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Abstract

We study the query complexity of WAK PARITY: the problem of computing the parity of anbit
input string, where one only has to succeed a4« fraction of input strings, but must do so with high
probability on those inputs where one does succeed. It iskmelvn thatn randomized queries and
n/2 quantum queries are needed to compute paritglbmputs. But surprisingly, we give a random-
ized algorithm for WeAK PARITY that makes only)(n/ log”?*%(1/¢)) queries, as well as a quantum
algorithm that make®(n/+/log(1/¢)) queries. We also prove a lower bound®fr/log(1/¢)) in
both cases, as well as lower bound€Xfog n) in the randomized case afil{y/log n) in the quantum
case for any > 0. We show that improving our lower bounds is intimately rethto two longstanding
open problems about Boolean functions: the Sensitivityj€duare, and the relationships between query
complexity and polynomial degree.

1 Introduction
Given a Boolean inpuk = (z1,...,z,) € {0,1}", the RRITY problem is to compute
PAR(X) =21 ® - Dy . (1)

This is one of the most fundamental and well-studied problentomputer science.

Since RR(X) is sensitive to all bits at every inputX, any classical algorithm forARITY requires
examining alln bits. As a result, RRITY is often considered a “maximally hard problem” for query or
decision-tree complexity. In the quantum case, one can géglat improvement to[n/2] queries, by
applying the Deutsch-Jozsa algorithm [10] to successives pé coordinates (¢1, z2), (x3,z4), €tc.) and
then XORing the results. However, that factor-of-two im@ment is known to be the best possible by
quantum algorithms [12, 5.

So we might wonder: can we leaamythingabout a string’s parity by making a sublinear number of
queries? One natural goal would be to compute the parityfon@l! inputs, but merely for as many inputs
as possible. This motivates the following problem, whicH f& the focus of this paper.
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"Moreover, this holds even fambounded-erroquantum algorithms, which only need to gues®EX ) with someprobability
greater tharl /2, but must do so for every.



Problem 1 (WEAK PARITY or WEAKPAR,, ;) Givene > 0, design an algorithm that queries a Boolean
input X € {0,1}" as few times as possible, and whose acceptance probability) satisfies

1 1
P X)-PAR(X)| < =| > = +e=. 2
c b |0 = PAR(X) < 5| = 5 e @
Equivalently, the algorithm should satisty| > (1/2 + ¢) 2", whereA C {0,1}" is the set of all inputsY
such thatlp (X) — PAR(X)| < 1/3.

We will sometimes refer to the above as “bounded-erdfEAK PARITY. Inthe “zero-error” variant,
we instead want to satisfy the stronger condition

1
oK) =PAR(X)] 2 5t e (3)

To build intuition, let’s start with some elementary remmdbout WEAK PARITY.

(i) Of course it's trivial to guessAR(X) on al/2 fraction of inputsX, for example by always outputting
0. (On the other hand, beingrongon al/2 + ¢ fraction of X's is just as hard as being right on that
fraction.)

(i) As usual, the constant/3 in equation (2) is arbitrary; we can replace it by any othanstant in
(0,1/2) using amplification.

(iii) There is no requirement that the acceptance prolighil{ X' ) approximate a total Boolean function.
In other words, ifX ¢ A thenp (X) can be anything if0, 1].

(iv) Itis not hard to see that WAK PARITY is completely uninteresting for deterministic classidgloa
rithms. Indeed, any such algorithm that makes fewer th@ueries correctly guessea® X) on
exactly half of the inputs.

(v) Even a randomized or quantum algorithm must be “uncateel’ with RRR(X), if it always makes
T < n queries (in the randomized case)o n/2 queries (in the quantum case). In other words,

we must have
> (vx-3) (e -3) =o. @

Xe{0,1}"

wherep (X) is the algorithm’s acceptance probability. The reason $¢ fourier analysis: if we
switch domains fromr{0, 1} to {1, —1}, then RR(X) = z; - - - z,,. But for a randomized algorithm,
p (X) is a multilinear polynomial inxy,...,x, of degree at mosi’ < n, while for a quantum
algorithm, Beals et al. [5] showed that X) is a multilinear polynomial of degree at m@&f' < n.
And any such polynomial has correlatiOrwith the degree: monomialz; - - - z,,.

(vi) Crucially, however, equation (4) doemt rule out sublinear randomized or quantum algorithms for
WEAK PARITY (which exist for alle = 0 (1), as we will see!). The reason is a bit reminiscent of the
famoushat puzzle€® suppose, for example, that an algorithm outpaik PX) with probability exactly
2/3 on a3/4 fraction of inputsX, and with probabilityd on the remaining /4 fraction of inputs.
Such an algorithm would succeed attMk PARITY for ¢ = 1/4, despite maintaining an overall
correlation of0 with PAR(X).

%In that puzzlen players are each assigned a red hat or a blue hat uniformapdbm, and can see the colors of every hat except
their own. At least one player must guess the color of her omtndnd every guess must be correct. Surprisingly, evergthou
each player has only B/2 probability of being correct, it is possible for the play&wsvin this game with probability- 1 — 1/n,
by “conspiring” so that the cases where they are wrong caewiith each other. See http://en.wikipedia.org/wiki/lgarzle



(vii) The correlation argument does establish that, forzém-error variant of WEAK PARITY, any ran-
domized algorithm must make at leastjueries, and any quantum algorithm must make at le#st
queries, withsomenonzero probability. Even then, however, an algorithm that makesapected
sublinear number of queries on each ingltis not ruled out (and as we will see, such algorithms
exist).

The regime of VEAK PARITY that interests us the most is wheris very small—the extreme case being
e =1/2". We want to knoware there fast randomized or quantum algorithms to guesgahi¢y of X on
slightly more than half the inputs?

Despite an immense amount of work on query complexity, sa$ave know the above question was
never asked before. Here we initiate its study, both by pigvipper and lower bounds, and by relating
this innocent-looking question to longstanding open motd in combinatorics, including the Sensitivity
Conjecture. Even though ®AK PARITY might look at first like a curiosity, we will find that the task o
understanding its query complexity is tightly linkedgeneralquestions about query complexity, and these
links help to motivate its study. Conversely,BAK PARITY illustrates how an old pastime in complexity
theory—namely, understanding the largest possible gapgeba query complexity measures fbitrary
Boolean functions—can actually have implications for thery complexities ofpecificproblems.

2 Our Results

First, in Section 4, we prove an upper boundin/log??® (1/¢)) on the zero-error randomized query

complexity of WEAK PARITY, and an upper bound 6¥(n/+/log 1/¢) on its bounded-error quantum query
oglog 1)?

complexity. (For zero-error quantum query complexity, veethe slightly worse boun@ <n . M) )

V1ogl/e

Our quantum algorithm is based on Grover’s algorithm, whilerandomized algorithm is based on the
well-known O (n?-71) randomized algorithm for the complete binary AND/OR treeor the zero-error
quantum algorithm, we use a recent zero-error quantum itidgoifor the complete binary AND/OR tree
due to Ambainis et al. [3].

Then, in Section 5, we prove a not-quite-matching lower lblooh(2 (n/log (1/¢)) queries, by using
random self-reducibility to reduce ordinana®RTY to WEAK PARITY. This lower bound is the same for
randomized and quantum, and for zero-error and bounded-err

The gap between our upper and lower bounds might seem tinndgige that the gap steadily worsens
for smallere, reachingO (n%7*) or O(y/n) or O(y/nlog? n) versus the trivial2 (1) whene = 1/2". This
leads us to ask whether we can prove a nontrivial lower bduaidrorks forall e > 0. Equivalently, can we
rule out anO (1)-query randomized or quantum algorithm that computesiPy on a subsetd C {0,1}"
of size2"! +1?

In Section 6, we show that waan (barely) rule out such an algorithm. In 1988, Chung et alsfgjwed
that any induced subgraph of the Boolean hyperduibé}”, of size at least” ! + 1, must have at least one
vertex of degreé? (logn). As a consequence, we deduce that foeal 0, any bounded-error randomized
algorithm for WEAK PARITY must make?(log n) queries, and any bounded-error quantum algorithm must
make(y/log n) queries. For th€(log n) randomized lower bound, we also include a self-containedfpr
due to Andy Drucker.

It has been conjectured that Chung et a@l'$logn) degree lower bound can be improved 8,
Previously, however, Gotsman and Linial [13] showed thahsan improvement would imply the notorious
Sensitivity Conjecturén the study of Boolean functions. In Section 6, we obsenat #nn‘(1) lower

3For the bounded-error variant of #K PARITY, the argument also establishes that i 1/4, then any randomized algorithm
must maken queries, and any quantum algorithm must make queries.
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bound for Chung et al.’s problem wouddsoyield ann*(!) lower bound on the bounded-error randomized
and quantum query complexities of Ak PARITY, for all e > 0. Thus, while we do not have a direct
reduction between WAK PARITY and the Sensitivity Conjecture in either direction, it seetausible that

a breakthrough on one problem would lead to a breakthrougheoather.

Next, in Section 7, we connect MAK PARITY to another longstanding open problem in the study of
Boolean functions—and in this case, we give a direct redactiNamely, suppose we could prove a lower
bound of(2 (n/ logt—¢ (1/5)) on the bounded-error randomized query complexity &AK PARITY. We
show that this would imply thaks (f) = Q (deg (f)°) for all total Boolean functiong : {0,1}" — {0, 1},
whereR; (f) is the bounded-error randomized query complexityfpfinddeg (f) is its exact degree as
a real polynomial. Similar statements hold for other kinflsj@ery complexity (e.g., the bounded-error
quantum query complexit§, (f), and the zero-error randomized query compleRity( f)).

Nisan [16] showed thaRy (f) = €(deg (f)1/3) for all total Boolean functionsf, while Beals et
al. [5] showed that, (f) = Q(deg (f)/%) for all f# Meanwhile, the largest known separations are
Ry (f) = O(deg (f)>*) if f is the complete binary AND/OR tree (see Section 3 for a dédimjf and
Q. (f) = O(y/deg (f)) if f is the OR function. However, even improving on ti&%- and 6**-power
relations remains open. Our result says that, if there exiBioolean functiong” with larger separations
than are currently known, then vesuld improve our algorithms for WAK PARITY. And conversely, any
randomized lower bound for WAK PARITY better tharf2(n/log?/? (1/¢)), or any quantum lower bound
better tharf2(n/log®® (1/¢)), would improve the known relations between degree and quamyplexity
for all Boolean functions.

Lastly, in Section 8, we briefly consider the weak query camnities of functions other thanaRITY .

We show that, foeveryBoolean functionf, it is possible to agree witli (X) on2"~! + 1 inputs X using
a bounded-error quantum algorithm that mak¥s/n) queries, or a zero-error randomized algorithm that
makesO(n%7%*) queries, or a zero-error quantum algorithm that makégn log? n) queries.

3 Prdiminaries

We assume some familiarity with classical and quantum quemgplexity; see Buhrman and de Wolf [8]
for an excellent introduction. This section reviews the tmekevant definitions and facts.

3.1 Classical Query Complexity

Given a Boolean functiorf : {0,1}" — {0, 1}, thedeterministic query complexify (f) is the minimum
number of queries made by any deterministic, classicalrihgo that computesf (X) for every input
X € {0,1}". (Here and throughout, a query returnsgiven i, and the “number of queries” means the
number maximized over a € {0,1}".)

Also, thezero-error randomized query complexity (f) is the minimum number of queries made by
any randomized algorithm that compute6X') with success probability at lea&t3 for every X—and that,
whenever it fails to computé¢ (X), instead outputs “don’t know.” Thbounded-error randomized query
complexityRs (f) is the minimum number of queries made by a randomized algoribat computeg (X)
with success probability at lea®t3 for every X, and that can behave arbitrarily (for example, by outpgttin
the wrong answer) when it fails. We have the following relasi for everyf:

n>D(f) > Ro(f) =2 Ra(f). (5)

*More precisely, they showed respectively tRat(f) = Q(D (f)*/?) andQ, (f) =
stated results follow by combining those results with tleredntary factleg (f) < D (f).

Q(D (f)°) for all f. However, the



We could also have defineld, (f) as the minimumexpectedhumber of queries made by a randomized
algorithm that computeg (X) with certainty for every inpufX (where the expectation is over the internal
randomness of the algorithm, and must be bounded for e¥¢rywe will sometimes use this interpretation,
which changes the value &f (f) by at most a constant factor.

We will use the following well-known result:

Theorem 2 D (f) < Ro (f)? andD (f) = O(R2 (f)?) for all total Boolean functiong.®

We will write Ro(WEAKPAR,, ) to denote the minimum number of queries made by any randaoimize
algorithm that, for at least &/2 + ¢ fraction of inputsX € {0,1}", outputs RR(X') with probability at
least2/3. We will also writeRo(WEAKPAR,, .) to denote the minimum number of queries made by any
randomized algorithm that satisfies the following two prtips, for at least a/2 + ¢ fraction of inputsX:

e The algorithm outputs AR (X) with probability at leas®/3.

e If the algorithm doesot output RR(X), then it outputs “don’t know.”

In both theRs, andRy cases, for the remaining inpus (i.e., those on which the algorithm fails), the
algorithm’s output behavior can be arbitrary, but the ugpaund on query complexity must hold fat
inputs X € {0,1}".

Note that we could also defiri&,(WeAKPAR,, .) as the minimunexpectechumber of queries made by
any randomized algorithm that, for at least/@ + ¢ fraction of inputsX, outputs RR(X) with probability
1. In this case, the expected number of queries needs to bedédwomly for thoseX’s on which the
algorithm succeeds. For completeness, let us verify thevioig.

Proposition 3 Ro(WEAKPAR,, .) andR{,(WEAKPAR,, ) are equal up to constant factors.

Proof. Let A be a randomized algorithm that realiZRg( WEAKPAR,, ) < T. Then we can simply run
A repeatedly, until it outputs eith@ror 1. This will yield an algorithm that, for at leastig2 + ¢ fraction
of inputs X € {0,1}", outputs RR(X) with certainty afterO (T") queries in expectation. (The algorithm
might not halt for the remaining’’s, but that's okay.)

Conversely, letd’ be a randomized algorithm that realiZ@§(WEAKPAR,, ) < T'. Then we can run
A’ until it's either halted or madg&T queries, and can output “don’t know” in the latter case. Byhda's
inequality, this will yield an algorithm that, for at least &2 + ¢ fraction of inputsX, outputs RR(X) with
probability at leas®/3, and otherwise outputs “don’t know.” Furthermore, the nemaf queries will be
bounded byT for everyX. m

3.2 Quantum Query Complexity

Thezero-error quantum query complexi@y, () is the minimum number of queries made by any quantum
algorithm that computeg (X') with success probability at lea&t3, for every inputX—and that, whenever

it fails to computef (X ), instead outputs “don’t know.” Here a query maps each coatjoual basis state
of the form i, b, z) to a basis state of the form, b ® z;, z), wherez is a “workspace register” whose
dimension can be arbitrary. The final outp0f 1, or “don’t know”) is obtained by measuring a designated
part ofz. Thebounded-error randomized query compleXity (f) is the minimum number of queries made

*The D (f) < Ro (f)* part follows from the folklore result thad (f) < C(f)?, whereC (f) is the so-callectertificate
complexity together with the fact thao (f) > C (f). TheD (f) = O(R2 (f)?) part was proved by Nisan [16]. It also follows
from the result of Beals et al. [5] th&@t (f) < bs (f)3, wherebs (f) is theblock sensitivity{see Section 3.4), together with the fact
thatR: (f) = Q (bs (f)).



by a quantum algorithm that computg$.X') with success probability at lea®{3 for every X, and whose
output can be arbitrary when it fails. We have the followietations for everyf:

Ro(f) =2 Qo (f) 2 Qa(f), Ra(f)=Qa(f). (6)

Like in the randomized case, we can also inter@ygt /) as the minimunexpectechumber of queries made

by a quantum algorithm that computg$X ) with certainty for every inpuf, if we generalize the quantum

query model to allow intermediate measurements. Doing aog#s(), (f) by at most a constant factor.
We will use the following results of Beals et al. [5] and Mjdniis [15] respectively:

Theorem 4 (Bealset al. [5]) D (f) = O(Q, (f)°) for all total Boolean/.
Theorem 5 (Midrijanis[15]) D (f) = O(Q, (f)?) for all total Booleany.®

Just like in the randomized case, we will writly (WEAKPAR,, ) for the minimum number of queries
made by any quantum algorithm that, for at least/a + ¢ fraction of inputsX, outputs RR(X) with
probability at leas2/3; and will write Q,(WEAKPAR,, .) for the minimum number of queries made by any
quantum algorithm that satisfies the following two propestifor at least &/2 + ¢ fraction of X'’s:

e The algorithm outputs AR (X) with probability at leas®/3.

e If the algorithm doesiot output RR(X), then it outputs “don’t know.”

Once again, if we generalize the quantum query model to afitevmediate measurements, then we can
also defing),(WEAKPAR,, . ) as the minimunexpectechumber of queries made by any quantum algorithm
that, for at least a/2 + ¢ fraction of X''s, outputs RR(X') with probability 1 (with the expected number of
queries bounded only for thos€'s on which the algorithm succeeds). Doing so charfgg8VEAKPAR,, . )
by at most a constant factor, for the same reasons as in Riopd

3.3 Degree

Given a Boolean functiorf, the degreedeg (f) is the degree of the (unique) real multilinear polynomial
p : R* — R that satisfiep (X) = f(X) for all X € {0,1}". Degree has a known combinatorial
characterization that will be useful to ts:

Proposition 6 (folklore) Given ad-dimensional subcub#g in {0,1}", let Sy, S; be the subsets & with
even and odd Hamming weight respectively (thig = |S;| = 2¢71). Also, given a Boolean function
f:{0,1}" — {0,1}, call f “parity-correlated” on S if

{X €So: f(X)=1}#{X €S f(X)=1}]. ()
Thendeg (f) equals the maximum dimension of a subcube on whistparity-correlated.

It is not hard to see thateg (f) < D (f) for all Boolean functionsf. Combined with Theorems 2 and
4, this implies thaR, (f) = Q(deg (f)/3) andQ, (f) = Q(deg (f)'/°), as stated in Section 2.

®This improved the result of Buhrman et al. [7] tHat f) = O(Q, (f)*), as well as the result of Aaronson [2] tHag (f) =
0(Qq (f)* log n).
A proof of this folklore fact can be found in many places; oraraple is Aaronson [1].



3.4 Sensitivity and Block Sensitivity

Given an inputX € {0,1}" and a subseB C [n], let X denoteX with all the bits inB flipped. Then for
a Boolean functiory, the sensitivitys* (f) is the number of indices € [n] such thatf (X{%) # f (X)),

while theblock sensitivitybs™ (f) is the maximum number of pairwise-disjoint “block8’, . .., By, C [n]
that can be found such th#t(X?7) £ f (X) for all j € [k]. We then define
X b

= b = b . 8

s(f) e (f), bs(f) e, bs (f) (8)

Clearlys (f) < bs(f). The famousSensitivity Conjecturésee Hatami et al. [14] for a survey) asserts that
the gap between(f) andbs (f) is never more than polynomiél:

Conjecture 7 (Sensitivity Conjecture) There exists a polynomialsuch thats (f) < p (s (f)) for all f.

Nisan and Szegedy [17] showed that(f) < 2deg (f)2 (recently improved by Tal [22] tbs (f) <
deg (f)2), while Beals et al. [5] showed thaleg (f) < bs(f)3.9 Thus, degree and block sensitivity
are polynomially related. This implies that Conjecture @dglivalent to the conjecture that sensitivity is
polynomially related to degree.

3.5 AND/OR Tree

A particular Boolean function of interest to us will be tbemplete binary AND/OR treeAssumen = 2%
then this function is defined recursively as follows:

To (.Z) =, (9)
o Ty (xl,...,wn/g) AND T, 4 (xn/2+1,...,wn) if d > 0is odd,
Ta (w1, ) 1= { Tt (21, Zp2) ORTyoq (Tpjai1s- .- 20) if d > 0is even. (10)
It is not hard to see that
D (T,) = deg (Tq) = 2¢ = n. (11)

By contrast, Saks and Wigderson [19] proved the following.
d
Theorem 8 (Saks-Wigderson [19]) Ry (T4) = O ((%) ) = O(n073),

Saks and Wigderson [19] also proved a matching lower bouh¢f';) = Q(n%753), while Santha
[20] proved thafR, (Ty) = Q(n73) even for bounded-error algorithms. Note tAat gives the largest
known gap betweeD (f) andRs (f) for any total Boolean functiotf.

Recently, building on the breakthrough quantum walk atgarifor game-tree evaluation [11] (see also
[4]), Ambainis et al. [3] proved the following.

Theorem 9 (Ambainiset al. [3]) Q, (Tq) = O(y/nlog?n).

By comparison, it is not hard to show (by reduction froarPry) thatQ, (T4) = 2(y/n). Once again,
Theorem 9 gives the largest known gap betwBe(f) andQ, (f) for any total f.10
Finally, the following fact will be useful to us.

®Rubinstein [18] showed thais (f) canbe quadratically larger than(f).

®This follows immediately from their result that (f) < bs (f)?, which improved on the bourid (f) < bs (f)* due to Nisan
[16], and which they then combined with the reslf (f) = Q(+/bs (f)) to prove Theorem 4, thad (f) = O(Q, (f)°).

19t improves slightly on an earlier result of Buhrman et al, f#ho showed that for every > 0, there exists arf such that
Qo (f) = O(D (f)'/?7%). ForQ,, we can do slightly bette, (f) = O(1/D (f))) by just takingf to be theOR function.
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Proposition 10 Letn = 2¢. The number of inputX € {0,1}" such thatT,; (X) = PAR(X) is exactly
2n—1 4 1if dis even, and exactly’~! — 1 if d is odd.

Proof. This is most easily proved by switching to the Fourier repnéstion. Let

1-— 11—z,
T;(ml,...,ajn)::l—2Td< 2$1,..., 2$>, (12)
PAR* (X)) := 1 - - - xp. (13)
Then the problem reduces to computing the correlation
Cq= Y  Ti(X)ParR"(X), (14)
Xe{0,1}"
since o
{X €{0,1}": Ty (X)=PaR(X)} =2 + 761 (15)
Since every two distinct monomials have correlatiprve in turn have
Cq=2"aqg = =20y, (16)
wherea, and 3, are the coefficients in front of the monomial - - - z,, in the polynomialsl’}; (z1, ..., xy)
andTy (z1,...,z,) respectively. Itis not hard to see, by inspection of the poigial T; and induction on

d, thatg, = —1if dis even (i.e., if the root node has the fofdR (x,y) = = + y — zy), and thats,; = 1 if
d is odd (i.e., if the root node has the fothND (z,y) = zy). HenceCy = 2if d is even, and’y; = —2 if
dis odd. This completes the prool

4 Algorithmsfor WEAK PARITY

We now prove our first result: that there exist nontrivialdamized and quantum algorithms forBAKk
PaRITY. For simplicity, we first consider the special case 27"; later we will generalize to arbitrary.

Lemma 1l We have

Q(WEAKPAR,, 5-n) = O(v/n), 17)
Ro(WEAKPAR,, 5-n) = O(n™), (18)
Qo(WEAKPAR,, 5-») = O(y/nlog? n). (19)

Proof. For Q,, observe that th©R. function, OR (X), agrees with the parity ak on 2"~ + 1 inputs
X € {0,1}": namely, all the inputs of odd Hamming weight, plus the ingt Thus, simply computing
OR (X) gives us an algorithm for WAKPAR,, . with e = 27". And of course OR can be computed with
bounded error ifD (1/n) quantum queries, using Grover's algorithm.

ForRy, assume for simplicity that has the forn2¢; this will not affect the asymptotics. By Proposition
10, if d is even then the AND/OR tré€, (X ) agrees with RR(X) on2"~! + 1 inputs X, while if d is odd
thenl — T, (X) does. Either way, simply computirif; (X) gives us an algorithm for WAKPAR,, 5.
Furthermore, by Theorem 8, there is a zero-error randonatgatithm for T, (X) that makesO(n%74)
queries.

ForQ,, we also compute eithéf, (X) or 1 — T, (X) as our guess forAR(X), except now we use the
zero-error quantum algorithm of Theorem 9, which maRés/n log? n) queries.m

Next, we give a general strategy for converting @AW PARITY algorithm for smalk into an algorithm
that works for largee, with the query complexity gradually increasingsagdoes.
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Lemma 12 For all positive integers:, we have
Ro(WEAKPAR, -) < k- Ro(WEAKPAR,, . ). (20)

So in particular, supposB2(WEAKPAR,, 1/f(,)) < T (n). Then forallV ande > 0,

N-T(f7'(1/e))
Ro(WEAKPARN ) < (/e .

Exactly the same holds if we replaBg by Ry, Q,, or Q, throughout.

(21)

Proof. Let A be a randomized algorithm for BAKPAR,, ., and letX be an input to VEAKPAR of sizekn.
Then our strategy is to group the bits finto n blocksYi, . .., Y, of k bits each, then rual on the input

PAR (Y1),...,PAR(Y},), (22)

and output whateved outputs. IfA madeT (n) queries originally, then this strategy can be implemented
usingk - T'(n) queries: namelyk queries to the underlying input’ every timeA queries a bit RR(Y;).
Furthermore, lep (Z) be A's success probability on inplf € {0,1}". Then the strategy succeeds
whenever )

Ip (PAR(Y7),...,PAR (Y},,)) — (PAR (Y1) & - - & PAR (V)] < 3 (23)

and by assumption, this occurs for at leagya + ¢ fraction of Z’s.
The inequality (21) is just a rewriting of (20), if we make thebstitutionss := 1/f (n) andn :=
f71(1/¢) to get
Ro(WEAKPAR f-1(1/¢) ) < T (£r71(1/e). (24)
followed by k := N/f~1(1/e). Finally, since we never used that was classical or bounded-error,
everything in the proof still works if we replad&; by Ry, Q,, or Q, throughout. m
Combining Lemmas 11 and 12 now easily gives us our upper [ound

Theorem 13 For all n ande € [27",1/2], we have

Qo (WEAKPAR,, .) = O <\/#71/€> , (25)
n
Ro(WEAKPAR,, ) = O <W> , (26)

(loglog 1/¢)?
Vl0ogl/e ) ' @7

We do not know any upper bound &3 (WEAKPAR,, .) better than our upper bound 83 (WEAKPAR,, . ).

As a final note, all of our algorithms actually satisfy a sgenproperty than the definition of BAK
PARITY requires. Namely, the algorithms all compute a total Baoleanction f (X)) that agrees with
PAR(X) on al/2 + ¢ fraction of inputs. This means, for example, that we caninbtarandomized
algorithm that outputs AR (X) with probability 1 on a1/2 + ¢ fraction of inputsX € {0,1}", and that
halts afterO(n/log®2%% (1/¢)) queries in expectation oeveryinput X (not just those inputs for which
the algorithm succeeds). We can similarly obtain a quantlgorighm with expected query complexity

2
0] <n . M) and the same success condition.

V1ogl/e

Qo(WEAKPAR,, ;) = O (n
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5 Lower Bound via Random Self-Reducibility

Our next result is dower bound on the bounded-error randomized and quantum querplegities of
WEAK PARITY. The lower bound matches our upper bounds in its dependeneg though not in its
dependence on

Theorem 14 Q,(WEAKPAR,,.) = Q2 (n/log (1/¢)) forall 0 < e < 1.

Proof. Let C' be a quantum algorithm for WAKPAR,, . that never makes more than queries. Using
C, we will produce a new quantum algorith6Y, which makesO (T log %) queries, and which guesses
PAR(X) oneveryinput X € {0,1}" with probability stricter greater thaty2. But it is well-known that
any quantum algorithm of the latter kind must make at leg&t queries: in other words, thatRITY has
unbounded-error quantum query complexity?2 (this follows from the polynomial method [5]). Putting
the two facts together, we conclude that

n
T:Q<10g1/5>. (28)

To produceC’, the first step is simply to ampliff’. Thus, letC* be an algorithm that outputs the
majority answer among log 1 /¢ invocations ofC. Then by a Chernoff bound, provided the constarg
sufficiently large,

. 1
Xe}[gol:l}” [[Pr[C* (X) accepts— PAR (X)| <] > o +e. (29)
Next, C’ chooses a strinyy’ € {0, 1}" uniformly at random and sef := X @Y. Itthen runsC* to obtain
a guesd about RR(Z). Finally, C’ outputs RR(Y") @ b as its guess forAR(X).
Clearly C’ has the same quantum query complexityCds it is easy to simulate a query to a hit of
Z, by querying the corresponding hit of X and then XORing withy;. Furthermore, notice that is
uniformly random, regardless df, and that ifo = PAR (Z) then RR(Y") ® b =PAR(X). It follows that
(' succeeds with probability at least

1 1 e 4, 1

for every X, which is what we wanted to shovm

Of course, Theorem 14 implies th@h (WEAKPAR,, . ), R2(WEAKPAR,, . ), andRo(WEAKPAR,, ) are
Q2 (n/log (1/e)) as well. Itis curious that we do not get any lower boundsjgr Rz, or R better than for
Qo-

It is, however, illuminating to see what happens if we runrduction of Theorem 14, starting from
the assumption that' is a zero-errorrandomized or quantum algorithm for %K PAR,, .. Suppose fur-
thermore that” satisfies the same strong property that our zero-erroritiges from Section 4 satisfied:
namely, the property that halts afterl” queries in expectation oeveryinput X € {0,1}". In that case,
one can skip the amplification step in Theorem 14, to prodn@@gorithmC” with the following properties:

() C halts afterI’ queries in expectation on every inpkit and

(i) C guesses AR(X) with probability greater thath/2 on every inputX.

Now, one might think the above would imply > n /2 (regardless of), thereby contradicting our upper
bounds from Section 4! However, the apparent paradox idved@nce we realize that the lower bound
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of Beals et al. [5]—showing thaf’ > n/2 queries are needed to guessrRPX ) with probability greater
than1/2 on every inputX—says nothing aboutxpectedquery complexity. And indeed, it is trivial to
design an algorithm that guessesrPX ) with 1/2 + ¢ probability on every inpufX, using2sn queries in

expectation. That algorithm just evaluatesrRPX ) (usingn queries) with probability2e, and otherwise
guesses randomly, without examinifgat all!

6 Lower Bound via Sengitivity

Theorem 14 shows that our algorithms from Theorem 13 aree clm®ptimal where is reasonably large.
Unfortunately, though, Theorem 14 gives nothing when 27", Equivalently, it does not even rule out a
randomized or quantum algorithm making@nstanthnumber of queries (1), that correctly decidesRPry

on a subset of siz2”~! + 1. We conjecture that‘*(") randomized or quantum queries are needed for the
latter task, but we are unable to prove that conjecture—ta sfaaffairs that Section 7 will help to explain.

In this section, we at least prove th@flogn) randomized queries and(y/logn) quantum queries are
needed to solve WAK PARITY forall e > 0.

The key is a combinatorial quantity calléd(n), which was introduced by Chung, Furedi, Graham, and
Seymour [9]. Abusing notation, we identify the @t 1}" with the Boolean hypercube graph (where two
vertices are adjacent if and only if they have Hamming weighand also identify any subsét C {0,1}"
with the induced subgraph db, 1} whose vertex set i&. Let A (G) be the maximum degree of any
vertex inG. Then

A(n): min A (G) (31)

B GC{0,1}™ : |G|=2"—1+1
is the minimum ofA (G) over all induced subgraplt of size2"~1 + 1.
The following proposition relates (n) to WEAK PARITY.

Proposition 15 Ry(WEAKPAR,, .) = Q(A (n)) andQ,(WEAKPAR,, .) = Q(y/A (n)) for all € > 0.

Proof. LetU be an algorithm that decideaRiTY (with bounded error probability) on a subsetC {0,1}".
Then we claim that/ must make (A (A)) randomized of2(/A (A)) quantum queries, which §3(A (n))
or Q(y/A (n)) respectively iffA| > 27~1. To see this, lefX € A be a vertex with degrea (A4). Then
PARITY, when restricted t& and its neighbors, already yields a Grover search instafingieeA (A). But
searching a list ofV' elements is well-known to requite(N') randomized of2(v/N) quantum queries [6].
[ ]

To build intuition, it is easy to find an induced subgra@hc {0,1}" such thatG| = 2"~ butA (G) =
0: consider the set of all points with odd Hamming weight. Bddiag a single vertex to thdt increases
its maximum degreé\ (G) all the way ton. More generally, Chung et al. [9] were able to prove the
following.1t

Theorem 16 (Chung et al. [9]) We have

1 1 1
A(n) > 3 logy n — 3 log, logy 1 + 3" (32)

HChung et al.’s result is very closely related to an earlisulteof Simon [21], which states that jf : {0,1}" — {0,1} is
a Boolean function depending on allof its inputs, thers (f) > %logQ n — %logQ log, n + % wheres (f) is the sensitivity.
However, neither Chung et al.'s result nor Simon’s seemivalde as an immediate corollary of the other.

11



Combining Theorem 16 with Proposition 15 tells us immedyetieat

Ro(WEAKPAR,, .) = Q(log n), (33)
Qo (WEAKPAR,, .) = Q(+/logn) (34)

forall e > 0.
Now, the best-knowrupper bound onA (n), also proved by Chung et al. [9], ign + 1, and it is
conjectured that this is essentially tight. By Propositlén clearly a proof of that conjecture would imply

Rao(WEAKPAR,, .) = Q(v/n), (35)
Qo (WEAKPAR,, ;) = Q <n1/4) (36)

for all ¢ > 0—and more generally, proving (n) > n®() would imply that R(WEAKPAR,,.) and
Q(WEAKPAR,, .) aren®(1).

Unfortunately, provingA (n) > n2M) will be challenging. To see why, recall the famo8snsitiv-
ity Conjecture(Conjecture 7), which says that f) is polynomially related tds (f) (or equivalently, to
deg (f)). In 1992, Gotsman and Linial [13] showed that the Sensjti@ionjecture is equivalent to a state-
ment about the maximum degrees of induced subgraphg, of":

Theorem 17 (Gotsman-Linial [13]) Given any growth raté, we haves (f) > h (deg (f)) for all Boolean
functionsf : {0,1}" — {0,1}, if and only if

max {A (G), A ({0, 1"\ &)} > h(n) 37)
for all subsets> C {0,1}" such thaiG| # 2"~
Notice that if| G| # 2"~ 1, then
max {A (G),A({0,1}"\G)} > A(n). (38)

To see this, choose whichever@for {0,1}" \ G is larger, and then discard all k2it~—! + 1 of its elements.
Thus, any lower bound on Chung et al.'s combinatorial qtyariti(n) implies the same lower bound on the
function (n) of Theorem 17. For example, ¥ (n) > n®®), thens (f) > deg (f)*V).

But this means thaany proof of A (n) > n*()) would imply the Sensitivity Conjectutd! Thus, the
conjectureA (n) > n®() could be seen as a “common combinatorial core” of theAW PARITY and
sensitivity versus block sensitivity questions.

As afinal note, Andy Drucker (personal communication) foarself-contained proof fdRo(WEAKPAR,, . ) =
Q (log n), one that does not rely o (n), and that indeed achieves a better constant than thg-based
proof. We include this proof with Drucker’s kind permission

Proposition 18 Ry(WEAKPAR,, .) > logan — O (1) for all € > 0.

Proof. Suppose by contradiction thBt(WEAKPAR,, .) < log, n—C, and letU be a randomized algorithm
that achieves the bound. Then we can thinkJoés just a probability distributio® over decision trees.
Given a decision tre&, let ST C [n] be the set of all indicessuch that the variable; appears anywhere

Interestingly, we do not know the reverse implication.
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in 7. Then by assumption, ea@hin the support o> has depth at mosbvg, n — C, and therefore satisfies
|Sp| < 2les2n=C — 5y /2C By averaging, it follows that there exists ag [n] such that

j <27¢,
TlirD [i € Sr] <2 (39)
But this means that, for evey € {0,1}", we must have
Pr [U acceptsX] — Pr {U acceptsX'{"}] ‘ <27¢, (40)

where X1} denotesX with the it" bit flipped (as in Section 3.4). Hence, for (say) > 2, either
Pr [U acceptsX] fails to approximate RR(X), or elsePr [U acceptsX {}] fails to approximate Rr (X {1}).
But this means thal’ weakly computes ARITY on at mos2” ! inputs. m

Interestingly, unlike with our argument based &rin), we do not know how to generalize Drucker’s
argument to prove any lower bound gonantumquery complexity, nor do we know (even conjecturally)
how to push the argument beyofidlog n).

7 Connection todeg (f) vs. Q (f)

In the last section, we identified a known combinatorial eotyre (A (n) > nf2M) that would imply that
the randomized and quantum query complexities &A¥ PArITY aren®) for all ¢ > 0. However, since
A(n) > nf21) would also imply the Sensitivity Conjecture, it will clepbe difficult to prove.

So could there bedifferentway to prove tight lower bounds f&t2 (WEAKPAR,, ) andQ, (WEAKPAR,, - )—
a way that wouldn'’t require us to address any longstandiregn goblems about Boolean functions? Alas,
in this section we largely close off that possibility. In peular, suppose we could prove a strong lower
bound onR, (WEAKPAR,, .). We will show that this would imply a better polynomial rétatship between
deg (f) andRy (f) for all total Boolean functiong than is currently known. Similar statements hold for

Ro, Qq, andQ.

Theorem 19 Given a constant, suppose there exists a sequence of funcE{(fgganl such thatdeg (f,,) =
nandRs (f,) = O (n¢). Then

n
Ro(WEAKPAR, ) =0 | ——— . 41
A 9=0 (it /E> (41)

The same holds if we replaé®; by Ry, Q,, or Q in both instances.

Proof. We first show thaRy(WEAKPAR,, 5-») = O (n¢) in the special case = 27", then we generalize
to largere.

Observe that we can assume without loss of generality tloht gahas exactlyh inputs. For otherwise,
let p be the unique multilinear polynomial representifyg then choose a monomiat of p with degreen,
and arbitrarily fix all bits that do not appearin. This yields a subfunctiorf/, with n inputs,deg (f},) =

deg (fn) = n,andRs (f}) < Ra (fn)-
Now by Proposition 6, the statemedig ( f,,) = n is equivalent to the combinatorial statement

X : fo(X)=1land AR (X) =0} £ [{X : f, (X) = 1and RR (X) = 1}]. (42)

This means thaf,, (X) either agrees or disagrees withff X ) on at lease” ! + 1 inputs X. By replacing
fn by 1— f,, we can assume without loss of generality that the first calelsh Then if we run the algorithm
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for £, it will make O (n¢) queries and correctly decideRiITy on at leasR”~! + 1 inputs, which was the
desired result.
To generalize to arbitrary, we simply need to appeal to Lemma 12, which tells us that if

Ro(WEAKPAR,, 5-n) < T'(n) = O (n9), (43)
then N - T (logy 1/¢) N
4 (logg 1/€
Ro(WEAKPARy () < =0 . 44
2( Ne) S logy1/e <log1_c 1/5) (44)

Finally, since we never used that the algorithm was claksichounded-error, everything in the proof still
works if we replaceRs by Ro, Qq, 0or Qg throughout. m
For clarity, let us state Theorem 19 in contrapositive form.

Corollary 20 SupposeRs(WEAKPAR,,.) = Q (n/log’ ¢ (1/)). Then for every Boolean functioh we
haveR; (f) = Q (deg (f)°) (and similarly forR, Q,, and Q).

Plugging our2 (n/log (1/¢)) lower bound orR2(WEAKPAR,, ) (i.e., Theorem 14) into Corollary 20,
we get only the trivial lower boun®; (f) = €2 (1) for non-constantf. On the other hand, suppose we
could prove that

n
Ro(WEAKPAR, ) = Q| ———— | . 45
Then Corollary 20 would reproduce the result of Nisan [161tfR; (f) = Q(deg (£)*/?) for all Boolean
functionsf. Likewise, if we could prove that

n
QQ(WEAKPARn’a) - Q <m> 5 (46)

then Corollary 20 would reproduce the result of Beals etAltHatQ, (f) = Q(deg (f)1/6) forall f. Any
better lower bounds than those diy(WEAKPAR,, .) or Q,(WEAKPAR,, .) would imply better general
lower bounds ok (f) or Q, (f) than are currently known. So for example, suppose we cowaldephat

Q,(WEAKPAR,, .) = <L> ; (47)
’ V0ogl/e

i.e., that the quantum algorithm of Theorem 13 was optimalhenTwe would prove the longstanding

conjecture tha€), (f) = Q(1/deg (f)) for all Boolean functionsf (the bound being saturated wh¢n=

OR).

One might wonder: can we also go in the other direction, aedttus known polynomial relationships
betweendeg (f) and query complexity measures to prove better lower bouodSVEAK PARITY? At
present, we cannot quite do that, but we can do something.clé®ecall from Section 1 that, in defining
WEAK PARITY, we did not impose any requirement that our algorithm’s ptazece probability (X) ap-
proximate a total Boolean function. However, supposeleienpose that requirement. Then we can easily
show the following:

Proposition 21 Fix anye > 0. Suppose an algorithm’s acceptance probability must fsatisX) <
[0,1/3] U [2/3,1] for all X € {0,1}". Then any randomized algorithm fVEAK PAR,, . makes (n'/3
queries, and any quantum algorithm makeén'/6) queries.

Suppose further that the acceptance probability mustfyati$X) € {0,1} for all X. Then any
randomized algorithm foWEAKPAR,, . makes2 (n!/2) queries in expectation, and any quantum algorithm
makes2 (n'/3) queries.
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Proof. Let f (X) = |p(X)] be the total Boolean function approximatedh{X). Then since the algo-
rithm solves WEAK PARITY,

HX:f(X)=1land RR(X) =1} > [{X : f(X) =1and RR(X) = 0}|. (48)

So by Proposition 6, we must hadeg (f) = D (f) = n. By Theorems 2, 4, and 5, this means that

Rs (f) = QD (/)"/?) = Qn'/?), (49)
Qy (f) = QD (/)%) = Qn'/9), (50)
Ro (f) = D (£)"/?) = Q(n'/?), (51)
Qo (f) = QD (/)?) = Q(n'/?) (52)

8 Weak Algorithmsfor Other Functions

In this section, we begin the investigation of weak algonishfor Boolean functions other tham®TY.
Our main result is the following:

Theorem 22 Let f : {0,1}" — {0,1} be any Boolean function. Then we can gug$s) on2"~* + 1
inputs X using a bounded-error quantum algorithm that mak&s/n) queries, a zero-error randomized
algorithm that make) (n%75*) queries, or a zero-error quantum algorithm that mak@é,/n log? n)
queries.

Proof. Assume without loss of generality thathas the forn2? for d > 2 (this will not affect the asymp-
totics). There are two cases. First, suppfssunbalancedthat is,

HX: F () =1} £ 27 (53)

Then we can trivially agree witlf on at leas2™~! + 1 inputs X, by either always outputting or always
outputtingl.

Second, supposgis balanced. Note that tH@R function outputsl on an odd number of inputk. It
follows that|{X : f (X) = OR(X)}| must be odd as well, and cannot eq&t!. So eitherOR (X) or
1 — OR (X) must agree withf (X) on at lease™~! + 1 inputs X. Thus, Grover’s algorithm gives us the
desired bounded-error quantum algorithm making,/n) queries.

For the other algorithms, recall Proposition 10, whichstel$ that the AND/OR tre®&'; also outputsl
on an odd number of inputy’. So by the same reasoning as above, eithefX) or 1 — T, (X) must
agree withf (X) on atleas”~! + 1 inputs X. Hence, we can use Theorem 8 to get the desired zero-error
randomized algorithm making (n°"**) queries, and use Theorem 9 to get a zero-error quantumtaigori
makingO(y/n log? n) queries.m

Interestingly, unlike for RRITY, for arbitrary f it is unclear whether we can get any nontrivial al-
gorithms where is larger thar2~". Our proof of Lemma 12 relied essentially omATY’s downward
self-reducibility, so it does not generalize to other fimcs.

Note also that we cannot hope to prove any generaér bound on the weak query complexity ¢f
even assuming thgtis balanced and that its quantum query complexi® (). As a counterexample, let
H(X) = 1if X has Hamming weight at leat /3 andH (X') = 0 otherwise; then consider

flz,. .. xn) =21 ®H(x9,...,2,). (54)
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9 Open Problems

The obvious problem is to close the gaps between our uppefoared bounds on the query complexity
of WEAK PARITY. We have seen that this problem is intimately related todtargding open problems
in the study of Boolean functions, including polynomial deg versus query complexity, the Sensitivity
Conjecture, and lower-bounding Chung et al.’s [9] comhiriat quantity A (n). Perhaps the surprising
relationships among these problems could motivate renattadks.

In the meantime, can we reprove di(n/log (1/¢)) lower bound for WEAK PARITY (or better yet,
improve it) without exploiting RARITY’s random self-reducibility? How far can we get by using {stine
polynomial or adversary methods directly? It would also beagif we could say something about weak
algorithms for functions other thamRITY, beyond what we said in Section 8: for example, what happens
if e >27"7?

Let us end with three more specific questions:

(1) Do we ever get faster algorithms foraik PARITY, if we drop the constraint that the algorithm’s
acceptance probability approximates a total Boolean fongt?'3

(2) Can we “interpolate” between our two different ways afyng lower bounds for WAK PARITY, to
get better lower bounds tha&i(log n) or 2(y/log n) whene is small but still larger thag="?

(3) Can we show that an*) lower bound for WeAK PARITY is directly implied by the Sensitivity
Conjecture, rather than the related conjecture Ahat) > n(1)?
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