constant c ≤ 1
87 .
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General parity algorithms

A takes the state |x〉|χS〉|z〉|0〉|0〉⊗w to

ax ,S|x〉|χS〉|z〉|Parn(x |S)〉|Jx ,S〉+ bx ,S|x〉|χS〉|z〉|Par ′n(x |S)〉|Kx ,S〉

where |bx ,S|2 = px |S (n), |ax ,S|2 + |bx ,S|2 = 1 and |Jx ,S〉 and |Kx ,S〉
are unit vectors.

Apply a CNOT gate and uncompute A:

|x〉|χS〉|z + Parn(x |S)〉|0〉⊗(w+1) +
√

2bx ,S|Mx ,S,z〉

where |Mx ,S,z〉 satisfies the properties |Mx ,S,0〉 = −|Mx ,S,1〉 and
{|Mx ,S,0〉}x ,S is orthonormal.

|x〉|χS〉|z + Parn(x |S)〉|0〉⊗(w+1):
I Output of a coherent parity algorithm
I Not necessarily orthogonal to |Mx,S,z〉

Adversary-Based Parity Lower Bounds with Small Probability Bias 8 / 10



General parity algorithms

A takes the state |x〉|χS〉|z〉|0〉|0〉⊗w to

ax ,S|x〉|χS〉|z〉|Parn(x |S)〉|Jx ,S〉+ bx ,S|x〉|χS〉|z〉|Par ′n(x |S)〉|Kx ,S〉

where |bx ,S|2 = px |S (n), |ax ,S|2 + |bx ,S|2 = 1 and |Jx ,S〉 and |Kx ,S〉
are unit vectors.
Apply a CNOT gate and uncompute A:

|x〉|χS〉|z + Parn(x |S)〉|0〉⊗(w+1) +
√

2bx ,S|Mx ,S,z〉

where |Mx ,S,z〉 satisfies the properties |Mx ,S,0〉 = −|Mx ,S,1〉 and
{|Mx ,S,0〉}x ,S is orthonormal.

|x〉|χS〉|z + Parn(x |S)〉|0〉⊗(w+1):
I Output of a coherent parity algorithm
I Not necessarily orthogonal to |Mx,S,z〉

Adversary-Based Parity Lower Bounds with Small Probability Bias 8 / 10



General parity algorithms

A takes the state |x〉|χS〉|z〉|0〉|0〉⊗w to

ax ,S|x〉|χS〉|z〉|Parn(x |S)〉|Jx ,S〉+ bx ,S|x〉|χS〉|z〉|Par ′n(x |S)〉|Kx ,S〉

where |bx ,S|2 = px |S (n), |ax ,S|2 + |bx ,S|2 = 1 and |Jx ,S〉 and |Kx ,S〉
are unit vectors.
Apply a CNOT gate and uncompute A:

|x〉|χS〉|z + Parn(x |S)〉|0〉⊗(w+1) +
√

2bx ,S|Mx ,S,z〉

where |Mx ,S,z〉 satisfies the properties |Mx ,S,0〉 = −|Mx ,S,1〉 and
{|Mx ,S,0〉}x ,S is orthonormal.

|x〉|χS〉|z + Parn(x |S)〉|0〉⊗(w+1):
I Output of a coherent parity algorithm
I Not necessarily orthogonal to |Mx,S,z〉

Adversary-Based Parity Lower Bounds with Small Probability Bias 8 / 10



The quantum reduction for general algorithms

Apply Hadamard gate, the above algorithm and another
Hadamard gate: |x〉|x〉|1〉|0〉⊗(w+1) + |ψ〉

‖|ψ〉‖22 = ‖ 1√
2n

∑
(z,χS)∈{0,1}n+1

(−1)zbx ,S|Mx ,S,z〉‖22

=
4
2n

∑
χS∈{0,1}n

px |S (n)

Pr [Obtaining x ] ≥ 4q2(n) whenever

1
2n

∑
S⊂{0,1}n

px |S (n) ≤ (
1
2
− q(n))
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The quantum reduction for general algorithms

Holevo’s theorem ?

I n queries to the oracle might give n log n classical bits of
information.

The t-fold search problem
I Given x ∈ {0,1}n and promised that |x | = t , find the subset J ⊂ [n]

of 1’s of x .
For every t ≤ n

4e and every ε = 1− Ω(e−t/8),
Qε(t-fold search) = Ω(

√
tn).

I Proof using the earliest version of the multiplicative adversary
method(Ambianis 2005, Spalek 2007)

Conclude: The claim holds for all q(n) = Ω(e−t/16).
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