
Oracles Are Subtle But Not Malicious

Scott Aaronson∗

University of Waterloo

Abstract

Theoretical computer scientists have been debating the
role of oracles since the 1970’s. This paper illustrates both
that oracles can give us nontrivial insights about the bar-
rier problems in circuit complexity, and that they need not
prevent us from trying to solve those problems.

First, we give an oracle relative to whichPP has linear-
sized circuits, by proving a new lower bound for perceptrons
and low-degree threshold polynomials. This oracle settles
a longstanding open question, and generalizes earlier re-
sults due to Beigel and to Buhrman, Fortnow, and Thierauf.
More importantly, it implies the first provably nonrelativiz-
ing separation of “traditional” complexity classes, as op-
posed to interactive proof classes such asMIP andMAEXP.
For Vinodchandran showed, by a nonrelativizing argument,
that PP does not have circuits of sizenk for any fixedk.
We present an alternative proof of this fact, which shows
thatPP does not even have quantum circuits of sizenk with
quantum advice. To our knowledge, this is the first nontriv-
ial lower bound on quantum circuit size.

Second, we study a beautiful algorithm of Bshouty et al.
for learning Boolean circuits inZPPNP. We show that the
NP queries in this algorithm cannot be parallelized by any
relativizing technique, by giving an oracle relative to which
ZPPNP

|| and evenBPPNP
|| have linear-size circuits. On the

other hand, we also show that theNP queries could be par-
allelized ifP = NP. Thus, classes such asZPPNP

|| inhabit a
“twilight zone,” where we need to distinguish between rela-
tivizing and black-box techniques. Our results on this sub-
ject have implications for computational learning theory as
well as for the circuit minimization problem.

1. Introduction

It is often lamented that, half a century after Shan-
non’s insight [36] that almost all Boolean functions require
exponential-size circuits, there is still no explicit function

∗Email: scott@scottaaronson.com. Most of this work was donewhile
the author was a postdoc at the Institute for Advanced Study in Princeton,
supported by an NSF grant.

for which we can prove even a superlinear lower bound. Yet
whether this lament is justified depends on what we mean
by “explicit.” For in 1982, Kannan [20] did show that for
every constantk, there exists a language inΣp

2 (the second
level of the polynomial hierarchy) that does not have cir-
cuits of sizenk. His proof used the oldest trick in the book:
diagonalization, defined broadly as any method for simulat-
ing all machines in one class by a single machine in another.
In some sense, diagonalization is still the only method we
know that zeroes in on a “non-natural” property of the func-
tion being lower-bounded (loosely speaking, a property that
does not hold of a random function), and thereby escapes
the jaws of Razborov and Rudich [32].

But can we generalize Kannan’s theorem to other com-
plexity classes? A decade ago, Bshouty et al. [9] discovered
an algorithm to learn Boolean circuits inZPPNP (that is,
probabilistic polynomial time withNP oracle). As shown
by Köbler and Watanabe [23], the existence of this algo-
rithm implies thatZPPNP itself cannot have circuits of size
nk for anyk.1

So our task as lowerboundsmen and lowerboundswomen
seems straightforward: namely, to find increasingly pow-
erful algorithms for learning Boolean circuits, which can
then be turned around to yield increasingly powerful circuit
lower bounds. But when we try to do this, we quickly run
into the brick wall of relativization. Just as Baker, Gill,
and Solovay [7] gave a relativized world whereP = NP,
so Wilson [46] gave relativized worlds whereNP andPNP

have linear-size circuits. Since the results of Kannan [20]
and Bshouty et al. [9] relativize, this suggests that new tech-
niques will be needed to make further progress.

Yet attitudes toward relativization vary greatly within our
community. Some computer scientists ridicule oracle re-
sults as elaborate formalizations of the obvious—apparently
believing that (1) there exist relativized worlds where just

1For Bshouty et al.’s algorithm implies the following improvement to
the celebrated Karp-Lipton theorem [21]: ifNP ⊂ P/poly thenPH col-
lapses toZPPNP. There are then two cases: ifNP 6⊂ P/poly, then
certainlyZPPNP 6⊂ P/poly as well and we are done. On the other hand,
if NP ⊂ P/poly, thenZPPNP = PH, but we already know from Kan-
nan’s theorem thatPH does not have circuits of sizenk. Indeed, we can
repeat this argument for the classS

p
2 , which Cai [12] showed is contained

in ZPPNP.

1

about anything is true, (2) the creation of such worlds is a
routine exercise, (3) the only conjectures ruled out by oracle
results are trivially false ones, which no serious researcher
would waste time trying to prove, and (4) nonrelativizing
results such asIP = PSPACE [35] render oracles irrele-
vant anyway. At the other extreme, some computer scien-
tists see oracle results not as a spur to create nonrelativizing
techniques or as a guide to where such techniques might be
needed, but as an excuse to abandon hope.

This paper will offer new counterexamples to both of
these views, in the context of circuit lower bounds. We
focus on two related topics: first, the classical and quan-
tum circuit complexity ofPP; and second, the learnability
of Boolean circuits using parallelNP queries.

1.1. On PP and Quantum Circuits

In Section 2, we give an oracle relative to whichPP has
linear-size circuits. HerePP is the class of languages ac-
cepted by a nondeterministic polynomial-time Turing ma-
chine that accepts if and only if the majority of its paths
do. Our construction also yields an oracle relative to
which PEXP (the exponential-time version ofPP) has
polynomial-size circuits, and indeedPNP = ⊕P = PEXP.
This settles several questions that were open for years,2 and
subsumes at least four previous results: that of Beigel [8]
giving an oracle relative to whichPNP 6⊂ PP (since clearly
PNP = PEXP implies PNP 6⊂ PP); that of Aspnes et al.
[5] giving an oracle relative to whichPP 6= PSPACE (since
PSPACE does not have linear-size circuits relative to any
oracle);3 that of Buhrman, Fortnow, and Thierauf [11] giv-
ing an oracle relative to whichMAEXP ⊂ P/poly; and that
of Buhrman et al. [10] giving an oracle relative to which
PNP = NEXP.

Note that our result is nearly optimal, since Toda’s the-
orem [40] yields a relativizing proof thatPPP and even
BP · PP do not have circuits of any fixed polynomial size.

Our proof first represents eachPP machine by a low-
degree multilinear polynomial, whose variables are the bits
of the oracle string. It then combines these polynomials
into a single polynomial calledQ. The key fact is that, if
there are no variables left “unmonitored” by the component
polynomials, then we can modify the oracle in a way that
increasesQ. SinceQ can only increase a finite number
of times, it follows that we will eventually win our “war
of attrition” against the polynomials, at which point we can
simply write down what each machine does in an unmon-
itored part of the oracle string. The main novelty of the
proof lies in how we combine the polynomials to createQ.

2Lance Fortnow, personal communication.
3Admittedly, our result does not imply thatPP 6= PSPACE relative to

a randomoracle with probability1.

We can state our result alternatively in terms ofper-
ceptrons[28], also known as threshold-of-AND circuits or
polynomial threshold functions. Call a perceptron “small”
if it has size2No(1)

, orderNo(1), and weights in{−1, 1}.
Also, given anN -bit stringx1 . . . xN , recall that the ODD-
MAXBIT problem is to decide whether the maximumi
such thatxi = 1 is even or odd, promised that such ani
exists. Then Beigel [8] showed that no small perceptron can
solve ODDMAXBIT. What we show is a strong general-
ization of Beigel’s theorem: for anyk = No(1) small per-
ceptrons, there exists a “problem set” consisting ofk ODD-
MAXBIT instances, such that for everyj, the jth percep-
tron will get thejth problem wrong even if it can examine
the whole problem set. Previously this had been open even
for k = 2.

But the real motivation for our result is that in the un-
relativized world,PP is knownnot to have linear-size cir-
cuits. Indeed, Vinodchandran [45] showed that for every
k, there exists a language inPP that does not have circuits
of sizenk. Putting our result together with Vinodchan-
dran’s, we obtain what appears to be the first nonrelativizing
separation that does not involve artificial classes or classes
defined using interactive proofs. There have been nonrela-
tivizing separations in the past, but most of them have fol-
lowed easily from the collapse of interactive proof classes:4

for example,NP 6= MIP from MIP = NEXP [6], and
IP 6⊂ SIZE

(
nk

)
from IP = PSPACE [35]. The one excep-

tion was the result of Buhrman, Fortnow, and Thierauf [11]
that MAEXP 6⊂ P/poly, whereMAEXP is the exponential-
time version ofMA. However, the classMAEXP exists for
the specific purpose of not being contained inP/poly, and
the resulting separation does not scale down belowNEXP,
to show (for example) thatMA does not have linear-size
circuits.

The actual lower bound of Vinodchandran [45] follows
easily from three well-known results: the LFKN interac-
tive protocol for the permanent [26], Toda’s theorem [40],
and Kannan’s theorem [20].5 In Section 3, we present an
alternative, more self-contained proof, which does not go
through Toda’s theorem. As a bonus, our proof also shows
thatPP does not havequantumcircuits of sizenk for any
k. Indeed, this remains true even if the quantum circuits
are given “quantum advice states” onnk qubits. One part
of our proof is a “quantum Karp-Lipton theorem,” which

4Note that we do not count separations that depend on a specificma-
chine model, such as the result of Paul et al. [31] thatDTIME (n) 6=
NTIME (n) for multitape Turing machines.

5Suppose by contradiction thatPP has circuits of sizenk. Then
P#P ⊂ P/poly, and thereforeMA = P#P by a result of LFKN
[26] (this is the only part of the proof that fails to relativize). Now
MA ⊆ Σ

p
2 ⊆ P#P by Toda’s theorem [40], andMA ⊆ PP ⊆ P#P

by an observation of Vereshchagin [44]. ThereforeΣ
p
2 = PP as well.

But we already know from Kannan’s theorem [20] thatΣ
p
2 does not have

circuits of sizenk.

2

states that ifPP has polynomial-size quantum circuits, then

the “counting hierarchy” (consisting ofPP, PPPP, PPPPPP

,
and so on) collapses toQMA, the quantum analogue of
NP. By analogy to the classical nonrelativizing separa-
tion of Buhrman, Fortnow, and Thierauf [11], we also show
thatQMAEXP, the exponential-time version ofQMA, is not
contained inBQP/qpoly. Indeed,QMAEXP requires quan-
tum circuits of at least “half-exponential” size, meaning
size f (n) wheref (f (n)) grows exponentially.6 So far
as we know, the only previous lower bounds for arbitrary
quantum circuits were due to Nishimura and Yamakami
[30], who showed (among other things) thatEESPACE 6⊂
BQP/qpoly.

1.2. On Parallel NP Queries and Black-Box
Learning

In a second part of the paper, we study the algorithm of
Bshouty et al. [9] for learning Boolean circuits. Given a
Boolean functionf that is promised to have a polynomial-
size circuit, this algorithmfindssuch a circuit in the class

ZPPNPf

: that is, zero-error probabilistic polynomial time
with NP oracle with oracle forf . One of the most basic
questions about this algorithm is whether theNP queries
can be parallelized. For if so, then we immediately obtain a
new circuit lower bound: namely thatZPPNP

|| (that is,ZPP

with parallelNP queries) does not have circuits of sizenk

for any k.7 Conceptually, this would not be so far from
showing thatNP itself does not have circuits of sizenk.8

Let C be the set of circuits of sizenk. In Bshouty et al.’s
algorithm, we repeatedly ask theNP oracle to find us an in-
putxt such that, among the circuits inC that succeed on all
previous inputsx1, . . . , xt−1, at least a1/3 fraction fail on
xt. Since each such input reduces the number of circuits
“still in the running” by at least a constant factor, this pro-
cess can continue for at mostlog |C| steps. Furthermore,
when it ends, by assumption we have a setC∗ of circuits
such that for all inputsx, a uniform random circuit drawn
from C∗ will succeed onx with probability at least2/3. So

6See Miltersen, Vinodchandran, and Watanabe [27] for a discussion of
this concept.

7This follows from an argument similar to that used by Köblerand
Watanabe [23] to show thatZPPNP does not have circuits of sizenk. In

particular, suppose we could learn a circuit forf in ZPPNPf

|| . Then there

are two cases: ifNP 6⊂ P/poly, then certainlyZPPNP
|| 6⊂ P/poly and we

are done. On the other hand, ifNP ⊂ P/poly, then aZPPNP
|| machine

could learn a polynomial-size circuit forSAT , and then use that circuit to
decide any language inPH. So again,ZPPNP

|| would not have circuits of

sizenk.
8For as observed by Shaltiel and Umans [34] and Fortnow and Klivans

[15] among others, there is an intimate connection between the classesPNP
||

andNP/log. Furthermore, any circuit lower bound forNP/log implies
the same lower bound forNP, since we can tack the advice onto the input.

now all we have to do is sample a polynomial number of cir-
cuits fromC∗, then generate a new circuit that outputs the
majority answer among the sampled circuits. The technical
part is to express the concepts “at least a1/3 fraction” and
“a uniform random sample” inNP. For that, Bshouty et al.
use pairwise-independent hash functions.

When we examine Bshouty et al.’s algorithm, it is far
from obvious that adaptiveNP queries are necessary. For
why can’t we simply ask the following question in parallel,
for all T ≤ log |C|?

“Do there exist inputsx1, . . . , xT , such that at
least a1/3 fraction of circuits inC fail on x1, and
among the circuits that succeed onx1, at least a
1/3 fraction fail onx2, and among the circuits
that succeed onx1 andx2, at least a1/3 fraction
fail on x3, . . . and so on up toxT ?”

By making clever use of hashing and approximate count-
ing, perhaps we could control the number of circuits that
succeed onx1, . . . , xt for all t ≤ T . In that case, by find-
ing the largestT such that the above question returns a pos-
itive answer, and then applying the Valiant-Vazirani reduc-
tion [43] and other standard techniques, we would achieve
the desired parallelization of Bshouty et al.’s algorithm.In-
deed, when we began studying the topic, it seemed entirely
likely to us that this was possible.

Nevertheless, in Section 4 we give an oracle relative to
which ZPPNP

|| and evenBPPNP
|| have linear-size circuits.

The overall strategy of our oracle construction is the same
as forPP, but the details are different. The existence of
this oracle means that any parallelization of Bshouty et al.’s
algorithm would need to use nonrelativizing techniques.9

9As a side note, researchers in learning theory often allow “equiva-
lence queries” to the target functionf . Given a circuitC, an equiva-
lence query returns ‘YES’ ifC computesf , and otherwise returns any
x ∈ {0, 1}n such thatC (x) 6= f (x). When we said that any paral-
lelization of Bshouty et al.’s algorithm would need to be nonrelativizing,
it might be objected that we ignored the possibility of parallel equivalence

queries. However, we cansimulatean equivalence query tof in ZPPNPf

|| ,
by using the following simple trick. First we choose pairwise-independent
hash functionsh1, . . . , hn : {0, 1}n → {0, 1}. Next we make the fol-
lowing queries in parallel to theNPf oracle:

(1) For allt ∈ {0, . . . , n}: “Does there exist anx ∈ {0, 1}n such that
C (x) 6= f (x) andh1 (x) = · · · = ht (x) = 0?”

(2) For all t ∈ {0, . . . , n}: “Do there exist distinctx, x′ satisfying the
above conditions?”

(3) For all t ∈ {0, . . . , n} andi ∈ {0, . . . , n}: “Does there exist an
x = x1 . . . xn satisfying the above conditions such thatxi = 1?”

Provided there exists at for which query (1) returns ‘YES’ and query
(2) returns ‘NO’, we can then read a particularx such thatC (x) 6= f (x)
off the answers to query (3). Finally, by repeating all of this several times
in parallel, we can amplify the probability of success. Notethat, if there
exists anx such thatC (x) 6= f (x) but the algorithm fails to find such an
x, then the algorithm knows this and can output ‘FAILURE.’ Hence, this
is indeed aZPP algorithm.

3

Yet even here, the situation is subtler than one might
imagine. To explain why, we need to distinguish carefully
between relativizing and black-box algorithms. An algo-
rithm for learning Boolean circuits isrelativizing if, when
given access to an oracleA, the algorithm can learn circuits
that are also given access toA. But a nonrelativizing al-
gorithm can still beblack-box, in the sense that it learns
about the target functionf only by querying it, and does
not exploit any succinct description off (for example, that
f (x) = 1 if and only if x encodes a satisfiable Boolean for-
mula). Bshouty et al.’s algorithm is both relativizingand
black-box. What our oracle construction shows is that no
relativizing algorithm can learn Boolean circuits inBPPNP

|| .
But what about a nonrelativizing yet still black-box algo-
rithm?

Surprisingly, we show in Section 5 that ifP = NP, then
thereis a black-box algorithm to learn Boolean circuits even
in PNP

|| (as well as inNP/log). Despite the outlandishness
of the premise, this theorem is not trivial, and requires many
of the same techniques originally used by Bshouty et al. [9].
One way to interpret the theorem is that we cannot show
theimpossibilityof black-box learning inPNP

|| , without also
showing thatP 6= NP. By contrast, it is easy to show that
black-box learning is impossible inNP, regardless of what
computational assumptions we make.10

These results provide a new perspective on one of the
oldest problems in computer science, thecircuit minimiza-
tion problem: given a Boolean circuitC, does there exist an
equivalent circuit of size at mosts? Certainly this prob-
lem is NP-hard and inΣ

p
2. Also, by using Bshouty et

al.’s algorithm, we can find a circuit whose size is within
an O (n/ logn) factor of minimal inZPPNP. Yet after
fifty years of research, almost nothing else is known about
the complexity of this problem. For example, is itΣ

p
2-

complete? Can we approximate the minimum circuit size
in ZPPNP

|| ?
What our techniques let us say is the following. First,

there exists an oracleA such that minimizing circuits with

oracle access toA is not even approximable inBPPNPA

|| .
Indeed, any probabilistic algorithm to distinguish the cases
“C is minimal” and “there exists an equivalent circuit forC
of size at mosts,” using o (s) adaptiveNP queries, would
have to use nonrelativizing techniques. Intuitively, the
reason is as follows. Given a circuitC that computes a
Boolean functionf : {0, 1}n → {0, 1}, there might be a
“hidden region” of the oracle stringA that contains the truth
table off . In that case, even ifC is minimal in the unrel-
ativized world, relative toA there might be a much smaller

10Note that by “learn,” we always mean “learn exactly using member-
ship queries” rather than “PAC-learn.” IfP = NP, then approximate
learning of Boolean circuits can clearly be done even inP. For we sim-
ply query the target functionf at a polynomial number of locations drawn
from the distribution of interest, then find a small circuit that agrees with
f on as many of those locations as possible.

circuit for f—one that simply encodes the location of that
hidden region. However, our results will imply that, if the
hidden region takess� logn bits to specify, then anyBPP

algorithm needsΩ (s) adaptiveNPA queries (or2Ω(s) non-
adaptiveNPA queries) to decide whether or not it exists. In

particular, this problem is not solvable inBPPNPA

|| .
If one wished, one could take our oracle result as evi-

dence that the true complexity of approximate circuit min-
imization should bePNP, rather thanPNP

|| . However, the
results of Section 5 suggest that it will be difficult to show
(for example) that approximate circuit minimization isPNP-
hard. For any hardness proof will have to fight a “two-
front war”—firstly against algorithms that exploit the inter-
nal structure of a circuitC, and secondly against black-box
algorithms (that is, algorithms that treatC as an oracle)!
The reason is that, ifP = NP, then thereis a black-box
circuit minimization algorithm inPNP

|| .
From a learning theory perspective, perhaps what is most

interesting about our results is that they show a clear trade-
off between two complexities: the complexity of the learner
who queries the target function, and the complexity of
the resulting computational problem that the learner has to
solve. In particular, suppose a learner is given oracle access
to a Boolean functionf : {0, 1}n → {0, 1} with polyno-
mial circuit complexity, and wants to output a circuitC for

f . Then if the learner is aZPPNPf

machine, the computa-
tional problem of findingC is easy, as shown by Bshouty

et al. [9]. If the learner is aZPPNPf

|| machine, then the
problem is of findingC is probably hard, as indicated by
our results. If the learner is anNPf machine, then there is
no computational problem whose solution would suffice to
findC.

1.3. Outlook

Figure 1 shows the “battle map” for nonrelativizing cir-
cuit lower bounds that emerges from this paper. The figure
displays not one but two barriers: a “relativization barrier,”
below which any Karp-Lipton collapse or superlinear cir-
cuit size lower bound will need to use nonrelativizing tech-
niques; and a “black-box barrier,” below which black-box
learning even of unrelativized circuits is provably impossi-
ble. At least for the thirteen complexity classes shown in
the figure, we now know exactly where to draw these two
barriers—something that would have been less than obvious
a priori (at least to us!).

To switch metaphors, we can think of the barriers as rep-
resenting “phase transitions” in the behavior of complexity
classes. Below the black-box barrier, we cannot learn cir-
cuits relative to any oracleA. Between the relativization
and black-box barriers, we can learn Boolean circuits rel-
ative tosomeoraclesA but not others. For example, we
can learn relative to aPSPACE oracle, since it collapsesP

4

NP

MA

AM

NPP||

NPZPP||

NPBPP||

NPP

NPZPP

NPBPP

pS2

pathBPP

PP

PPBP⋅
BLA

CK-B
OX B

ARRIE
R

Successful
nonrelativizing

incursion

RELATIV
IZ

ATIO
N B

ARRIE
R

Figure 1. “Battle map” of some complex-
ity classes between NP and BP · PP, in light
of this paper’s results. Classes that coin-
cide under a plausible derandomization as-
sumption are grouped together with dashed
ovals. Below the relativization barrier, we
must use nonrelativizing techniques to show
any Karp-Lipton collapse or superlinear cir-
cuit size lower bound. Below the black-
box barrier, black-box learning of Boolean
circuits is provably impossible.

andNP, but cannot learn relative to the oracles in this paper,
which causePP andBPPNP

|| to have linear-size circuits. Fi-
nally, above the relativization barrier, we can learn Boolean
circuits relative toeveryoracleA.11 As we move upward
from the black-box barrier toward the relativization barrier,
we can notice “steam bubbles” starting to form, as the as-
sumptions needed for black-box learning shift from implau-
sible (P = NP), to plausible (the standard derandomization
assumptions that collapsePNP with ZPPNP and PP with
BP · PP), and finally to no assumptions at all.

To switch metaphors again, the oracle results have laid
before us a rich and detailed landscape, which a nonrel-
ativizing Lewis-and-Clark expedition might someday visit
more fully.

11There is one important caveat: inSp
2 , we currently only know how to

learn self-reducible functions, such as the characteristic functions ofNP-
complete problems. For if the circuits from the two competing provers
disagree with each other, then we need to know which one to trust.

2. The Oracle for PP

In this section we construct an oracle relative to which
PP has linear-size circuits. To do so, we first need a lemma
about multilinear polynomials.

Lemma 1 Let p : {0, 1}N → R be a real multilinear
polynomial of degree at most

√
N/7, and suppose that

|p (X)| ≤ 2
3

∣∣p
(
0N

)∣∣ for all X ∈ {0, 1}N with Hamming

weight 1. Then there exists anX ∈ {0, 1}N such that
|p (X)| ≥ 6 |p (0n)|.

Lemma 1 follows immediately from the well-known
lower bound of Nisan and Szegedy [29] on the approximate
degree of the OR function, which in turn built on earlier re-
sults of Ehlich and Zeller [13] and Rivlin and Cheney [33].

We can now prove the main result.

Theorem 2 There exists an oracle relative to whichPP has
linear-size circuits.

Proof. For simplicity, we first give an oracle that works
for a specific value ofn, and then generalize to alln
simultaneously. LetM1,M2, . . . be an enumeration of
PTIME

(
nlog n

)
machines. Then it suffices to simulate

M1, . . . ,Mn, for in that case everyMi will be simulated
on all but finitely manyn.

The oracleA will consist of 25n “rows” and n2n

“columns,” with each row labeled by a stringr ∈ {0, 1}5n,
and each column labeled by a pair〈i, x〉 where i ∈
{1, . . . , n} andx ∈ {0, 1}n. Then given a triple〈r, i, x〉
as input,A will return the bitA (r, i, x).

We will constructA via an iterative procedure. Initially
A is empty (that is,A (r, i, x) = 0 for all r, i, x). Let At

be the state ofA after thetth iteration. Also, letMi,x (At)
be a Boolean function that equals1 if Mi accepts on input
x ∈ {0, 1}n and oracle stringAt, and0 otherwise. Then to
encodea rowr means to setAt (r, i, x) := Mi,x (At−1) for
all i, x. At a high level, our entire procedure will consist of
repeating the following two steps, for allt ≥ 1:

(1) Choose a set of rowsS ⊆ {0, 1}5n of At−1.

(2) Encode eachr ∈ S, and letAt be the result.

The problem, of course, is that each time we encode a
rowr, theMi,x (At)’s might change as a result. So we need
to show that, by carefully implementing step (1), we can
guarantee that the following condition holds after a finite
number of stepst.

(C) There exists anr such thatAt (r, i, x) = Mi,x (At) for
all i, x.

5

If (C) is satisfied, then clearlyM1, . . . ,Mn will have
linear-size circuits relative toAt, since we can just hardwire
r into the circuits.

We will use the following fact, which is immediate from
the definition ofPP. For all i, x, there exists a multilinear
polynomialpi,x (A), whose variables are the bits ofA, such
that:

(i) If Mi,x (A) = 1 thenpi,x (A) ≥ 1.

(ii) If Mi,x (A) = 0 thenpi,x (A) ≤ −1.

(iii) pi,x has degree at mostnlog n.

(iv) |pi,x (A)| ≤ 2nlog n

for all A.

Now for all integers0 ≤ k ≤ nlog n andb ∈ {0, 1}, let

qi,x,b,k (A) = 22k−3 +
(
2k + (−1)

b
pi,x (A)

)2

.

Then we will use the following polynomial as a progress
measure:

Q (A) =
∏

i,x

∏

b∈{0,1}

nlog n∏

k=0

qi,x,b,k (A) .

Notice that

deg (Q) ≤ n2n · 2 ·
(
nlog n + 1

)
· 2 deg (pi,x) = 2n+o(n).

Since1/8 ≤ qi,x,b,k (A) ≤ 5 · 22nlog n

for all i, x, b, k, we
also have

Q (A) ≤
(
5 · 22nlog n

)n2n·2·(nlog n+1)
= 22n+o(n)

,

Q (A) ≥
(

1

8

)n2n·2·(nlog n+1)
= 2−2n+o(n)

for all A. The key claim is the following.
At any given iteration, suppose there is nor such that, by

encodingr, we can satisfy condition (C). Then there exists
a setS ⊆ {0, 1}5n such that, by encoding eachr ∈ S, we
can increaseQ (At) by at least a factor of2 (that is, ensure
thatQ (At) ≥ 2Q (At−1)).

The above claim readily implies that (C) can be satisfied
after a finite number of steps. For, by what was said previ-
ously,Q (At) can double at most2n+o(n) times—and once
Q (At) can no longer double, by assumption we can encode
an r that satisfies (C). (As a side note, “running out of
rows” is not an issue here, since we can re-encode rows that
were encoded in previous iterations.)

We now prove the claim. Call the pair〈i, x〉 sensitiveto
row r if encodingr would change the value ofMi,x (A). If
there exists a rowr to which no〈i, x〉 is sensitive, then we
simply encode that row and are done. Suppose, on the other

hand, that for everyr there exists an〈i, x〉 that is sensitive
to r. Then by a counting argument, there exists a single
〈i, x〉 that is sensitive to at least25n/ (n2n) > 23n rows.
Fix that 〈i, x〉, and letr1, . . . , r23n be the first23n rows to
which 〈i, x〉 is sensitive. Also, given a binary stringY =
y1 . . . y23n , let S (Y) be the set of allrj such thatyj = 1,
and letA(Y) be the oracle obtained by starting fromA and
then encoding eachrj ∈ S (Y).

Setb equal toMi,x (A), and setk equal to the least inte-
ger such that2k ≥ |pi,x (A)|. Then we will think ofQ (A)
as the product of two polynomialsq (A) andv (A), where
q (A) = qi,x,b,k (A), andv (A) = Q (A) /q (A) is the prod-
uct of all other terms inQ (A). Notice thatq (A) > 0 and
v (A) > 0 for all A. Also,

q (A) = 22k−3 +
(
2k + (−1)

b
pi,x (A)

)2

≤ 22k−3 +
(
2k − 2k−1

)2

=
3

8
· 22k.

Here the second line follows since−2k ≤ (−1)
b
pi,x (A) ≤

−2k−1. On the other hand, letY be any23n-bit string with
Hamming weight1, so thatA(Y) is obtained fromA by
encoding a single row to which〈i, x〉 is sensitive. Then we
have(−1)

b
pi,x

(
A(Y)

)
≥ 0, and therefore

q
(
A(Y)

)
= 22k−3 +

(
2k + (−1)

b
pi,x

(
A(Y)

))2

≥ 22k−3 +
(
2k

)2

=
9

8
· 22k

≥ 3q (A) .

There are now two cases. The first is that there exists a
Y with Hamming weight1 such thatv

(
A(Y)

)
≥ 2

3v (A).
In this case

Q
(
A(Y)

)
= q

(
A(Y)

)
v

(
A(Y)

)

≥ 3q (A) · 2

3
v (A)

= 2q (A) v (A)

= 2Q (A) .

So we simply setS = S (Y) and are done.
The second case is thatv

(
A(Y)

)
< 2

3v (A) for all Y
with Hamming weight1. In this case, we can considerv as

a real multilinear polynomial in the bits ofY ∈ {0, 1}23n

,
of degree at mostdeg (Q) <

√
23n/7. Then Lemma

1 implies that there exists aY ∈ {0, 1}23n

such that∣∣v
(
A(Y)

)∣∣ = v
(
A(Y)

)
≥ 6v (A). Furthermore, for all

Y we have
q
(
A(Y)

)

q (A)
≥ 22k−3

3
8 · 22k

=
1

3
.

6

Hence

Q
(
A(Y)

)
= q

(
A(Y)

)
v

(
A(Y)

)

≥ 1

3
q (A) · 6v (A)

= 2q (A) v (A)

= 2Q (A) .

So again we can setS = S (Y). This completes the claim.
All that remains is to handlePTIME

(
nlog n

)
machines

that could queryany bit of the oracle string, rather than
just the bits corresponding to a specificn. The oracleA
will now take as input alist of stringsR = (r1, . . . , r`),

with r` ∈ {0, 1}5·2`

for all `, in addition to i, x. Call
R an `-secretif A (R, i, x) = Mi,x (A) for all n ≤ 2`,
i ∈ {1, . . . , n}, andx ∈ {0, 1}n. Then we will try to
satisfy the following.

(C′) There exists an infinite list of stringsr∗1 , r
∗
2 , . . ., , such

thatR∗
` := (r∗1 , . . . , r

∗
`) is an`-secret for all̀ ≥ 1.

If (C′) is satisfied, then clearly eachMi can be simu-
lated by linear-size circuits. For alln ≥ i, simply find
the smallest̀ such that2` ≥ n, then hardwireR∗

` into
the circuit for sizen. Since` ≤ 2n, this requires at most
5

(
21 + · · · + 2`

)
≤ 20n bits.

To construct an oracleA that satisfies (C′), we iterate
over all ` ≥ 1. Suppose by induction thatR∗

`−1 is an
(`− 1)-secret; then we want to ensure thatR∗

` is an`-secret

for somer` ∈ {0, 1}5·2`

. To do so, we use a procedure
essentially identical to the one for a specificn. The only
difference is this: previously, all we needed was a rowr ∈
{0, 1}5n such that no〈i, x〉 pair was sensitive to aparticu-
lar change tor (namely, settingAt (r, i, x) := Mi,x (At−1)
for all i, x). But in the general case, the “row” labeled
by R = (r1, . . . , r`) consists of all triples〈R′, i, x〉 such
thatR′ =

(
r1, . . . , r`, r

′
`+1, . . . , r

′
L

)
for someL ≥ ` and

r′`+1, . . . , r
′
L. Furthermore, we do not yet know how later

iterations will affect this “row.” So we should call a pair
〈i, x〉 “sensitive” toR, if there isanyoracleA′ such that (1)
A′ disagrees withA only in rowR, and (2)Mi,x (A′) 6=
Mi,x (A).

Fortunately, this new notion of sensitivity requires no
significant change to the proof. Suppose that for every row
R of the form

(
r∗1 , . . . , r

∗
`−1, r`

)
there exists an〈i, x〉 that is

sensitive toR. Then as before, there exists an〈i′, x′〉 that

is sensitive to at least25·2`

/
(
22`22`+1

)
> 23n rows of that

form. For each of those rowsR, fix a change toR to which
〈i′, x′〉 is sensitive. We thereby obtain a polynomialQ (A)
with the same properties as before—in particular, there ex-

ists a stringY ∈ {0, 1}23n

such thatQ
(
A(Y)

)
≥ 2Q (A).

Let us make three remarks about Theorem 2. First, if we
care about constants, it is clear that the advicer can be re-
duced to3n+o (n) bits for a specificn, or12n+o (n) for all
n simultaneously. Presumably these bounds are not tight.
Second, one can easily extend Theorem 2 to give an oracle
relative to whichPE = PTIME

(
2O(n)

)
has linear-size cir-

cuits, and hencePEXP ⊂ P/poly by a padding argument.
Third, Han, Hemaspaandra, and Thierauf [18] showed that
MA ⊆ BPPpath ⊆ PP. So in addition to implying the result
of Buhrman, Fortnow, and Thierauf thatMA has linear-size
circuits relative to an oracle, Theorem 2 also yields the new
result thatBPPpath has linear-size circuits relative to an or-
acle.

In Appendices 8 and 9, we will explain how the tech-
niques of Theorem 2 can be used to prove several other
results. In particular, in Appendix 8 we give relativized
worlds wherePNP = PEXP and⊕P = PEXP, and in Ap-
pendix 9 we generalize the result of Beigel [8] that no small
perceptron solves the ODDMAXBIT problem.

3. Quantum Circuit Lower Bounds

In this section we show, by a nonrelativizing argument,
that PP does not have circuits of sizenk, not even quan-
tum circuits with quantum advice. We first show thatPPP

does not have quantum circuits of sizenk, by a direct diag-
onalization argument. Our argument will use the following
lemma of Aaronson [1].

Lemma 3 (“Almost As Good As New Lemma”)
Suppose a two-outcome measurement of a mixed quantum
stateρ yields outcome0 with probability 1 − ε. Then
after the measurement, we can recover a stateρ̃ such that
‖ρ̃− ρ‖tr ≤

√
ε.

(Recall that the trace distance‖ρ− σ‖tr between two
mixed statesρ andσ is the maximum bias with which those
states can be distinguished via a single measurement. In
particular, trace distance satisfies the triangle inequality.)

Theorem 4 PPP does not have quantum circuits of sizenk

for any fixedk. Furthermore, this holds even if the circuits
can use quantum advice.

Proof. For simplicity, let us first explain whyPPP does not
haveclassicalcircuits of sizenk. Fix an input lengthn, and
let x1, . . . , x2n be a lexicographic ordering ofn-bit strings.
Also, letC be the set of all circuits of sizenk, and letCt ⊆ C
be the subset of circuits inC that correctly decide the firstt
inputsx1, . . . , xt. Then we define the languageL∩{0, 1}n

by the following iterative procedure. First, if at least half of
the circuits inC acceptx1, then setx1 /∈ L, and otherwise
setx1 ∈ L. Next, if at least half of the circuits inC1 accept
x2, then setx2 /∈ L, and otherwise setx2 ∈ L. In general,

7

letN = dlog2 |C′|e+ 1. Then for allt < N , if at least half
of the circuits inCt acceptxt+1, then setxt+1 /∈ L, and
otherwise setxt+1 ∈ L. Finally, setxt /∈ L for all t > N .

It is clear that the resulting languageL is in PPP. Given
an inputxt, we just reject ift > N , and otherwise call
the PP oraclet times, to decide ifxi ∈ L for eachi ∈
{1, . . . , t}. Note that, once we knowx1, . . . , xi, we can
decide in polynomial time whether a given circuit belongs
to Ci, and can therefore decide inPP whether the majority
of circuits inCi accept or rejectxi+1. On the other hand,
our construction guarantees that|Ct+1| ≤ |Ct| /2 for all t <
N . Therefore|CN | ≤ |C| /2N = 1/2, which means that
CN is empty, and hence no circuit inC correctly decides
x1, . . . , xN .

The above argument extends naturally to quantum cir-
cuits. LetC be the set of all quantum circuits of sizenk,
over a basis of (say) Hadamard and Toffoli gates.12 (Note
that these circuits need not be bounded-error.) Then the first
step is to amplify each circuitC ∈ C a polynomial number
times, so that ifC ’s initial error probability was at most1/3,
then its new error probability is at most (say)2−10n. LetC′

be the resulting set of amplified circuits. Now let|ψ0〉 be a
uniform superposition over all descriptions of circuits inC′,
together with an “answer register” that is initially set to|0〉:

|ψ0〉 :=
1√
|C′|

∑

C∈C′

|C〉 |0〉 .

For each inputxt ∈ {0, 1}n, let Ut be a unitary transfor-
mation that maps|C〉 |0〉 to |C〉 |C (xt)〉 for eachC ∈ C′,
where|C (xt)〉 is the output ofC on inputxt. (In general,
|C (xt)〉 will be a superposition of|0〉 and|1〉.) To imple-
mentUt, we simply simulate runningC onxt, and then run
the simulation in reverse to uncompute garbage qubits.

Let N = dlog2 |C′|e + 2. Also, given an inputxt, let
L (xt) = 1 if xt ∈ L andL (xt) = 0 otherwise. Fixt < N ,
and suppose by induction that we have already setL (xi)
for all i ≤ t. Then we will use the following quantum
algorithm, calledAt, to setL (xt+1).

Set |ψ〉 := |ψ0〉
For i := 1 to t

Set |ψ〉 := Ui |ψ〉
Measure the answer register
If the measurement outcome

is not L (xi), then FAIL
Next i
Set |ψ〉 := Ut+1 |ψ〉
Measure the answer register

Say that At succeeds if it outputsL (xi) for all
x1, . . . , xt. ConditionedonAt succeeding, if the final mea-
surement yields the outcome|1〉 with probability at least

12Shi [37] showed that this basis is universal. Any finite, universal set
of gates with rational amplitudes would work equally well.

1/2, then setL (xt+1) := 0, and otherwise setL (xt+1) :=
1. Finally, setL (xt) := 0 for all t > N .

By a simple extension of the resultBQP ⊆ PP due to
Adleman, DeMarrais, and Huang [3], Aaronson [2] showed
that polynomial-time quantum computation with postse-
lected measurement can be simulated inPP (indeed the two
are equivalent; that is,PostBQP = PP). In particular, a
PP machine can simulate the postselected quantum algo-
rithm At above, and thereby decide whether the final mea-
surement will yield|0〉 or |1〉 with greater probability, con-
ditioned on all previous measurements having yielded the
correct outcomes. It follows thatL ∈ PPP.

On the other hand, suppose by way of contradiction that
there exists a quantum circuitC ∈ C′ that outputsL (xt)
with probability at least1 − 2−10n for all t. Then the
probability thatC succeeds onx1, . . . , xN simultaneously
is at least (say)0.9, by Lemma 3 together with the trian-
gle inequality. Hence the probability thatAt succeeds on
x1, . . . , xN is at least0.9/ |C′|. Yet by construction,At

succeeds with probability at most1/2t, which is less than
0.9/ |C′| whent = N − 1. This yields the desired contra-
diction.

Finally, to incorporate quantum advice of sizes = nk,
all we need to do is add ans-qubit “quantum advice reg-
ister” to |ψ0〉, whichUt’s can use when simulating the cir-
cuits. We initialize this advice register to the maximally
mixed state ons qubits. The key fact (see [1] for example)
is that, whatever the “true” advice state|φ〉, we can decom-
pose the maximally mixed state into

1

2s

2s∑

j=1

|φj〉 〈φj | ,

where |φ1〉 , . . . , |φ2s〉 form an orthonormal basis and
|φ1〉 = |φ〉. By linearity, we can then track the evolu-
tion of each of these2s components independently. So
the previous argument goes through as before, if we set
N = dlog2 |C′|e + s + 2. (Note that we are assuming
the advice states are suitably amplified, which increases the
running time ofAt by at most a polynomial factor.)

Similarly, for all time-constructible functionsf (n) ≤
2n, one can show that the classDTIME (f (n))

PP does not
have quantum circuits of sizef (n) /n2. So for example,
EPP requires quantum circuits of exponential size.

Having shown a quantum circuit lower bound forPPP,
we now bootstrap our way down toPP. To do so, we
use the following “quantum Karp-Lipton theorem” (or more
precisely, “quantum LFKN theorem”). HereBQP/poly is
BQP with polynomial-size classical advice,BQP/qpoly is
BQP with polynomial-size quantum advice,QMA is like
MA but with quantum verifiers and quantum witnesses, and
QCMA is like MA but with quantum verifiers andclassical
witnesses. Also, recall that the counting hierarchyCH is

8

the union ofPP, PPPP, PPPPPP

, and so on.

Theorem 5 If PP ⊂ BQP/poly then QCMA = PP,
and indeedCH collapses toQCMA. Likewise, ifPP ⊂
BQP/qpoly thenCH collapses toQMA.

Proof. Let L be a language inCH. It is clear that we
could decideL in quantum polynomial time, if we were
given polynomial-size quantum circuits for aPP-complete
language such as MAJSAT. For Fortnow and Rogers [16]
showed thatBQP is “low” for PP; that is,PPBQP = PP.
So we could use the quantum circuits for MAJSAT to col-
lapsePPPP to PPBQP = PP to BQP, and similarly for all
higher levels ofCH.

AssumePP ⊂ BQP/poly; then clearlyP#P = PPP is
contained inBQP/poly as well. So inQCMA we can do
the following: first guess a bounded-error quantum circuit
C for computing the permanent of apoly (n)×poly (n) ma-
trix over a finite fieldFp, for some primep = Θ (poly (n)).
(For convenience, herepoly (n) means “a sufficiently large
polynomial depending onL.”) Then verify that with1 −
o (1) probability,C works on at least a1−1/ poly (n) frac-
tion of matrices. To do so, simply simulate the interactive
protocol for the permanent due to Lund, Fortnow, Karloff,
and Nisan [26], but withC in place of the prover. Next, use
the random self-reducibility of the permanent to generate a
new circuitC′ that, with1 − o (1) probability, is correct on
everypoly (n) × poly (n) matrix overFp. Since PERMA-
NENT is #P-complete over all fields of characteristicp 6= 2
[42], we can then useC′ to decide MAJSAT instances of
sizepoly (n), and therefore the languageL as well.

The casePP ⊂ BQP/qpoly is essentially identical, ex-
cept that inQMA we guess a quantum circuit with quantum
advice. That quantum advice states cannot be reused indef-
initely does not present a problem here: we simply guess a
boosted circuit, or elsepoly (n) copies of the original cir-
cuit.

By combining Theorems 4 and 5, we immediately obtain
the following.

Corollary 6 PP does not have quantum circuits of sizenk

for any fixedk, not even quantum circuits with quantum
advice.

Proof. Suppose by contradiction thatPP had such circuits.
Then certainlyPP ⊂ BQP/qpoly, so QMA = PP =
PPP = CH by Theorem 5. ButPPP doesnot have such
circuits by Theorem 4, and therefore neither doesPP.

More generally, for allf (n) ≤ 2n we find that
PTIME (f (f (n))) requires quantum circuits of size ap-
proximatelyf (n). For example,PEXP requires quantum
circuits of “half-exponential” size.

Finally, we point out a quantum analogue of Buhrman,
Fortnow, and Thierauf’s classical nonrelativizing separation
[11].

Theorem 7 QCMAEXP 6⊂ BQP/poly, and QMAEXP 6⊂
BQP/qpoly.

Proof. Suppose by contradiction thatQCMAEXP ⊂
BQP/poly. Then clearlyEXP ⊂ BQP/poly as well.
Babai, Fortnow, and Lund [6] showed that any language
in EXP has a two-prover interactive protocol where the
provers are inEXP. We can simulate such a proto-
col in QCMA as follows: first guess (suitably amplified)
BQP/poly circuits computing the provers’ strategies. Then
simulate the provers and verifier, and accept if and only
if the verifier accepts. It follows thatEXP = QCMA,
and thereforeQCMA = PPP as well. So by padding,
QCMAEXP = EXPPP. But we know from Theorem 4 that
EXPPP 6⊂ BQP/poly, which yields the desired contradic-
tion. The proof thatQMAEXP 6⊂ BQP/qpoly is essentially
identical, except that we guess quantum circuits with quan-
tum advice.

One can strengthen Theorem 7 to show thatQMAEXP re-
quires quantum circuits of half-exponential size. However,
in contrast to the case forPEXP, here the bound does not
scale down toQMA. Indeed, it turns out that the smallest
f for which we getanysuperlinear circuit size lower bound
for QMATIME (f (n)) is itself half-exponential.

4. The Oracle for BPP
NP
||

In this section we construct an oracle relative to which
BPPNP

|| has linear-size circuits.

Theorem 8 There exists an oracle relative to whichBPPNP
||

has linear-size circuits.

Proof. As in Theorem 2, we first give an oracleA
that works for a specific value ofn. Let M1,M2, . . .

be an enumeration of “syntactic”BPTIME
(
nlog n

)NP

||
ma-

chines, where syntactic means not necessarily satisfying the
promise. Then it suffices to simulateM1, . . . ,Mn. We as-
sume without loss of generality that only theNP oracle (not
theMi’s themselves) queryA, and that eachNP call is actu-
ally anNTIME (n) call (so in particular, it involves at most
nlog n queries toA). LetMi,x,z (A) be a Boolean function
that equals1 if Mi accepts on inputx ∈ {0, 1}n, random

stringz ∈ {0, 1}nlog n

, and oracleA, and0 otherwise. Then
let pi,x (A) := EXz [Mi,x,z (A)] be the probability thatMi

acceptsx.
The oracleA will consist of23n rows andn2n columns,

with each row labeled byr ∈ {0, 1}3n, and each col-
umn labeled by an〈i, x〉 pair wherei ∈ {1, . . . , n} and
x ∈ {0, 1}n. We will constructA via an iterative pro-
cedureP . Initially A is empty (that is,A (r, i, x) = 0
for all r, i, x). LetAt be the state ofA after thetth itera-
tion. Then toencodea rowr means to setAt (r, i, x) :=

9

round (pi,x (At−1)) for all i, x, whereround (p) = 1 if
p ≥ 1/2 andround (p) = 0 if p < 1/2.

Call an〈i, x〉 pairsensitiveto rowr, if encodingr would
changepi,x (A) by at least1/6. ThenP consists entirely of
repeating the following two steps, fort = 1, 2, 3 . . .:

(1) If there exists anr to which no〈i, x〉 is sensitive, then
encoder and halt.

(2) Otherwise, by a counting argument, there exists a pair
〈j, y〉 that is sensitive to at leastN = 23n/ (n2n) rows,
call themr1, . . . , rN . LetA(k) be the oracle obtained
by starting fromA and then encodingrk. Choose an
integerk ∈ {1, . . . , N} (we will specify how later),

and setAt := A
(k)
t−1.

SupposeP halts after t iterations, and letr be
the row encoded by step (1). Then by assumption,
|pi,x (At) − pi,x (At−1)| < 1/6 for all i, x. So in par-
ticular, if pi,x (At) ≥ 2/3 then pi,x (At−1) > 1/2 and
thereforeAt (r, i, x) = 1. Likewise, if pi,x (At) ≤ 1/3
then pi,x (At−1) < 1/2 and thereforeAt (r, i, x) = 0.

It follows that any validBPTIME
(
nlog n

)NP

||
machine in

{M1, . . . ,Mn} has linear-size circuits relative toAt—since
we can just hardwirer ∈ {0, 1}2n into the circuits.

It remains only to show thatP halts after a finite number
of steps, for some choice ofk’s. Given an inputx, random
stringz, and oracleA, letSi,x,z (A) be the set ofNP queries
made byMi that accept. Then we will use

W (A) :=
∑

i,x

EX
z

[|Si,x,z (A)|]

as our progress measure. Since eachMi can query the
NP oracle at mostnlog n times, clearly0 ≤ |Si,x,z (A)| ≤
nlog n for all i, x, z, and therefore

0 ≤W (A) ≤ n2n · nlog n

for all A. On the other hand, we claim that whenever step
(2) is executed, ifk ∈ {1, . . . , N} is chosen uniformly at
random then

EX
k

[
W

(
A(k)

)]
≥W (A) +

1

6
− 2−n+o(n).

So in step (2), we should simply choosek to maxi-
mize W

(
A(k)

)
. For we will then haveW (At) ≥(

1/6 − 2−n+o(n)
)
t for all t, from which it follows thatP

halts after at most

n2n · nlog n

1/6 − 2−n+o(n)
= 2n+o(n)

iterations.

We now prove the claim. Observe that for each accept-
ing NP queryq ∈ Si,x,z (A), there are at mostnlog n rows
rk such that encodingrk would causeq /∈ Si,x,z

(
A(k)

)
.

For to changeq’s output from ‘accept’ to ‘reject,’ we would
have to eliminate (say) the lexicographically first accept-
ing path of theNP oracle, and that path can depend on at
mostnlog n rows ofA. Hence by the union bound, for all
i, x, z, A we have

Pr
k

[
Si,x,z (A) 6⊂ Si,x,z

(
A(k)

)]

≤
∑

q∈Si,x,z(A)

Pr
k

[
q /∈ Si,x,z

(
A(k)

)]

≤ |Si,x,z (A)| n
log n

N

≤ n2 log n

23n/ (n2n)

= 2−2n+o(n).

So in particular, for alli, x, A,

EX
k,z

[∣∣∣Si,x,z

(
A(k)

)∣∣∣
]

≥ |Si,x,z (A)| · Pr
k,z

[∣∣∣Si,x,z

(
A(k)

)∣∣∣ ≥ |Si,x,z (A)|
]

≥ |Si,x,z (A)|
(
1 − 2−2n+o(n)

)

On the other hand, by assumption there exists a pair
〈j, y〉 that is sensitive to rowrk for everyk ∈ {1, . . . , N}.
Furthermore, giveny andz, the outputMj,y,z (A) of Mj is
a function of theNP oracle responsesSj,y,z (A), and can
change only ifSj,y,z (A) changes. Therefore

Pr
k,z

[
Sj,y,z

(
A(k)

)
6= Sj,y,z (A)

]

≥ Pr
k,z

[
Mj,y,z

(
A(k)

)
6= Mj,y,z (A)

]

≥ 1

6
.

So by the union bound,

Pr
k,z

[∣∣∣Sj,y,z

(
A(k)

)∣∣∣ > |Sj,y,z (A)|
]

≥ Pr
k,z

[
Sj,y,z

(
A(k)

)
6= Sj,y,z (A)

]

− Pr
k,z

[
Sj,y,z (A) 6⊂ Sj,y,z

(
A(k)

)]

≥ 1

6
− 2−2n+o(n).

10

Putting it all together,

EX
k

[
W

(
A(k)

)]

=
∑

i,x

EX
k,z

[∣∣∣Si,x,z

(
A(k)

)∣∣∣
]

≥ 1

6
− 2−2n+o(n) +

∑

i,x

|Si,x,z (A)|
(
1 − 2−2n+o(n)

)

=
1

6
− 2−2n+o(n) +

(
1 − 2−2n+o(n)

)
W (A)

= W (A) +
1

6
− 2−n+o(n),

which completes the claim.
To handle all values ofn simultaneously, we use ex-

actly the same trick as in Theorem 2. That is, we replace

r by an `-tupleR = (r1, . . . , r`) wherer` ∈ {0, 1}3·2`

;
define the “row” R` to consist of all triples〈R′

L, i, x〉
such thatL ≥ ` and r′h = rh for all h ≤ `; and
call the pair〈i, x〉 “sensitive” to rowR` if there is any
oracleA′ that disagrees withA only in R`, such that
|pi,x (A′) − pi,x (A)| ≥ 1/6. We then run the procedureP
repeatedly to encoder1, r2, . . ., where “encoding”r` means
settingAt (R`, i, x) := round (pi,x (At−1)) for all n ≤ 2`,
i ∈ {1, . . . , n}, andx ∈ {0, 1}n. The rest of the proof goes
through as before.

Let us make seven remarks about Theorem 8.
(1) Since we never needed theBPP promise, it is clear

that Theorem 8 generalizes toPromiseBPPNP
|| .

(2) A corollary of Theorem 8 is that any Karp-Lipton
collapse toBPPNP

|| would require nonrelativizing tech-
niques. For relative to the oracleA from the theorem,
we haveNP ⊆ BPPNP

|| ⊂ P/poly. On the other hand,

if PHA = BPPNPA

|| , thenBPPNPA

|| would not have linear-
size circuits by Kannan’s Theorem [20] (which relativizes),
thereby yielding a contradiction.

(3) If we care about constants, we can reduce the advice
r to 2n+ o (n) bits for a specificn, or 8n+ o (n) for all n
simultaneously.

(4) As with Theorem 2, one can easily modify Theorem
8 to give a relativized world whereBPEXPNP

|| ⊂ P/poly.
Thus, Theorem 8 provides an alternate generalization of
the result of Buhrman, Fortnow, and Thierauf [11] that
MAEXP ⊂ P/poly relative to an oracle.

(5) SinceBPPpath ⊆ BPPNP
|| (as is not hard to show

using approximate counting), Theorem 8 also provides an
alternate proof thatBPPpath has linear-size circuits relative
to an oracle.

(6) Completely analogously to Theorem 12, one can
modify Theorem 8 to give oracles relative to whichPNP =
BPEXPNP

|| and⊕P = BPEXPNP
|| .

(7) For any functionf , the construction of Theorem 8
actually yields an oracle relative to whichBPPNP[f(n)] (that

is, BPP with f (n) adaptiveNP queries) has circuits of size
O (n+ f (n)). For clearly we can simulatef (n) adaptive
queries using2f(n) nonadaptive queries. We then repeat
Theorem 8 with the bound0 ≤W (A) ≤ n2n · 2f(n).

5. Black-Box Learning in Algorithmica

“Algorithmica” is one of Impagliazzo’s five possible
worlds [19], the world in whichP = NP. In this sec-
tion we show that in Algorithmica, black-box learning of
Boolean circuits is possible inPNP

|| . Let us first define what
we mean by black-box learning.

Definition 9 Say that black-box learning is possible in a
complexity classC if the following holds. There exists
a C machineM such that, for all Boolean functionsf :
{0, 1}n → {0, 1} with circuit complexity at mosts (n), the
machineMf outputs a circuit forf given

〈
0n, 0s(n)

〉
as in-

put. Also,M has approximation ratioα (n) if for all f , any
circuit output byM has size at mosts (n)α (n).

The above definition is admittedly somewhat vague, but
for most natural complexity classesC it is clear how to make
it precise. Firstly, by “C machine” we really mean “FC
machine,” whereFC is the function version ofC. Secondly,
for semantic classes, we do not care if the machine violates
the promise on inputs not of the form

〈
0n, 0s(n)

〉
, or oracles

f that do not have circuit complexity at mosts (n).
Let us give a few examples. First, almost by definition,

black-box learning is possible inΣp
2 with approximation ra-

tio 1. Second, as pointed out by Umans [41], the result of
Bshouty et al. [9] implies that black-box learning is possible
in ZPPNP, with approximation ratioO (n/ logn). Third,
under plausible assumptions, black-box learning is possible
in PNP with approximation ratioO (n/ logn).13 Fourth,
if E requires MAJSAT-oracle circuits of size2Ω(n), then
black-box learning is possible inPP with approximation ra-
tio 1. For this assumption implies thatPP = BP · PP, and
hence thatΣp

2 ⊆ PP by Toda’s theorem.
On the other hand:

Proposition 10 Black-box learning is impossible inNP, or
for that matter inAM, IP, or MIP.

Proof. Suppose there are two possibilities: eitherf is the
identically zero function, or elsef is a point function (that
is, there exists ay such thatf (x) = 1 if and only if x = y).
In both casess (n) = O (n). But since the verifier has

13For it follows from a general result of Klivans and van Melkebeek [22]
that if E requires SAT-oracle circuits of size2Ω(n), thenPNP = ZPPNP.
(Here a SAT-oracle circuit is a circuit with oracle access toSAT.) Further-
more, the derandomization result of [22] is “black-box respecting,” in the
sense that if theZPPNP machine doesn’t “cheat” by exploiting the internal
structure of the circuit to be learned, then neither does itsPNP simulation.

11

only oracle access tof , it is obvious that no polynomially-
bounded sequence of messages from the prover(s) could
convince the verifier thatf is identically zero. We omit
the details, which were worked out by Fortnow and Sipser
[17].

We now prove the main result.

Theorem 11 If P = NP, then black-box learning is possi-
ble inPNP

|| (indeed, with approximation ratio1).

Proof. Fix n, and supposef : {0, 1}n → {0, 1} has circuits
of sizes = s (n). LetB be the set of all circuits of sizes, so
that |B| = sO(s). Also, say that a circuitC ∈ B succeeds
on inputx ∈ {0, 1}n if C (x) = f (x), andfails otherwise.
Then given a list of inputsX = (x1, x2, . . .), let B (X) be
the set of circuits inB that succeed on everyx ∈ X .

For the remainder of the proof, letXt = (x1, . . . , xt) be
a list oft inputs, and for all0 ≤ i < t, letXi = (x1, . . . , xi)
be the prefix ofXt consisting of the firsti inputs (so in par-
ticular,X0 is the empty list). Then our first claim is that
there exists anNPf machineQt with the following behav-
ior:

• If there exists anXt such that|B (Xi)| ≤ 2
3 |B (Xi−1)|

for all i ∈ {1, . . . , t}, thenQt accepts.

• If for all Xt there exists ani ∈ {1, . . . , t} such that
|B (Xi)| ≥ 3

4 |B (Xi−1)|, thenQt rejects.

(As usual, if neither of the two stated conditions hold,
then the machine can behave arbitrarily.)

In what follows, we can assume without loss of general-
ity that t is polynomially bounded. For, sincesomecircuit
C ∈ B succeeds on every input, we must have|B (Xi)| ≥ 1
for all i. ThereforeQt can accept only if|B| (3/4)

t ≥ 1, or
equivalently ift = O (s log s).

Let f (Xt) := (f (x1) , . . . , f (xt)), and letz be a “wit-
ness string” consisting ofXt andf (Xt). Then givenz and
i ≤ t, we can easily decide whether a circuitC belongs to
the setB (Xi): we simply check whetherC (xj) = f (xj)
for all j ≤ i. So by standard results on approximate count-
ing due to Stockmeyer [39] and Sipser [38], we can approx-
imate the cardinality|B (Xi)| in BPPNP. More precisely,
for all t, i there exists aPromiseBPPNP machineMt,i such
that for allz = 〈Xt, f (Xt)〉:

• If |B (Xi)| ≤ 2
3 |B (Xi−1)| thenMt,i (z) accepts with

probability at least2/3 (where the probability is over
Mt,i’s internal randomness).

• If |B (Xi)| ≥ 3
4 |B (Xi−1)| thenMt,i (z) rejects with

probability least2/3.

Now by the Sipser-Lautemann Theorem [38, 25],
the assumptionP = NP implies that PromiseP =

PromiseBPPNP as well. So we can convertMt,i into a de-
terministic polynomial-time machineM ′

t,i such that for all
z, if |B (Xi)| ≤ 2

3 |B (Xi−1)| thenM ′
t,i (z) accepts, while

if |B (Xi)| ≥ 3
4 |B (Xi−1)| thenM ′

t,i (z) rejects.
UsingM ′

t,i, we can then rewriteQt as follows: “Does
there exist a witnessz, of the form〈Xt, f (Xt)〉, such that
M ′

t,1 (z)∧· · · ∧M ′
t,t (z)?” This proves the claim, since the

above query is clearly inNPf .
To complete the theorem, we will need one

other predicateAt (z, x), with the following behav-
ior. For all z = 〈Xt, f (Xt)〉 and x ∈ {0, 1}n, if
PrC∈B(Xt) [C (x) = 1] ≥ 2/3 then At (z, x) accepts,
while if PrC∈B(Xt) [C (x) = 0] ≥ 2/3 then At (z, x)
rejects.

It is clear that we can implementAt in PromiseBPPNP,
again because of approximate counting and the ease of
deciding membership inB (Xt). So by the assumption
P = NP, we can also implementAt in P.

Now letCt,z be the lexicographically first circuitC ∈ B
such thatC (x) = At (z, x) for all x ∈ {0, 1}n. Notice that
At (z, x) is anexplicit procedure: that is, we can evaluate
it without recourse to the oracle forf . So givenz, we can
findCt,z in ∆

p
3 = PNPNP

, and hence also inP.
Let t∗ be the maximumt for whichQt accepts, and let

z = 〈Xt∗ , f (Xt∗)〉 be any accepting witness forQt∗ . Then
for all x ∈ {0, 1}n, we have

Pr
C∈B(Xt∗)

[C (x) = f (x)] ≥ 2

3
.

For otherwise the sequence(x1, . . . , xt∗ , x) would satisfy
Qt∗+1, thereby contradicting the maximality oft∗. An im-
mediate corollary is thatAt∗ (z, x) = f (x) for all x ∈
{0, 1}n. HenceCt∗,z is the lexicographically first circuit
for f , independently of the particular accepting witnessz.

ThePNPf

|| learning algorithm now follows easily. For all
t = O (s log s), the algorithm submits the queryQt to the
NP oracle. It also submits the following query, calledRt,j ,
for all t = O (s log s) and j = O (s log s): “Does there
exist a witnessz = 〈Xt, f (Xt)〉 satisfyingQt, such that
thejth bit in the description ofCt,z is a1?”

Using the responses to theQt’s, the algorithm then de-
terminest∗. Finally it reads a description ofCt∗,z off the
responses to theRt∗,j ’s.

Consider the following question: “why hasn’t any-
one managed to show a Karp-Lipton collapse toPNP

|| or

BPPNP
|| ?” We might hope to answer this question by prov-

ing a “metaresult,” stating that any such collapse would re-
quire non-black-box techniques. But Theorem 11 yields
the “metametaresult” that wecan’t show such a metaresult,
without also showing thatP 6= NP!

As a final note, one corollary of Theorem 11 is that if
P = NP, then black-box learning is possible inNP/log.

12

For since thePNP
|| algorithm of Theorem 11 does not take

any input, we simply count how many of itsNP queries re-
turn a positive answer, and then feed that number as advice
to theNP/log machine.

6. Open Problems

The main open problem is, of course, to prove better non-
relativizing lower bounds. For example, can we show that
BPPNP

|| does not have linear-size circuits? To do so, we
would presumably need a nonrelativizing technique that ap-
plies directly to the polynomial hierarchy, without requiring
the full strength of#P. Arora, Impagliazzo, and Vazirani
[4] argue that “local checkability,” as used for example in
the PCP Theorem, constitutes such a technique (though see
Fortnow [14] for a contrary view). For us, the relevant
question is not which techniques are “truly” nonrelativiz-
ing, but simply which ones lead to lower bounds!

Here are a few other problems.
(1) Can we show thatPNP 6= PEXP? If so, then

we would obtain perhaps the first nonrelativizing separa-
tion of uniform complexity classes that does not follow
immediately from a collapse such asIP = PSPACE or
MIP = NEXP.

(2) Can we show thatPEXP requires circuits of expo-
nential size, rather than just half-exponential?

(3) As mentioned in Section 1.2, Bshouty et al.’s algo-
rithm does not find aminimalcircuit for a Boolean function
f , but only a circuit within anO (n/ logn) factor of mini-
mal.14 Can we improve this approximation ratio, or alter-
natively, show that doing so would require nonrelativizing
techniques?

(4) Is black-box learning possible inPNP
|| or ZPPNP

|| , un-
der some computational assumption that we actually believe
(for example, a derandomization assumption)? Alterna-
tively, can we show that black-box learning isimpossiblein
PNP
|| under some plausible computational assumption?
(5) Can we show that ifNP ⊆ P/poly thenPH ⊆ PP?

Of course, Theorem 2 implies that nonrelativizing tech-
niques would be needed.

7. Acknowledgments

I am grateful to Lance Fortnow for telling me the prob-
lem of whetherPP has linear-size circuits relative to an
oracle, and for pointing out the implications of my oracle
construction for perceptrons and for the relativized collapse
of PEXP. I also thank Avi Wigderson for sponsoring the
postdoc during which this work was done and for many

14Actually, the algorithm as we stated it gives anO (n) approximation
ratio, but we can improve it toO (n/ log n) by replacing “at least a1/3
fraction” by “at least a1/ poly (n) fraction.”

enlightening conversations; the anonymous reviewers for
their comments; and Boaz Barak, Dieter van Melkebeek,
Sasha Razborov, Rahul Santhanam, Ronen Shaltiel, Luca
Trevisan, Chris Umans, Umesh Vazirani, Hoeteck Wee, and
Chris Wilson for helpful discussions and correspondence.

References

[1] S. Aaronson. Limitations of quantum advice and one-way
communication.Theory of Computing, 1:1–28, 2005. quant-
ph/0402095.

[2] S. Aaronson. Quantum computing, postselection, and
probabilistic polynomial-time. Proc. Roy. Soc. London,
A461(2063):3473–3482, 2005. quant-ph/0412187.

[3] L. Adleman, J. DeMarrais, and M.-D. Huang. Quantum
computability.SIAM J. Comput., 26(5):1524–1540, 1997.

[4] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizingver-
sus nonrelativizing techniques: the role of local checkability.
Manuscript, 1992.

[5] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expres-
sive power of voting polynomials.Combinatorica, 14(2):1–
14, 1994.

[6] L. Babai, L. Fortnow, and C. Lund. Nondeterministic expo-
nential time has two-prover interactive protocols.Computa-
tional Complexity, 1(1):3–40, 1991.

[7] T. Baker, J. Gill, and R. Solovay. Relativizations of the
P=?NP question.SIAM J. Comput., 4:431–442, 1975.

[8] R. Beigel. Perceptrons, PP, and the polynomial hierarchy.
Computational Complexity, 4:339–349, 1994.

[9] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Ta-
mon. Oracles and queries that are sufficient for exact learn-
ing. J. Comput. Sys. Sci., 52(3):421–433, 1996.

[10] H. Buhrman, S. Fenner, L. Fortnow, and L. Torenvliet. Two
oracles that force a big crunch.Computational Complexity,
10(2):93–116, 2001.

[11] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing
separations. InProc. IEEE Complexity, pages 8–12, 1998.

[12] J.-Y. Cai. S
p
2 ⊆ ZPP

NP . In Proc. IEEE FOCS, pages
620–629, 2001.

[13] H. Ehlich and K. Zeller. Schwankung von Polynomen zwis-
chen Gitterpunkten.Mathematische Zeitschrift, 86:41–44,
1964.

[14] L. Fortnow. The role of relativization in complexity theory.
Bulletin of the EATCS, 52:229–244, February 1994.

[15] L. Fortnow and A. Klivans. NP with small advice. InProc.
IEEE Complexity, pages 228–234, 2005.

[16] L. Fortnow and J. Rogers. Complexity limitations on quan-
tum computation. J. Comput. Sys. Sci., 59(2):240–252,
1999. cs.CC/9811023.

[17] L. Fortnow and M. Sipser. Are there interactive protocols for
co-NP languages?Inform. Proc. Lett., 28:249–251, 1988.

[18] Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold
computation and cryptographic security.SIAM J. Comput.,
26(1):59–78, 1997.

[19] R. Impagliazzo. A personal view of average-case complex-
ity. In Proc. IEEE Complexity, pages 134–147, 1995.

[20] R. Kannan. Circuit-size lower bounds and non-reducibility
to sparse sets.Information and Control, 55:40–56, 1982.

13

[21] R. M. Karp and R. J. Lipton. Turing machines that take
advice.Enseign. Math., 28:191–201, 1982.

[22] A. Klivans and D. van Melkebeek. Graph nonisomorphism
has subexponential size proofs unless the polynomial-time
hierarchy collapses.SIAM J. Comput., 31:1501–1526, 2002.
Earlier version in ACM STOC 1999.

[23] J. Köbler and O. Watanabe. New collapse consequences of
NP having small circuits.SIAM J. Comput., 28(1):311–324,
1998.

[24] M. W. Krentel. The complexity of optimization problems.
J. Comput. Sys. Sci., 36(3):490–509, 1988.

[25] C. Lautemann. BPP and the polynomial hierarchy.Inform.
Proc. Lett., 17:215–217, 1983.

[26] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic
methods for interactive proof systems.J. ACM, 39:859–868,
1992.

[27] P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe.
Super-polynomial versus half-exponential circuit size inthe
exponential hierarchy. InCOCOON, pages 210–220, 1999.

[28] M. Minsky and S. Papert.Perceptrons (2nd edition). MIT
Press, 1988. First appeared in 1968.

[29] N. Nisan and M. Szegedy. On the degree of Boolean
functions as real polynomials.Computational Complexity,
4(4):301–313, 1994.

[30] H. Nishimura and T. Yamakami. Polynomial time quantum
computation with advice.Inform. Proc. Lett., 90:195–204,
2003. ECCC TR03-059, quant-ph/0305100.

[31] W. J. Paul, N. Pippenger, E. Szemerédi, and W. T. Trotter.
On determinism versus non-determinism and related prob-
lems. InProc. IEEE FOCS, pages 429–438, 1983.

[32] A. A. Razborov and S. Rudich. Natural proofs.J. Comput.
Sys. Sci., 55(1):24–35, 1997.

[33] T. J. Rivlin and E. W. Cheney. A comparison of uniform ap-
proximations on an interval and a finite subset thereof.SIAM
J. Numerical Analysis, 3(2):311–320, 1966.

[34] R. Shaltiel and C. Umans. Pseudorandomness for approx-
imate counting and sampling. InProc. IEEE Complexity,
2005. To appear.

[35] A. Shamir. IP=PSPACE.J. ACM, 39(4):869–877, 1992.
[36] C. Shannon. The synthesis of two-terminal switching cir-

cuits. Bell System Technical Journal, 28(1):59–98, 1949.
[37] Y. Shi. Both Toffoli and controlled-NOT need little help to

do universal quantum computation.Quantum Information
and Computation, 3(1):84–92, 2002. quant-ph/0205115.

[38] M. Sipser. A complexity theoretic approach to randomness.
In Proc. ACM STOC, pages 330–335, 1983.

[39] L. J. Stockmeyer. The complexity of approximate counting.
In Proc. ACM STOC, pages 118–126, 1983.

[40] S. Toda. PP is as hard as the polynomial-time hierarchy.
SIAM J. Comput., 20(5):865–877, 1991.

[41] C. Umans.Approximability and Completeness in the Poly-
nomial Hierarchy. PhD thesis, UC Berkeley, 2000.

[42] L. G. Valiant. The complexity of computing the permanent.
Theoret. Comput. Sci., 8(2):189–201, 1979.

[43] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting
unique solutions.Theoret. Comput. Sci., 47(3):85–93, 1986.

[44] N. Vereshchagin. On the power of PP. InProc. IEEE Com-
plexity, pages 138–143, 1992.

[45] N. V. Vinodchandran. A note on the circuit complexity of
PP. ECCC TR04-056, 2004.

[46] C. B. Wilson. Relativized circuit complexity.J. Comput.
Sys. Sci., 31(2):169–181, 1985.

8. Appendix: A Really Big Crunch

By slightly modifying the construction of Theorem 2, we
can resolve two other open questions of Fortnow.

Theorem 12

(i) There exists an oracle relative to whichPNP = PEXP,
and indeedPNP = PNPPEXP

.

(ii) There exists an oracle relative to which⊕P = PEXP.

Proof. For (i): in the oracle construction of Theorem 2 deal-
ing with all n simultaneously, make the following simple
change. Whenever a rowR gets encoded, record the “cur-
rent time”t as a prefix to that row. In other words, the ora-
cleA will now take two kinds of queries: those of the form
〈R, i, x〉 as before, and those of the form〈R, j〉 for an inte-
gerj ≥ 0. Initially A (R, j) = 0 for allR, j. At any step of
the iterative procedure, lett be the number of encoding steps
that have already occurred. Then call the pair〈i, x〉 “sensi-
tive” to rowR, if there exists an oracleA′ such that (1)A′

disagrees withA only in rowR, (2)Mi,x (A′) 6= Mi,x (A),
and (3) as we range overj, theA′ (R, j)’s encode the binary
expansion oft+ 1.

Clearly the proof of Theorem 2 still goes through with
this change. For let̀ = dlog2 ne. Then as be-
fore, whenever there does not exist a rowR of the form(
r∗1 , . . . , r

∗
`−1, r`

)
to which no〈i, x〉 is sensitive, we can

encode a subset of those rows so as to doubleQ (A). Since

2−2O(n) ≤ Q (A) ≤ 22O(n)

for all A, this process will halt
after at most2O(n) steps, meaning thatt will never require
more thanO (n) bits to represent. Indeed, this is true even
if we are dealing withPTIME (2n) machines, rather than
PTIME

(
nlog n

)
machines.

Now consider aPTIMEA (2n) machineMi. We can

simulateMi in DTIME
(
n2

)NPA

, as follows. Given an
input x ∈ {0, 1}n, first find the unique rowR =(
r1, . . . , rdlog2 ne

)
for which t is maximal—in other words,

the last such row to have been encoded. This requiresO (n)
adaptive queries to theNP oracle, each of sizeO (n). Then
outputA (R, i, x).

It follows thatPE ⊆ DTIME
(
n2

)NP
relative toA, and

(by padding) thatPEXP = PNP. Indeed, once thePNP

machine finds ther`’s, it can use them to decide an arbitrary
language inPNPPEXP

, which is whyPNP = PNPPEXP

as well.
For (ii), the change to Theorem 2 is even simpler. When-

ever we encode a rowR = (r1, . . . , r`), instead of setting
At (R, i, x) := Mi,x (At−1) for all i, x, we now set

At (R, i, x) := Mi,x (At−1) ⊕
⊕

R′ 6=R

At (R′, i, x) ,

14

where the sum mod2 ranges over allR′ = (r′1, . . . , r
′
`)

other thanR itself. Then when we are done, by assumption
A will satisfy

Mi,x (A) =
⊕

R=(r1,...,r`)

A (R, i, x)

for all n ≤ 2`, i ∈ {1, . . . , n}, andx ∈ {0, 1}n. So
to simulate aPE machineMi on inputx, a ⊕DTIME (n)
machine just needs to return the above sum. Hence
⊕DTIMEA (n) = PEA, and⊕PA = PEXPA by padding.

9. Appendix: Perceptrons

Perceptrons have played an important role in AI and
complexity theory since the 1960’s [28]. For our purposes,
a perceptron is a depth-2 circuit, which consists of a thresh-
old of AND’s of negated or non-negated literals. Thesize
of the perceptron is the number of AND gates, while the
order is the maximum fan-in of any AND gate. Suppose a
perceptron has sizes, and for alli ∈ {1, . . . , s}, letzi be the
output of theith AND gate. Then the perceptron accepts if
and only if

c1z1 + · · · + cszs ≥ 0,

for some integersc1, . . . , cs called theweights. Given a
perceptron with sizes and weights in{−w, . . . , w}, clearly
there exists an equivalent perceptron with sizews and
weights in{−1, 1}. For simplicity, from now on we as-
sume that all weights belong to{−1, 1}.

Our concern here is with a particular problem called
ODDMAXBIT. Given anN -bit stringX = x1 . . . xN , and
promised that there exists ani such thatxi = 1, let i∗ be
the maximum suchi. Then the ODDMAXBIT problem is
to computei∗ (mod 2)—that is, to decide whetheri∗ is odd
or even. The idea behind this problem is to model canoni-
calPNP-complete problems [24], such as “Given a Boolean
formulaϕ, does the lexicographically last satisfying assign-
ment toϕ end in a0 or a1?”

It is not hard to see that ODDMAXBIT can be solved
by a perceptron of sizedN/2e and orderdN/2e, or by a
perceptron of size2N+1 − 1 and order1. On the other
hand, call a perceptron “small” if it has size2No(1)

and order
No(1). Then Beigel [8] showed the following:

Theorem 13 (Beigel [8]) No small perceptron can solve
ODDMAXBIT.

Now imagine we havek perceptronsM1, . . . ,Mk, to-
gether withk ODDMAXBIT instancesX1, . . . , Xk, each
of sizeN . Also, suppose that eachMj is trying to solve the
corresponding instanceXj , but can access bits fromanyof
thek instances. ClearlyMj will still be wrong for some

values ofXj . But can the perceptrons at least conspire so
that they are never all wrongsimultaneously? Formally, let
us say that the “problem set”X1, . . . , Xk defeatsthe per-
ceptronsM1, . . . ,Mk, if Mj outputs an incorrect answer
to Xj for everyj ∈ {1, . . . , k}. Then we can show the
following generalization of Theorem 13.

Theorem 14 For anyk = No(1) small perceptrons, there
exists a problem set that defeats them.

Proof. Follows from simple modifications to the proof of
Theorem 2. We can interpret each column of the oracleA
as an ODDMAXBIT instance, and each row as an indexi ∈
{1, . . . , N}. We can also interpret anyPTIMEA (T (n))
machine as a perceptron over the bits ofA, with size at most
2T (n) and order at mostT (n). Let us takeA to havek
columns andN rows, and letA (i, j) be the bit ofA in
the ith row andjth column. Also, letM1, . . . ,Mk be a
collection ofk perceptrons, each with size at most2T and
order at mostT whereT = No(1). ThenMj (A) is the
output ofMj (either0 or 1) givenA.

To create an oracleA that defeatsM1, . . . ,Mk, we use
the iterative procedure from Theorem 2 (the one for a par-
ticular value ofn), but with two changes. First, we say
thatMj is sensitive to rowi, if thereexistsa change to row
i that would causeMj to change its output. To “encode”
row i then means to make any such change. Second, we no
longer reuse rows from previous iterations, but instead pro-
ceed steadily downwards, using a fresh block ofΘ

(
k3T T

)

rows for each iteration. This ensures that when the proce-
dure halts, we obtain a rowi∗ such that (i) none of thek
perceptrons are sensitive to any change to rowi∗, and (ii)
no row belowi∗ has yet been modified (i.e.A (i, j) = 0 for
all i > i∗ and allj).

Indeed, we can easily obtain two adjacent rowsi∗ and
i∗ + 1 that both satisfy these properties, withi∗ even and
i∗ + 1 odd. We can then defeatM1, . . . ,Mk as fol-
lows: for all j ∈ {1, . . . , k}, setA (i∗, j) := Mj (A) and
A (i∗ + 1, j) := 1 − Mj (A). This ensures that thejth

ODDMAXBIT instance has the answer1 if Mj outputs0,
and0 if Mj outputs1.

All that remains is to show that the procedure halts be-
fore running out of rows. Define the polynomialQ as in
Theorem 2. One can check thatdeg (Q) = O

(
kT 2

)
, and

that2−O(kT) ≤ Q (A) ≤ 2O(kT 2) for all A. It follows that
Q can double at mostO

(
kT 2

)
times, and hence that there

can be at mostO
(
kT 2

)
iterations. Also, within each itera-

tion, we want there to exist a perceptronMj that is sensitive
to more thandeg (Q)

2
= O

(
k2T 4

)
rows, which means that

we wantΘ
(
k3T 4

)
rows per iteration. So the total number

of rows we need is

O
(
kT 2 · k3T 4

)
= O

(
k4T 6

)
= No(1),

which is less thanN for sufficiently largeN .

15

