
On the query complexity of counterfeiting
quantum money

Andrew Lutomirski

December 14, 2010

Abstract

Quantum money is a quantum cryptographic protocol in which a mint
can produce a state (called a quantum bill) which anyone can verify but no
one can copy. The only published protocol (quantum money from knots)
implements a protocol for collision-free money that is defined in terms of
a classical oracle. I give a reduction from a hard classical problem to a
restricted type of attack against the general collision-free money protocol.

1 Introduction
Quantum money is a quantum cryptographic protocol in which a mint can
produce a state (called a quantum bill) which anyone can verify but no one can
copy. A quantum money protocol is called collision-free if each quantum bill has
an associated serial number such that no one, not even the mint, can efficiently
produce two quantum bills with the same serial number. Collision-free money
can be used as quantum bills: the mint produces a large number of collision-
free money states and publishes a list of all the serial numbers. One benefit of
collision-free money is that no secret is needed: the only unique power that the
mint has is the ability to publish the list of valid serial numbers.

In [2], Lutomirski et al. give a construction for collision-free money using
classical oracles. The computational basis states correspond to a large set S.
The first oracle is a labeling function L that assigns a label to each element of
S. The second oracle is a classical functionM that, given an element of S, finds
another random element with the same label.

The labels correspond to serial numbers of the money states. For a serial
number `, the money state is

|$`〉 =
∑
s ∈ S

L (s) = `

|s〉.

The state |$`〉 can be made for a random ` by making the uniform superposition
over all elements of S and measuring L. The verification algorithm measures L

1

and then uses M to verify that it was given the correct superposition. (Details
can be found in [2] or [1].)

For security, the labeling function should be far from one-to-one: if a uni-
formly random s ∈ S is chosen and its label ` = L (s) is computed, no value
of ` should occur with more than negligible probability, but there should be
exponentially many other elements of S with the same label. This means that
the probability of generating |$`〉 twice for the same ` is negligible and that the
money states are large superpositions and thus hard to prepare directly.

The only published quantum money protocol which is not yet broken is an
implementation of collision-free money using knot diagrams for S, Reidemeister
moves for M , and the Alexander polynomial for L. [1]

There is, so far, no security proof for this type of money. Ideally, preparing
any +1 eigenstate of the projector∑

`

|$`〉〈$`| ⊗ |$`〉〈$`|

(that is, any pair of money states with the same serial number) would require
exponentially many queries to L and M . In this paper, I give progress toward a
weaker result: that given s ∈ S, it is hard to prepare |$L(s)〉. This would imply
that any attempt to counterfeit collision-free money by first measuring a valid
money state in the computational basis would fail.

We give a reduction from the same component problem (determining
whether two elements of S have the same label without access to L) to the
simplified counterfeiting problem.

2 Formalism
Definition 1. A partial mixing oracle M on a partition {S1, . . . , Sc} of a
set S is a function mapping Zr × S → S for some r = Ω

(
|S|2

)
. For notational

convenience, we will write M (i, s) as Mi (s). Each Mi is invertible, and, in
general, we assume that any algorithm given access to M is also given access to
each M−1i . M has the property that it mixes over the components S1, . . . Sk:
each Mi maps each component Sj to itself but otherwise behaves like a random
permutation on each Sj .

Definition 2. The simple counterfeiting problem is: Given an integer n, a
set S, a partial mixing oracleM on a partition {S1, . . . , S2n} of S (some elements
of which may be empty), a labeling oracle L : S → 2n such that L (x) = i if
x ∈ Si, and an element s ∈ Si for some i, prepare the state |$i〉 =

∑
x∈Si

|x〉.

Definition 3. The same component problem is: Given a set T and a partial
mixing oracle M on an unknown partition {T1, . . . , Tc} of T , test whether two
elements s, t lie in the same component.

Graph isomorphism and group membership are special cases of the same
component problem. Graph connectivity would also be a special case if the

2

mixing properties of M were relaxed. I conjecture that there is no worst-case
polynomial time quantum algorithm for same component.

The same component problem has a related state preparation problem.

Definition 4. The component superposition problem is: Given an integer
n, a set T with |T | ≤ 2n, a partial mixing oracle M on an unknown partition
{T1, . . . , Tc} of T , and an element t ∈ T , prepare the state

∑
x∈Tj

|x〉 where Tj
is the component containing t.

The same component problem reduces to component superposition by
a swap test. I give a reduction from component superposition to simple
counterfeiting relative to random permutation oracles.

3 The reduction
We are given an instance of the component superposition problem on the
set T and partial mixing oracle M . WLOG, assume that our starting element
t is in T1. We assume that T can be easily encoded in binary—without any
further loss of generality, we take T ⊆ Z2n . We further assume that we have
access to random permutations.

We take as given a quantum algorithm A that solves the simple counter-
feiting problem on the set S = Z22n using O (poly (n)) queries to the oracles.
A takes as input the number n, a starting state s, and two oracles. As output, it
either reports “failed” (and produces no output) or reports “success” and outputs
the state |$i〉 (or something exponentially close to |$i〉), where i is the label of
s.

Let T̄ = Z2n \ T . Then

P =
{
T1, . . . , Tc, T̄ , {2n + 1} , . . . ,

{
22n
}}

is a partition of S.
Let R be any partial mixing oracle on P that is consistent with M (in the

sense that Ri (x) = Mi (x) whenever x ∈ T). A query to R can be implemented
with at most one query of M (when the input is in T) and at most one query
of a random permutation (when the input is in T̄).

Let L : S → Z22n be the labeling function

L (x) =

0 if x ∈ T
1 if x ∈ T̄
x if x > 2n

;

L is straightforward to implement with a single query to the binary encoding of
T . (For simplicity, the domain of L is unnecessarily large.)

The function L is in general inconsistent with R, as it takes the same value
on the entire set T . We address this with another partition P ′ and second set of

3

oracles R′ and L′. Let P ′ be the partition of S that contains T1 and partitions
everything else into sets of size 1. Let

L′ (x) =

{
0 if x ∈ T1
x otherwise

.

Finally, let R′ be the partial mixing oracle that does the same thing as M on
T1 and leaves all other elements of S unchanged.

Note that the unprimed oracles L and R are inconsistent but can be effi-
ciently implemented, whereas the primed oracles L′ and R′ are consistent but
cannot be implemented without being able to test membership in T1.

The primed and unprimed oracles are the same on the vast majority of their
inputs. It is easy to tell them apart, though—just query both on a random
element in T . If we randomly permute the oracles, however, intuitively it should
be impossible to distinguish them and the simple counterfeiting algorithm
A should work just as well with the unprimed oracles as with the primed oracles.
We can formalize this notion by embedding a Grover instance in the difference
between the primed and unprimed oracles.

The outcome of A on any problem instance is a mixed state on two regis-
ters: one bit indicating success and a register containing the output state if the
algorithm succeeds.
Claim. If we run A on instance I =

(
n, σ (t) , π ◦ L ◦ σ−1, σ ◦R ◦ σ−1

)
or on

I ′ =
(
n, σ (t) , π ◦ L′ ◦ σ−1, σ ◦R′ ◦ σ−1

)
, the mixed state outcomes ρ and ρ′

have negligible trace distance |ρ− ρ′|tr, with high probability in (π, σ).

Proof. Assume the contrary. Let f : Z2n → {0, 1} be any unknown binary
oracle of Hamming weight zero or one. That is, f is an instance of the Grover
problem.

To solve the Grover problem using A, we will perform some preprocessing.
Choose 2n disjoint subsets U1, . . . , U2n ⊆ Z22n \ T1, each of size 2n − |T1|. For
each i, we will choose an embedding of T \ T1 into Ui. To do this, we choose a
bijection τi from Z2n \ T1 to Ui. We define a partial mixing oracle R′′i that acts
on T1 identically to M , on Ui as τi ◦M ◦ τ−1i , and as the identity everywhere
else. We define a matching label function L′′i that evaluates to 0 on T1 and
τi (T \ T1), to 1 on τi

(
T̄
)
, and maps every other x ∈ Z22n to itself.

Now we create a composite labeling function

L′′ (x) =

{
L′′i (x) if x ∈ Ui and f (i) = 1 for some i
L′ (x) otherwise

and the mixing function

R′′ (j, x) =

{
R′′i (j, x) if x ∈ Ui and f (i) = 1 for some i
R′ (x) otherwise

.

Note that, if f is all zeros, then L′′ and R′′ look like L′ and R′ up to a permu-
tation and, if f has a single nonzero entry then L′′ and R′′ look like L and R

4

up to a permutation. Furthermore, L′′ and R′′ can each be implemented with
a single query to f (although they may require an exponentially large number
of queries to the original oracle M).

Generate random permutations π′′ and σ′′ and run A on

I ′′ =
(
n, σ′′ (t) , π′′ ◦ L′′ ◦ σ′′−1, σ′′ ◦R′′ ◦ σ′′−1

)
.

Marginalized over (π, π′′, σ, σ′′), I ′′ is distributed identically to either I and I ′,
depending on the Hamming weight of f . Since, with nonnegligible probability
in (π, σ), A produces output states that are non-negligibly different in trace
distance in the two cases, the output of A can be used to decide the Hamming
weight of f in a polynomial number of tries. This is a violation of the BBBV
theorem.

Therefore the output of A on I and I ′ is, with high probability in (π, σ),
negligibly different in trace distance.

This means that, averaged over (π, σ), A will succeed on input I with prob-
ability at least 1

poly(n) even though I is not an instance of simple counter-
feiting. We can condition on success, in which case the output state must be
close to

∑
x∈T1

|σ (x)〉. By applying σ−1, we recover
∑

x∈T1
|x〉, which is what

we wanted.

4 Conclusions
I have shown that, in the worst case, a simplified approach to counterfeiting
collision-free quantum money is at least as hard as the same component
problem, an unstructured search problem that contains both graph isomor-
phism and group membership as special cases. Graph isomorphism may or may
not be hard on average, but group membership on black box groups is at least
hard for classical computers [3]. I suspect that the same component problem
is outside of BQP in a black-box setting, but I have not yet been able to prove
this.

The more general problem of creating quantum money collisions without
solving simple counterfeiting remains open.

References
[1] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and

Peter Shor. Quantum money from knots. 2010.

[2] Andrew Lutomirski, Scott Aaronson, Edward Farhi, David Gosset, Avinatan
Hassidim, Jon Kelner, and Peter Shor. Breaking and making quantum
money: toward a new quantum cryptographic protocol. In Innovations in
Computer Science, 2010.

5

[3] J. Watrous. Succinct quantum proofs for properties of finite groups. Foun-
dations of Computer Science, Annual IEEE Symposium on, 0:537, 2000.

6

	Introduction
	Formalism
	The reduction
	Conclusions

