
6.845 Quantum Complexity Theory

Final Project
January 17, 2011 Paul Christiano

1 Introduction

We are interested in the design of quantum banknotes: states which can be efficiently
recognized but not copied. It is known that quantum banknotes can be produced using a
random oracle, if the would-be forger is not allowed access to the verification procedure.
The existence of public-key quantum money, which can be recognized by a publicly known
verification procedure, remains open. It is known that there exists a quantum oracle—
a unitary transformation available to all parties— relative to which public-key quantum
money exists. The goal of this project is to design a scheme which is secure using only
a classical oracle. We propose a scheme, but its security is dependent on a conjectured
query complexity bound.

Formally, public key quantum money consists of a minting procedure M used by the
bank and a verification procedure V known publicly, each parametrized by a security
parameter k in which their running time is polynomial. The bank repeatedly invokes
the M to produce banknotes |ψi〉. The verification procedure V should reject a note |ψi〉
with negligible probability (less than k−c for any constant c). (By the Almost-As-Good-
As-New lemma, this shows that a banknote can be verified any polynomial number of
times without being signifcantly damaged.) Moreover, the banknotes are hard to forge
in the following sense. Suppose an arbitrary polynomial time quantum adversary (the
forger) obtains n banknotes: |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉 and outputs a polynomial number
of potentially entangled forgeries. If these forgeries are independently verified using V ,
then V should almost certainly accept at most n of them.

Although we will not analyze it here, one virtue of the scheme (and the reason for some
of its complexity) is that it can also be used for quantum copy-protection in the sense
defined by Aaronson.

2 Quantum Money

Let k be the security parameter of the quantum money. For any S ⊂ F2k
2 , let S⊥ denote

its orthogonal complement.

To prepare a note, the bank first prepares a uniform superposition over k bit strings.

3-1

It then chooses a random k bit secret key sk. When given the secret key, the oracle
outputs a corresponding public key pk. For each secret key sk, the oracle chooses a
random S ⊂ {0, 1}2k of size 2k and a random bijection f : {0, 1}k → S. When given sk,
the oracle implements the bijections f and f−1. Using this, the bank prepares the state
|S〉 = 2−k/2

∑
s∈S |s〉. The banknote is (|S〉 , pk).

When given the public key pk the oracle provides some additional functions used by the
verification procedure. For each x ∈ {0, 1}k, the oracle chooses a random k dimensional
subspace Sx ⊂ F2k

2 . For each (x, pk), the oracle chooses a random bijection fx between
S and Sx. When given (x, pk), the oracle implements the map which is fx on S and 0
elsewhere, and the map which is f−1x on Sx and 02k elsewhere. Furthermore, when given
(x, pk), the oracle implements a membership oracle for S⊥x \ {0}.

Given |S〉 and this oracle, anyone can prepare the state |Sx〉 =
∑

s∈Sx
|s〉. The user

can then take the Hadamard transform to obtain
∣∣S⊥x 〉. To verify a quantum banknote,

we choose x at random, prepare S⊥x using this method, and feed that state into the
membership oracle for S⊥x \ {0}. Accept the money if the membership oracle says 1 and
reject otherwise. This returns 1 with probability 1− 2−k (2−k is the probability that you
get 0) for a real quantum banknote.

Quantum Copy Protection

In order to use this scheme for copy protection we need to modify it only slightly. Rather
than a verification procedure, we need to allow an honest user to evaluate the copy-
protected function. So the oracle provides a function which takes in any element of S⊥x
and outputs the copy-protected function evaluated at x. Essentially the same security
proof will apply, but there are some complications (and the definitions all become much
more difficult).

3 Security

We rely on a slightly strengthened version of the following conjecture.

Claim 1 Suppose S is a uniformly random k dimensional subspace of F2k
2 . and let N =

2k. Given membership oracles for S and its orthogonal complement S⊥, an algorithm
making T oracle queries cannot find two distinct non-zero elements of S with probability
greater than cT 4/N2, for a constant c independent of N and T .

A standard hybrid argument shows that the probability of finding a single non-zero
element of S is at most cT 2/N . Intuitively, we need to prove that finding two elements

3-2

is twice as hard as finding one. Direct product theorems are known for ordinary Grover
search; while this setting is more complicated, pairwise independence still implies that
finding a second element in S having already found one is just as hard as finding one
from scratch. This suggests that we may be able to strengthen existing results for Grover
search to cover this case.

In fact, we need to strengthen this conjecture slightly further still. A would-be forger is
presented simultaneously with many pairs of oracles satisfying the above conjecture, and
the security of the money depends on their inability to break any one of those pairs.

Claim 2 Suppose we choose a uniformly random k dimensional subspace S(x) ⊂ F2k
2 for

each k bit string x. Given membership oracles for each S(x) and each S(x)⊥, as well as
black box access to a commuting family of bijections f(x, y) : S(x)→ S(y), an algorithm
making T oracle queries cannot find two distinct non-zero elements of any S(x) with
probability greater than cT 4/N2, for a constant c independent of N and T .

With this result in hand it is easy to prove the unforgeability of our quantum banknotes.
It is sufficient to convert a forging algorihtm into one which violates the conjecture.

Suppose A is a forger making only T oracle queries. When run with n = poly(k) ban-
knotes and oracle access A outputs m = poly(k) arbitrarily entangled forgeries. Let p be
the probability that n+ 1 of these forgeries pass the verification procedure (the order or
timing of verification does not affect the outcome). Suppose that p is non-negligible (by
which we mean k−c for some constant c).

Now consider the public keys of the notes produced by A. Since each of these immediately
measured in the standard basis by the verification procedure, we may assume that they
are classical. It is clear (by a standard hybrid argument) that A cannot produce a
forgery using an unseen public key with non-negligible probability. Therefore p can be
non-negligible if and only if the forger has a non-negligible chance of producing two
forgeries with the same public key. But we will show that the conjecture then implies
that T is exponential in k.

Suppose (pk, |ψ〉) passes the verification procedure. Then for a randomly chosen x, the
hadamard transform of f (|ψ〉) has non-negligible probability mass in S⊥x (by f (|ψ〉) we
mean the state obtained by applying f and then applying f−1 to erase the original state).
Because it is statistically difficult to determine an element of S⊥x given only one element
of Sx, f (|ψ〉) must have significant probability mass on two distinct non-zero elements
of Sx. Thus |ψ〉 must have significant probability mass on two distinct elements of S.
So by measuring |ψ〉, we obtain a sample which has the following property: for every
s ∈ S, there is a non-negligible probability of measuring S\s. If we have two states which
pass the verification procedure, we can find two distinct elements of S with significant
probability. This implies, by the lemma, that if any algorithm produces two such states
with significant probability then T is exponentially large in k.

3-3

