
Quantum Lower Bound for Recursive Fourier Sampling

Scott Aaronson

Institute for Advanced Study, Princeton

aaronson@ias.edu

Abstract

One of the earliest quantum algorithms was discovered by Bernstein and Vazirani, for a problem called

Recursive Fourier Sampling. This paper shows that the Bernstein-Vazirani algorithm is not far from

optimal. The moral is that the need to “uncompute” garbage can impose a fundamental limit on efficient

quantum computation. The proof introduces a new parameter of Boolean functions called the “nonparity

coefficient,” which might be of independent interest.

Like a classical algorithm, a quantum algorithm can solve problems recursively by calling itself as a sub-
routine. When this is done, though, the algorithm typically needs to call itself twice for each subproblem to
be solved. The second call’s purpose is to uncompute ‘garbage’ left over by the first call, and thereby enable
interference between different branches of the computation. Of course, a factor of 2 increase in running time
hardly seems like a big deal, when set against the speedups promised by quantum computing. The problem
is that these factors of 2 multiply, with each level of recursion producing an additional factor. Thus, one
might wonder whether the uncomputing step is really necessary, or whether a cleverly designed algorithm
might avoid it. This paper gives the first nontrivial example in which recursive uncomputation is provably
necessary.

The example concerns a long-neglected problem called Recursive Fourier Sampling (henceforth RFS),
which was introduced by Bernstein and Vazirani [5] in 1993 to prove the first oracle separation between BPP

and BQP. Many surveys on quantum computing pass directly from the Deutsch-Jozsa algorithm [8] to the
dramatic results of Simon [14] and Shor [13], without even mentioning RFS. There are two likely reasons for
this neglect. First, the RFS problem seems artificial. It was introduced for the sole purpose of proving an
oracle result, and is unlike all other problems for which a quantum speedup is known. (I will define RFS in
Section 1; but for now, it involves a tree of depth log n, where each vertex is labeled with a function to be
evaluated via a Fourier transform.) Second, the speedup for RFS is only quasipolynomial (n versus nlog n),
rather than exponential as for the period-finding and hidden subgroup problems.

Nevertheless, I believe that RFS merits renewed attention—for it serves as an important link between
quantum computing and the ideas of classical complexity theory. One reason is that, although other problems
in BQP—such as the factoring, discrete logarithm, and ‘shifted Legendre symbol’ problems [16]—are thought
to be classically intractable, these problems are quite low-level by complexity-theoretic standards. They, or
their associated decision problems, are in NP ∩ coNP.1 By contrast, Bernstein and Vazirani [5] showed that,
as an oracle problem, RFS lies outside NP and even MA (the latter result is unpublished, though not difficult).
Subsequently Watrous [17] gave an oracle A, based on an unrelated problem, for which BQP

A 6⊂ MA
A.2 Also,

Green and Pruim [10] gave an oracle B for which BQP
B 6⊂ PNP

B

. However, Watrous’ problem was shown by
Babai [3] to be in AM, while Green and Pruim’s problem is in BPP. Thus, neither problem can be used to
place BQP outside higher levels of the polynomial hierarchy PH.

On the other hand, Umesh Vazirani and others have conjectured that RFS is not in PH, from which it
would follow that there exists an oracle A relative to which BQP

A 6⊂ PH
A. Proving this is, in my view, one of

the central open problems in quantum complexity theory. Its solution seems likely to require novel techniques
for constant-depth circuit lower bounds.3

1For the shifted Legendre symbol problem, this is true assuming a number-theoretic conjecture of Boneh and Lipton [6].
2Actually, to place BQP outside MA relative to an oracle, it suffices to consider the complement of Simon’s problem (“Does

f (x) = f (x ⊕ s) only when s = 0?”).
3For the RFS function can be represented by a low-degree real polynomial—this follows from the existence of a polynomial-time

quantum algorithm for RFS, together with the result of Beals et al. [4] relating quantum algorithms to low-degree polynomials.

1



In this paper I examine the RFS problem from a different angle. Could Bernstein and Vazirani’s quantum
algorithm for RFS be improved even further, to give an exponential speedup over the classical algorithm?
And could we use RFS, not merely to place BQP outside of PH relative to an oracle, but to place it outside
of PH with (say) a logarithmic number of alternations?

My answer to both questions is a strong ‘no.’ I study a large class of variations on RFS, and show that
all of them fall into one of two classes:

(1) a trivial class, for which there exists a classical algorithm making only one query, or

(2) a nontrivial class, for which any quantum algorithm needs 2Ω(h) queries, where h is the height of the
tree to be evaluated. (By comparison, the Bernstein-Vazirani algorithm uses 2h queries, because of its
need to uncompute garbage recursively at each level of the tree.)

Since nh queries always suffice classically, this dichotomy theorem implies that the speedup afforded by
quantum computers is at most quasipolynomial. It also implies that (nontrivial) RFS is solvable in quantum
polynomial time only when h = O (log n).

The plan is as follows. In Section 1, I define the RFS problem, and give Bernstein and Vazirani’s quantum
algorithm for solving it. In Section 2, I use the adversary method of Ambainis [2] to prove a lower bound on
the quantum query complexity of any RFS variant. This bound, however, requires a parameter that I call the
“nonparity coefficient” to be large. Intuitively, given a Boolean function g : {0, 1}n → {0, 1}, the nonparity
coefficient measures how far g is from being the parity of some subset of its input bits—not under the uniform
distribution over inputs (the standard assumption in Fourier analysis), but under an adversarial distribution.
The crux of the argument is that either the nonparity coefficient is zero (meaning the RFS variant in question
is trivial), or else it is bounded below by a positive constant. This statement is proved in Section 2, and
seems like it might be of independent interest. Section 3 concludes with some open problems.

1 Preliminaries

In ordinary Fourier sampling, we are given oracle access to a Boolean function A : {0, 1}n → {0, 1}, and are
promised that there exists a secret string s ∈ {0, 1}n such that A (x) = s · x (mod 2) for all x. The problem
is to find s—or rather, since we need a problem with Boolean output, the problem is to return g (s), where
g : {0, 1}n → {0, 1} is some known Boolean function. We can think of g (s) as the “hard-core bit” of s, and
can assume that g itself is efficiently computable, or else that we are given access to an oracle for g.

To obtain a height-2 recursive Fourier sampling tree, we simply compose this problem. That is, we are
no longer given direct access to A (x), but instead are promised that A (x) = g (sx), where sx ∈ {0, 1}n is
the secret string for another Fourier sampling problem. A query then takes the form (x, y), and produces as
output Ax (y) = sx ·y (mod 2). As before, we are promised that there exists an s such that A (x) = s·x (mod 2)
for all x, meaning that the sx strings must be chosen consistent with this promise. Again we must return
g (s).

Continuing, we can define height-h recursive Fourier sampling, or RFSh, recursively as follows. We are
given oracle access to a function A (x1, . . . , xh) for all x1, . . . , xh ∈ {0, 1}n

, and are promised that

(1) for each fixed x∗
1, A (x∗

1, x2, . . . , xh) is an instance of RFSh−1 on x2, . . . , xh, having answer bit b (x∗
1) ∈

{0, 1}; and

(2) there exists a secret string s ∈ {0, 1}n
such that b (x∗

1) = s · x∗
1 (mod 2) for each x∗

1.

Again the answer bit to be returned is g (s). Note that g is assumed to be the same everywhere in
the tree—though using the techniques in this paper, it would be straightforward to generalize to the case of
different g’s. As an example that will be used later, we could take g (s) = gmod3 (s), where gmod3 (s) = 0
if |s| ≡ 0 (mod 3) and gmod3 (s) = 1 otherwise, and |s| denotes the Hamming weight of s. We do not want
to take g to be the parity of s, for if we did then g (s) could be evaluated using a single query. To see this,
observe that if x is the all-1’s string, then s · x (mod 2) is the parity of s.

As a result, the circuit lower bound technique of Razborov [12] and Smolensky [15], which is based on the nonexistence of low-
degree polynomials, seems unlikely to work. Even the random restriction method of Furst et al. [9] can be related to low-degree
polynomials, as shown by Linial et al. [11].

2



By an ‘input,’ I will mean a complete assignment for the RFS oracle (that is, A (x1, . . . , xh) for all
x1, . . . , xh). I will sometimes refer also to an ‘RFS tree,’ where each vertex at distance ` from the root
has a label x1, . . . , x`. If ` = h then the vertex is a leaf; otherwise it has 2n children, each with a label
x1, . . . , x`, x`+1 for some x`+1. The subtrees of the tree just correspond to the sub-instances of RFS.

Bernstein and Vazirani [5] showed that RFSlog n, or RFS with height log n (all logarithms are base 2),
is solvable on a quantum computer in time polynomial in n. I include a proof for completeness. Let
A = (An)n≥0 be an oracle that, for each n, encodes an instance of RFSlog n whose answer is Ψn. Then let LA

be the unary language {0n : Ψn = 1}.

Lemma 1 LA ∈ EQP
A ⊆ BQP

A for any choice of A.

Proof. RFS1 can be solved exactly in four queries, with no garbage bits left over. The algorithm is as follows:
first prepare the state

2−n/2
∑

x∈{0,1}n

|x〉 |A (x)〉 ,

using one query to A. Then apply a phase flip conditioned on A (x) = 1, and uncompute A (x) using a second
query, obtaining

2−n/2
∑

x∈{0,1}n

(−1)
A(x) |x〉 .

Then apply a Hadamard gate to each bit of the |x〉 register. It can be checked that the resulting state is
simply |s〉. One can then compute |s〉 |g (s)〉 and uncompute |s〉 using two more queries to A, to obtain |g (s)〉.
To solve RFSlog n (n), we simply apply the above algorithm recursively at each level of the tree. The total
number of queries used is 4log n = n2.

One can further reduce the number of queries to 2log n = n by using the “one-call kickback trick,” described
by Cleve et al. [7]. Here one prepares the state

2−n/2
∑

x∈{0,1}n

|x〉 ⊗ |1〉 − |0〉√
2

and then exclusive-OR’s A (x) into the second register. This induces the desired phase (−1)
A(x)

without the
need to uncompute A (x). However, one still needs to uncompute |s〉 after computing |g (s)〉.

A remark on notation: to avoid confusion with subscripts, I denote the ith bit of string x by x [i].

2 Quantum Lower Bound

In this section I prove a lower bound on the quantum query complexity of RFS. Crucially, the bound should
hold for any nontrivial one-bit function of the secret strings, not just a specific function such as gmod3 (s)
defined in Section 1. Let RFSg

h be height-h recursive Fourier sampling in which the problem at each vertex
is to return g (s). The following notion turns out to be essential.

Definition 2 Given a Boolean function g : {0, 1}n → {0, 1} (partial or total), the nonparity coefficient µ (g)
is the largest µ∗ for which there exist distributions D0 over the 0-inputs of g, and D1 over the 1-inputs, such
that for all z ∈ {0, 1}n, all 0-inputs ŝ0, and all 1-inputs ŝ1, we have

Pr
s0∈D0,s1∈D1

[s0 · z ≡ ŝ1 · z (mod 2) ∨ s1 · z ≡ ŝ0 · z (mod 2)] ≥ µ∗.

Loosely speaking, the nonparity coefficient is high if there exist distributions over 0-inputs and 1-inputs
that make g far from being a parity function of a subset of input bits. The following proposition develops
some intuition about µ (g).

Proposition 3

(i) µ (g) ≤ 3/4 for all nonconstant g.

3



(ii) µ (g) = 0 if and only if g can be written as the parity (or the NOT of the parity) of a subset B of input
bits.

Proof.

(i) Given any s0 6= ŝ1 and s1 6= ŝ0, a uniform random z will satisfy

Pr
z

[s0 · z 6≡ ŝ1 · z (mod 2) ∧ s1 · z 6≡ ŝ0 · z (mod 2)] ≥ 1

4
.

(If s0 ⊕ ŝ1 = s1 ⊕ ŝ0 then this probability will be 1/2; otherwise it will be 1/4.) So certainly there is a
fixed choice of z that works for random s0 and s1.

(ii) For the ‘if’ direction, take z [i] = 1 if and only if i ∈ B, and choose ŝ0 and ŝ1 arbitrarily. This ensures
that µ∗ = 0. For the ‘only if’ direction, if µ (g) = 0, we can choose D0 to have support on all 0-inputs,
and D1 to have support on all 1-inputs. Then there must be a z such that s0 · z is constant as we range
over 0-inputs, and s1 · z is constant as we range over 1-inputs. Take i ∈ B if and only if z [i] = 1.

If µ (g) = 0, then RFSg
h is easily solvable using a single classical query. Theorem 5 will show that for all

g (partial or total),

Q2 (RFSg
h) = Ω

((
1

1 − µ (g)

)h/2
)

,

where Q2 (f) is the bounded-error quantum query complexity of f as defined by Beals et al. [4]. In other
words, any RFS problem with µ bounded away from 0 requires a number of queries exponential in the tree
height h.

However, there is an essential further part of the argument, which restricts the values of µ (g) itself. Suppose
there existed a family {gn} of ‘pseudoparity’ functions: that is, µ (gn) > 0 for all n, yet µ (gn) = O(1/ log n).

Then the best bound obtainable from Theorem 5 would be Ω
(
(1 + 1/ logn)h/2

)
, suggesting that RFSg

log2 n

might still be solvable in quantum polynomial time. On the other hand, it would be unclear a priori how to
solve RFSg

log2 n
classically with a logarithmic number of alternations. Theorem 7 will rule out this scenario

by showing that pseudoparity functions do not exist: if µ (g) < 0.146 then g is a parity function, and hence
µ (g) = 0.

The theorem of Ambainis that we need is his “most general” lower bound from [2], which he introduced to
show that the quantum query complexity of inverting a permutation is Ω (

√
n). That theorem can be stated

as follows.

Theorem 4 (Ambainis) Let X ⊆ f−1 (0) and Y ⊆ f−1 (1) be sets of inputs to function f . Let R (x, y) ≥ 0
be a symmetric real-valued relation function, and for x ∈ X, y ∈ Y , and index i, let

θ (x, i) =

∑
y∗∈Y : x[i] 6=y∗[i] R (x, y∗)
∑

y∗∈Y R (x, y∗)
,

θ (y, i) =

∑
x∗∈X : x∗[i] 6=y[i] R (x∗, y)
∑

y∗∈Y R (x∗, y)
,

where the denominators are all nonzero. Then Q2 (f) = O (1/υ) where

υ = max
x∈X, y∈Y, i : R(x,y)>0, x[i] 6=y[i]

√
θ (x, i) θ (y, i).

We are now ready to prove a lower bound for RFS.

Theorem 5 For all g (partial or total), Q2 (RFSg
h) = Ω

(
(1 − µ (g))

−h/2
)
.

4



Proof. Let X be the set of all 0-inputs to RFSg
h, and let Y be the set of all 1-inputs. We will weight the

inputs using the distributions D0, D1 from the definition of the nonparity coefficient µ (g). For all x ∈ X ,
let p (x) be the product, over all vertices v in the RFS tree for x, of the probability of the secret string s at
v, if s is drawn from Dg(s) (where we condition on v’s output bit, g (s)). Next, say that x ∈ X and y ∈ Y
differ minimally if, for all vertices v of the RFS tree, the subtrees rooted at v are identical in x and in y
whenever the answer bit g (s) at v is the same in x and in y. If x and y differ minimally, then we will set
R (x, y) = p (x) p (y); otherwise we will set R (x, y) = 0. Clearly R (x, y) = R (y, x) for all x ∈ X, y ∈ Y .

Furthermore, we claim that θ (x, i) θ (y, i) ≤ (1 − µ (g))
h

for all x, y that differ minimally and all i such that
x [i] 6= y [i]. For suppose y∗ ∈ Y is chosen with probability proportional to R (x, y∗), and x∗ ∈ X is chosen
with probability proportional to R (x∗, y). Then θ (x, i) θ (y, i) equals the probability that we would notice
the switch from x to y∗ by monitoring i, times the probability that we would notice the switch from y to x∗.

Let vj be the jth vertex along the path in the RFS tree from the root to the leaf vertex i, for all j ∈
{1, . . . , h}. Also, let zj ∈ {0, 1}n

be the label of the edge between vj−1 and vj , and let sx,j and sy,j

be the secret strings at vj in x and y respectively. Then since x and y differ minimally, we must have
g (sx,j) 6= g (sy,j) for all j—for otherwise the subtrees rooted at vj would be identical, which contradicts the
assumption x [i] 6= y [i]. So we can think of the process of choosing y∗ as first choosing a random s′x,1 from

D1 so that 1 = g
(
s′x,1

)
6= g (sx,1) = 0, then choosing a random s′x,2 from D1−g(sx,2) so that g

(
s′x,2

)
6= g (sx,2),

and so on. Choosing x∗ is analogous, except that whenever we used D0 in choosing y∗ we use D1, and vice
versa. Since the 2h secret strings sx,1, . . . , sx,h, sy,1, . . . , sy,h to be updated are independent of one another,
it follows that

Pr [y∗ [i] 6= x [i]] Pr [x∗ [i] 6= y [i]] =
h∏

j=1

Pr
s∈D0

[s · zj 6≡ sx,j · zj] Pr
s∈D1

[s · zj 6≡ sy,j · zj ]

≤
h∏

j=1

(1 − µ (g))

= (1 − µ (g))
h

by the definition of µ (g). Therefore

Q2 (RFSg
h) = Ω

(
(1 − µ (g))

−h/2
)

by Theorem 4.
Before continuing further, let me show that there is a natural, explicit choice of g—the function gmod3 (s)

from Section 1—for which the nonparity coefficient is almost 3/4. Thus, for g = gmod3, the algorithm of
Lemma 1 is essentially optimal.

Proposition 6 µ (gmod3) = 3/4 − O (1/n).

Proof. Let n ≥ 6. Let D0 be the uniform distribution over all s with |s| = 3 bn/6c (so gmod3 (s) = 0);
likewise let D1 be the uniform distribution over s with |s| = 3 bn/6c + 2 (gmod 3 (s) = 1). We consider only
the case of s drawn from D0; the D1 case is analogous. We will show that for any z,

∣∣∣∣ Pr
s∈D0

[s · z ≡ 0] − 1

2

∣∣∣∣ = O

(
1

n

)

(all congruences are mod 2). The theorem then follows, since by the definition of the nonparity coefficient,
given any z the choices of s0 ∈ D0 and s1 ∈ D1 are independent.

Assume without loss of generality that 1 ≤ |z| ≤ n/2 (if |z| > n/2, then replace z by its complement). We
apply induction on |z|. If |z| = 1, then clearly

Pr [s · z ≡ 0] = 3 bn/6c /n =
1

2
± O

(
1

n

)
.

For |z| ≥ 2, let z = z1 ⊕ z2, where z2 contains only the rightmost 1 of z and z1 contains all the other 1’s.
Suppose the proposition holds for |z| − 1. Then

Pr [s · z ≡ 0] = Pr [s · z1 ≡ 0]Pr [s · z2 ≡ 0|s · z1 ≡ 0]+

Pr [s · z1 ≡ 1]Pr [s · z2 ≡ 1|s · z1 ≡ 1] ,

5



where

Pr [s · z1 ≡ 0] =
1

2
+ α, Pr [s · z1 ≡ 1] =

1

2
− α

for some |α| = O (1/n). Furthermore, even conditioned on s · z1, the expected number of 1’s in s outside of
z1 is (n − |z1|) /2 ± O (1) and they are uniformly distributed. Therefore

Pr [s · z2 ≡ b|s · z1 ≡ b] =
1

2
+ βb

for some |β0| , |β1| = O (1/n). So

Pr [s · z ≡ 0] =
1

2
+

β0

2
+ αβ0 −

β1

2
− αβ1

=
1

2
± O

(
1

n

)
.

Finally it must be shown that pseudoparity functions do not exist. That is, if g is too close to a parity
function for the bound of Theorem 5 to apply, then g actually is a parity function, from which it follows that
RFSg

h admits an efficient classical algorithm.

Theorem 7 Suppose µ (g) < 0.146. Then g is a parity function (equivalently, µ (g) = 0).

Proof. By linear programming duality, there exists a joint distribution D over z ∈ {0, 1}n
, 0-inputs ŝ0 ∈

g−1 (0), and 1-inputs ŝ1 ∈ g−1 (1), such that for all s0 ∈ g−1 (0) and s1 ∈ g−1 (1),

Pr
(z,ŝ0,ŝ1)∈D

[s0 · z ≡ ŝ1 · z (mod2) ∨ s1 · z ≡ ŝ0 · z (mod 2)] < µ (g) .

Furthermore ŝ0 ·z 6≡ ŝ1 ·z (mod 2), since otherwise we could violate the hypothesis by taking s0 = ŝ0 or s1 = ŝ1.
It follows that there exists a joint distribution D′ over z ∈ {0, 1}n and b ∈ {0, 1} such that

Pr
(z,b)∈D′

[s · z ≡ b (mod2)] > 1 − µ (g)

for all s ∈ g−1 (0), and
Pr

(z,b)∈D′

[s · z 6≡ b (mod2)] > 1 − µ (g)

for all s ∈ g−1 (1). But this implies that g is a bounded-error threshold function of parity functions. More
precisely, there exist probabilities pz, summing to 1, as well as bz ∈ {0, 1} such that for all s ∈ {0, 1}n

,

Ψ (s) =
∑

z∈{0,1}n

pz ((s · z) ⊕ bz) is

{
> 1 − µ (g) if g (s) = 1
< µ (g) if g (s) = 0.

We will consider var (Ψ), the variance of the above quantity Ψ (s) if s is drawn uniformly at random from
{0, 1}n

. First, if pz ≥ 1/2 for any z, then g (s) = (s · z) ⊕ bz is a parity function and hence µ (g) = 0. So
we can assume without loss of generality that pz < 1/2 for all z. Then since s is uniform, for each z1 6= z2

we know that (s · z1) ⊕ bz1
and (s · z2) ⊕ bz2

are pairwise independent {0, 1} random variables, both with
expectation 1/2. So

var (Ψ) =
1

4

∑
zp

2
z <

1

4

((
1

2

)2

+

(
1

2

)2
)

=
1

8
.

On the other hand, since Ψ (s) is always less than µ or greater than 1 − µ,

var (Ψ) >

(
1

2
− µ

)2

.

Combining,

µ >
2 −

√
2

4
> 0.146.

6



3 Open Problems

An intriguing open problem is whether Theorem 5 can be proved using the polynomial method of Beals et
al. [4], rather than the adversary method of Ambainis [2]. It is known that one can lower-bound polynomial
degree in terms of block sensitivity, or the maximum number of disjoint changes to an input that change the
output value. The trouble is that the RFS function has block sensitivity 1—the “sensitive blocks” of each
input tend to have small intersection, but are not disjoint. For this reason, I implicitly used the “quantum
certificate complexity” as defined in [1] rather than block sensitivity to prove a lower bound.

I believe the constant of Theorem 7 can be improved. The smallest nonzero µ (g) value I know of is
attained when n = 2 and g = OR (s [1] , s [2]):

Proposition 8 µ (OR) = 1/3.

Proof. First, µ (OR) ≥ 1/3, since D1 can choose s [1] s [2] to be 01, 10, or 11 each with probability 1/3; then
for any z 6= 0 and the unique 0-input ŝ0 = 00, we have s1 · z 6≡ ŝ0 · z with probability at most 2/3. Second,
µ (OR) ≤ 1/3, since applying linear programming duality, we can let the pair (z, ŝ1) equal (01, 01), (10, 10),
or (11, 10) each with probability 1/3. Then 0 ≡ s0 · z 6≡ ŝ1 · z ≡ 1 always, and for any 1-input s1, we have
s1 · z ≡ 1 6≡ ŝ0 · z with probability 2/3.

Finally, I conjecture that uncomputation is unavoidable not just for RFS but for many other recursive
problems, such as game-tree evaluation. Formally, the conjecture is that the quantum query complexity of
evaluating a game tree increases exponentially with depth as the number of leaves is held constant, even if
there is at most one winning move per vertex (so that the tree can be evaluated with zero probability of error).

4 Acknowledgments

I thank Lisa Hales, Umesh Vazirani, Ronald de Wolf, and the anonymous reviewers for helpful comments. This
work was done while I was a graduate student at UC Berkeley, supported by an NSF Graduate Fellowship.

References

[1] S. Aaronson. Quantum certificate complexity. In Proc. IEEE Conference on Computational Complexity,
pages 171–178, 2003. ECCC TR03-005, quant-ph/0210020.

[2] A. Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Sys. Sci., 64:750–767, 2002.
Earlier version in ACM STOC 2000. quant-ph/0002066.

[3] L. Babai. Bounded round interactive proofs in finite groups. SIAM J. Discrete Math, 5(1):88–111, 1992.

[4] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. J.
ACM, 48(4):778–797, 2001. Earlier version in IEEE FOCS 1998. quant-ph/9802049.

[5] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26(5):1411–1473, 1997.
First appeared in ACM STOC 1993.

[6] D. Boneh and R. Lipton. Algorithms for black box fields and their application to cryptography. In
Proceedings of CRYPTO, volume 109, pages 283–297. Lecture Notes in Computer Science, 1996.

[7] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Proc. Roy. Soc.
London, A454:339–354, 1998. quant-ph/9708016.

[8] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc. Roy. Soc. London,
A439:553–558, 1992.

[9] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial time hierarchy. Math. Systems
Theory, 17:13–27, 1984.

[10] F. Green and R. Pruim. Relativized separation of EQP from PNP . Inform. Proc. Lett., 80(5):257–260,
2001.

7



[11] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability. J.
ACM, 40(3):607–620, 1993.

[12] A. A. Razborov. Lower bounds for the size of circuits of bounded depth with basis {&,⊕}. Mathematich-
eskie Zametki, 41(4):598–607, 1987. English translation in Math. Notes. Acad. Sci. USSR 41(4):333–338,
1987.

[13] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-
puter. SIAM J. Comput., 26(5):1484–1509, 1997. Earlier version in IEEE FOCS 1994. quant-ph/9508027.

[14] D. Simon. On the power of quantum computation. In Proc. IEEE FOCS, pages 116–123, 1994.

[15] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proc.
ACM STOC, pages 77–82, 1987.

[16] W. van Dam, S. Hallgren, and L. Ip. Algorithms for some hidden shift problems. In Proc. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 489–498, 2003. quant-ph/0211140.

[17] J. Watrous. Succinct quantum proofs for properties of finite groups. In Proc. IEEE FOCS, pages 537–546,
2000. cs.CC/0009002.

8


