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Abstract for which we can prove even a superlinear lower bound. Yet
whether this lament is justified depends on what we mean
Theoretical computer scientists have been debating theby “explicit.” For in 1982, Kannan [20] did show that for
role of oracles since the 1970’s. This paper illustrateshbot every constant, there exists a language i, (the second
that oracles can give us nontrivial insights about the bar- level of the polynomial hierarchy) that does not have cir-
rier problems in circuit complexity, and that they need not cuits of sizen*. His proof used the oldest trick in the book:
prevent us from trying to solve those problems. diagonalization, defined broadly as any method for simulat-
First, we give an oracle relative to whidPP has linear- ing all machines in one class by a single machine in another.
sized circuits, by proving a new lower bound for perceptrons In some sense, diagonalization is still the only method we
and low-degree threshold polynomials. This oracle settles know that zeroes in on a “non-natural” property of the func-
a longstanding open question, and generalizes earlier re- tion being lower-bounded (loosely speaking, a property tha
sults due to Beigel and to Buhrman, Fortnow, and Thierauf. does not hold of a random function), and thereby escapes
More importantly, it implies the first provably nonrela@vi ~ the jaws of Razborov and Rudich [32].

ing separation of “traditional” complexity classes, as op- But can we generalize Kannan's theorem to other com-
posed to interactive proof classes suchVii® andMAgxp. plexity classes? A decade ago, Bshouty et al. [9] discovered
For Vinodchandran showed, by a nonrelativizing argument, an algorithm to learn Boolean circuits #PPNF (that is,

that PP does not have circuits of size® for any fixedk. probabilistic polynomial time witiNP oracle). As shown

We present an alternative proof of this fact, which shows by Kobler and Watanabe [23], the existence of this algo-
that PP does not even have quantum circuits of siZavith rithm implies thatZPP"" itself cannot have circuits of size
quantum advice. To our knowledge, this is the first nontriv- n* for anyk.*

ial lower bound on quantum circuit size. So our task as lowerboundsmen and lowerboundswomen

Second, we study a beautiful algorithm of Bshouty et al. seems straightforward: namely, to find increasingly pow-
for learning Boolean circuits iZ PP"". We show thatthe  erful algorithms for learning Boolean circuits, which can
NP queries in this algorithm cannot be parallelized by any then be turned around to yield increasingly powerful circui
relativizing technique, by giving an oracle relative toafii  Jower bounds. But when we try to do this, we quickly run
zPP\" and everBPP|" have linear-size circuits. Onthe into the brick wall of relativization. Just as Baker, Gill,
other hand, we also show that thé> queries could be par-  and Solovay [7] gave a relativized world whefe= NP,
allelized ifP = NP. Thus, classes such Z@PHP inhabita so Wilson [46] gave relativized worlds whelk and pNP
“twilight zone,” where we need to distinguish between rela- have linear-size circuits. Since the results of Kannan [20]
tivizing and black-box techniques. Our results on this sub- and Bshouty et al. [9] relativize, this suggests that nel-tec
ject have implications for computational learning theosy a  niques will be needed to make further progress.
well as for the circuit minimization problem. Yet attitudes toward relativization vary greatly withinrou

community. Some computer scientists ridicule oracle re-
sults as elaborate formalizations of the obvious—apphrent
1. Introduction believing that (1) there exist relativized worlds wheret jus

. 1For Bshouty et al.'s algorithm implies the following impeawment to
It is often lamented that, half a century after Shan- the celebrated Karp-Lipton theorem [21]:NfP C P/poly thenPH col-

non’s insight [36] that almost all Boolean functions reguir  |apses tozPPNP. There are then two cases: NP ¢ P/poly, then

exponential-size circuits, there is still no explicit ftien ~ certainlyZPP"" ¢ P /poly as well and we are done. On the other hand,
if NP C P/poly, thenZPPN? = PH, but we already know from Kan-
*Email: scott@scottaaronson.com. Most of this work was dehnite nan’s theorem tha®H does not have circuits of sizé®. Indeed, we can
the author was a postdoc at the Institute for Advanced Stud®yinceton, repeat this argument for the cleS, which Cai [12] showed is contained
supported by an NSF grant. in ZPPN\P,



about anything is true, (2) the creation of such worldsisa We can state our result alternatively in terms pefr-
routine exercise, (3) the only conjectures ruled out bylerac ceptrong[28], also known as threshold-of-AND circuits or
results are trivially false ones, which no serious research polynomial threshold functions. Call a perceptron “small”
would waste time trying to prove, and (4) nonrelativizing if it has size2V"""”, order N°), and weights in{—1,1}.
results such atP = PSPACE [35] render oracles irrele-  Also, given anN-bit stringz; . .. 2, recall that the ODD-
vant anyway. At the other extreme, some computer scien-MAXBIT problem is to decide whether the maximuin
tists see oracle results not as a spur to create nonrelaiviz - such thatz; = 1 is even or odd, promised that such @an
techniques or as a guide to where such techniques might bexists. Then Beigel [8] showed that no small perceptron can
needed, but as an excuse to abandon hope. solve ODDMAXBIT. What we show is a strong general-
This paper will offer new counterexamples to both of ization of Beigel's theorem: for any = N°(1) small per-
these views, in the context of circuit lower bounds. We ceptrons, there exists a “problem set” consisting @DD-
focus on two related topics: first, the classical and quan- MAXBIT instances, such that for every the j** percep-
tum circuit complexity ofPP; and second, the learnability  tron will get the;** problem wrong even if it can examine

of Boolean circuits using parall&lP queries. the whole problem set. Previously this had been open even
fork = 2.
1.1. On PP and Quantum Circuits But the real motivation for our result is that in the un-

relativized world,PP is knownnot to have linear-size cir-

i . _ cuits. Indeed, Vinodchandran [45] showed that for every
_ InSection 2, we give an oracle relative to whieR has 1 "o exists a language RP that does not have circuits
linear-size circuits. Her@P is the class of languages ac- ot gjz6 ;4. putting our result together with Vinodchan-
cepted by a nondeterministic polynomial-time Turing ma- 55 \we obtain what appears to be the first nonrelatigizin
chine that accepts if and only if the majority of its paths gehaation that does not involve artificial classes or efss
do.  Our construction also yields an oracle relative 10 jefined using interactive proofs. There have been nonrela-
which PEXP (the exponential-ime version d?P) has  i;ing separations in the past, but most of them have fol-

i i i i i P _ —
po[ynomlaI-S|ze circuts, e_md indedd’™ = &P = PEXP. lowed easily from the collapse of interactive proof classes
This settles several questions that were open for yeans, for example,NP  MIP from MIP — NEXP [6], and

subsumes at least four previous results: that of Beigel [8] |p ¢ SIZE (n*) from IP = PSPACE [35]. The one excep-

gimi)ng an oracle re!ativeNt;) WhiCﬁN_P ¢ PP (since clearly 5 was the result of Buhrman, Fortnow, and Thierauf [11]
P - PEXP |mpl|esP_ z PP_)’ that of Aspnes _et al. that MAexp ¢ P/poly, whereMAgxp is the exponential-
[5] giving an oracle relative to whicRP 7 PSPACE (since e version ofMA. However, the clasblAexp exists for

PSPACE does not have linear-size circuits relative to any the specific purpose of not being containecifpoly, and
oracle)? that of Buhrman, Fortnow, and Thierauf [11] gV- 6 resulting separation does not scale down bel@XP,

ing an oracle relative to whichlAexp C P/poly; and that 4, show (for example) thalA does not have linear-size
of Buhrman et al. [10] giving an oracle relative to which circuits.

NP _

P = NEXP. ) ) ) , The actual lower bound of Vinodchandran [45] follows
Note that our result is nearly optimal, since Toda's the- o,y from three well-known results: the LFKN interac-

orem [40] yields a relativizing proof thel'™ and even 0 nrot0col for the permanent [26], Toda's theorem [40],

BP - PP do not have circuits of any fixed polynomial size. and Kannan's theorem [26]. In Section 3, we present an
Our proof first represents eaé¢tP machine by a low-  4jternative, more self-contained proof, which does not go

degree multilinear polynomial, whose variables are the bit through Toda’s theorem. As a bonus, our proof also shows

of the oracle string. It then combines these polynomials {hat PP does not haveuantumcircuits of sizen® for any

into a single polynomial calle@. The key factis that, if . |ndeed, this remains true even if the quantum circuits

there are no variables left “unmonitored” by the component g, given “quantum advice states” of qubits. One part

polynomials, then we can modify the oracle in a way that of our proof is a “quantum Karp-Lipton theorem,” which

increaseg). Since@ can only increase a finite number

of tlmgs, '} fO”(_)WS that we will _eve”tua”Y win (_)ur war “Note that we do not count separations that depend on a spexific

of attrition” against the polynomials, at which point we can chine model, such as the result of Paul et al. [31] DaUME (n) #

simply write down what each machine does in an unmon- NT;ME(n) for multitape Turing machines. .

itored part of the oracle string. The main novelty of the Suppose by contradiction th&P has circuits of sizen®. Then
fl'p inh bi gh | ial y P#P C P/poly, and thereforeMA = P#P by a result of LFKN

proof lies in how we combine the polynomials to cregte [26] (this is the only part of the proof that fails to relade). Now

MA C 5 C P#P by Toda's theorem [40], anlA C PP C P#P

2Lance Fortnow, personal communication. by an observation of Vereshchagin [44]. Therefﬁ’@ = PP as well.
3Admittedly, our result does not imply th&P # PSPACE relative to But we already know from Kannan's theorem [20] tA2 does not have
arandomoracle with probabilityl. circuits of sizenk.



states that iPP has polynomial-size quantum circuits, then now all we have to do is sample a polynomial number of cir-

the “counting hierarchy” (consisting &P, PPPP, PPPP™ |
and so on) collapses tQMA, the quantum analogue of
NP.

cuits fromC*, then generate a new circuit that outputs the

majority answer among the sampled circuits. The technical
By analogy to the classical nonrelativizing separa- Partis to express the concepts “at leasya fraction” and

tion of Buhrman, Fortnow, and Thierauf [11], we also show “a@ uniform random sample” iNP. For that, Bshouty et al.

thatQMAgxp, the exponential-time version @MA, is not
contained irBQP/qpoly. Indeed QMAgxp requires quan-

use pairwise-independent hash functions.
When we examine Bshouty et al’s algorithm, it is far

tum circuits of at least “half-exponential” size, meaning from obvious that adaptivllP queries are necessary. For

size f (n) where f (f (n)) grows exponentiall§. So far

why can’t we simply ask the following question in parallel,

as we know, the only previous lower bounds for arbitrary forall 7' <log|C|?

guantum circuits were due to Nishimura and Yamakami

[30], who showed (among other things) the&ESPACE ¢
BQP/qgpoly.

1.2. On Parallel NP Queries and Black-Box
Learning

In a second part of the paper, we study the algorithm of

Bshouty et al. [9] for learning Boolean circuits.

Boolean functionf that is promised to have a polynomial-

size circuit, this algorithnfindssuch a circuit in the class

“Do there exist inputszy, ..., xp, such that at
least al /3 fraction of circuits inC fail on z1, and
among the circuits that succeed on at least a
1/3 fraction fail onz2, and among the circuits
that succeed on; andz,, at least a /3 fraction
fail on x3, ... and so on up te?"

By making clever use of hashing and approximate count-
Given a ing, perhaps we could control the number of circuits that

succeed oy, ...,z forallt < T. Inthat case, by find-

ing the largest” such that the above question returns a pos-

7PPVP’- that is, zero-error probabilistic polynomial time itive answer, and then applying the Valiant-Vazirani reduc

with NP oracle with oracle forf. One of the most basic
guestions about this algorithm is whether tRE queries

can be parallelized. For if so, then we immediately obtain a 4€€d, when we began studying the topic, it seemed entirely

new circuit lower bound: namely th@PP)" (that is,ZPP
with paralleINP queries) does not have circuits of sizé
for any k.7 Conceptually, this would not be so far from
showing thal\P itself does not have circuits of size’.2
LetC be the set of circuits of size*. In Bshouty et al.’s
algorithm, we repeatedly ask thd> oracle to find us an in-
putx; such that, among the circuits ¢hthat succeed on all
previous inputs:y, ..., z;_1, at least a /3 fraction fail on

tion [43] and other standard techniques, we would achieve

the desired parallelization of Bshouty et al.’s algorithin-

likely to us that this was possible.

Nevertheless, in Section 4 we give an oracle relative to

which ZPP"\‘IP and evenBPP"\‘IP have linear-size circuits.

The overall strategy of our oracle construction is the same
The existence of

as for PP, but the details are different.
this oracle means that any parallelization of Bshouty &t al.
algorithm would need to use nonrelativizing technigfies.

9As a side note, researchers in learning theory often alloguita-

;. Since each such input reduces the number of circuitslence queries” to the target functioh ~Given a circuitC', an equiva-

“still in the running” by at least a constant factor, this pro
cess can continue for at mdsk |C| steps. Furthermore,
when it ends, by assumption we have a Gewf circuits
such that for all inputg:;, a uniform random circuit drawn
from C* will succeed one with probability at leasg/3. So

6See Miltersen, Vinodchandran, and Watanabe [27] for a dision of
this concept.

“This follows from an argument similar to that used by Kohied
Watanabe [23] to show th@PPNP does not have circuits of size®. In

particular, suppose we could learn a circuit foin ZPPHPf. Then there
are two cases: INP ¢ P/poly, then certainlyZPPNP ¢ P/poly and we
are done. On the other hand NP C P/poly, then aZPP)" machine

could learn a polynomial-size circuit f&t AT, and then use that circuit to
decide any language iRH. So againZPP"\‘“’ would not have circuits of

izank
sizen”.

8For as observed by Shaltiel and Umans [34] and Fortnow anaidi
[15] among others, there is an intimate connection bet\MmenIassel?"\“P

andNP/log. Furthermore, any circuit lower bound &P /log implies

the same lower bound fdtP, since we can tack the advice onto the input.

lence query returns ‘YES' i’ computesf, and otherwise returns any
z € {0,1}" such thatC (z) # f(z). When we said that any paral-
lelization of Bshouty et al.’s algorithm would need to be reativizing,
it might be objected that we ignored the possibility of pataquivalence

. . . . NPS
queries. However, we caimulatean equivalence query tbin ZPPH ,
by using the following simple trick. First we choose pairvisdependent
hash functiongu1, ..., hyn : {0,1}" — {0,1}. Next we make the fol-
lowing queries in parallel to th&P/ oracle:

(1) Forallt € {0,...,n}: “Does there exist am € {0,1}" such that
C (z) # f (z) andhy (z) = --- = h¢ (z) = 0?”

(2) Forallt € {0,...,n}: “Do there exist distinctr, z’ satisfying the
above conditions?”

(3) Forallt € {0,...,n} andi € {0,...,n}: “Does there exist an
r = x1 ...z, Satisfying the above conditions such that= 1?"

Provided there exists @for which query (1) returns ‘YES' and query
(2) returns ‘NO’, we can then read a particulasuch thatC (z) # f (z)
off the answers to query (3). Finally, by repeating all obteéveral times
in parallel, we can amplify the probability of success. Nibtat, if there
exists anc such thatC' (x) # f () but the algorithm fails to find such an
z, then the algorithm knows this and can output ‘FAILURE.’ ldenthis
is indeed aZPP algorithm.



Yet even here, the situation is subtler than one might
imagine. To explain why, we need to distinguish carefully
between relativizing and black-box algorithms. An algo-
rithm for learning Boolean circuits iglativizing if, when
given access to an oracke the algorithm can learn circuits
that are also given access #o But a nonrelativizing al-
gorithm can still beblack-box in the sense that it learns
about the target functiori only by querying it, and does
not exploit any succinct description ¢f(for example, that
f (x) = lifand only if z encodes a satisfiable Boolean for-
mula). Bshouty et al.’s algorithm is both relativizimagd
black-box. What our oracle construction shows is that no
relativizing algorithm can learn Boolean circuitsBRP|}".

But what about a nonrelativizing yet still black-box algo-
rithm?

Surprisingly, we show in Section 5 thatif = NP, then
thereis a black-box algorithm to learn Boolean circuits even
in Pi\“’ (as well as inNP/log). Despite the outlandishness
of the premise, this theorem is not trivial, and requiresynan
of the same techniques originally used by Bshouty et al. [9].
One way to interpret the theorem is that we cannot show
theimpossibilityof black-box learning irPh‘P, without also
showing thatP £ NP. By contrast, it is easy to show that
black-box learning is impossible NP, regardless of what
computational assumptions we maKe.

These results provide a new perspective on one of thef. Then if the learner is ZPP"P’

oldest problems in computer science, tireuit minimiza-
tion problem given a Boolean circuif’, does there exist an
equivalent circuit of size at most? Certainly this prob-
lem is NP-hard and inX%. Also, by using Bshouty et
al.'s algorithm, we can find a circuit whose size is within
an O (n/logn) factor of minimal inZPP"P.  Yet after
fifty years of research, almost nothing else is known about
the complexity of this problem. For example, is3t-
complete? Can we approximate the minimum circuit size
in ZPP)F?

What our techniques let us say is the following. First,
there exists an oracld such that minimizing circuits with
oracle access tal is not even approximable iBPP"\”’A.
Indeed, any probabilistic algorithm to distinguish theesas
“C'is minimal” and “there exists an equivalent circuit {Gr
of size at moss,” using o (s) adaptiveNP queries, would
have to use nonrelativizing techniques. Intuitively, the
reason is as follows. Given a circuit that computes a
Boolean functionf : {0,1}" — {0,1}, there might be a
“hidden region” of the oracle string that contains the truth
table of f. In that case, even i’ is minimal in the unrel-
ativized world, relative tod there might be a much smaller

10Note that by “learn,” we always mean “learn exactly using rhem
ship queries” rather than “PAC-learn.” B = NP, thenapproximate
learning of Boolean circuits can clearly be done evefin For we sim-
ply query the target functiotf at a polynomial number of locations drawn
from the distribution of interest, then find a small circiiiat agrees with
f on as many of those locations as possible.

circuit for f—one that simply encodes the location of that
hidden region. However, our results will imply that, if the
hidden region takes >> log n bits to specify, then angPP
algorithm needs) (s) adaptiveNP* queries (0R2(*) non-
adaptiveNP* queries) to decide whether or not it exists. In
particular, this problem is not solvable IBPPF‘PA.

If one wished, one could take our oracle result as evi-
dence that the true complexity of approximate circuit min-
imization should bePNP, rather tharPN?. However, the
results of Section 5 suggest that it will be difficult to show
(for example) that approximate circuit minimizatiorPi8P-
hard. For any hardness proof will have to fight a “two-
front war"—firstly against algorithms that exploit the inte
nal structure of a circuif’, and secondly against black-box
algorithms (that is, algorithms that tre@t as an oracle)!
The reason is that, P = NP, then theres a black-box
circuit minimization algorithm irPh'P.

From a learning theory perspective, perhaps what is most
interesting about our results is that they show a clear trade
off between two complexities: the complexity of the learner
who queries the target function, and the complexity of
the resulting computational problem that the learner has to
solve. In particular, suppose a learner is given oraclesscce
to a Boolean functiory : {0,1}" — {0,1} with polyno-
mial circuit complexity, and wants to output a circuitfor
machine, the computa-
tional problem of finding”' is easy, as shown by Bshouty
etal. [9]. If the learneris a‘iPPh'Pf machine, then the
problem is of findingC' is probably hard, as indicated by
our results. If the learner is aP’/ machine, then there is
no computational problem whose solution would suffice to
find C.

1.3. Outlook

Figure 1 shows the “battle map” for nonrelativizing cir-
cuit lower bounds that emerges from this paper. The figure
displays not one but two barriers: a “relativization battie
below which any Karp-Lipton collapse or superlinear cir-
cuit size lower bound will need to use nonrelativizing tech-
nigues; and a “black-box barrier,” below which black-box
learning even of unrelativized circuits is provably impess
ble. At least for the thirteen complexity classes shown in
the figure, we now know exactly where to draw these two
barriers—something that would have been less than obvious
a priori (at least to us!).

To switch metaphors, we can think of the barriers as rep-
resenting “phase transitions” in the behavior of compiexit
classes. Below the black-box barrier, we cannot learn cir-
cuits relative to any oracld. Between the relativization
and black-box barriers, we can learn Boolean circuits rel-
ative tosomeoraclesA but not others. For example, we
can learn relative to RSPACE oracle, since it collapsd3



A
Successful

nonrelativizing

incursion

athv,f‘

Az

Figure 1. “Battle map” of some complex-
ity classes between NP and BP - PP, in light
of this paper's results. Classes that coin-
cide under a plausible derandomization as-
sumption are grouped together with dashed
ovals. Below the relativization barrier, we
must use nonrelativizing techniques to show
any Karp-Lipton collapse or superlinear cir-
cuit size lower bound. Below the black-
box barrier, black-box learning of Boolean
circuits is provably impossible.

andNP, but cannot learn relative to the oracles in this paper,
which caus@®P andBPP|" to have linear-size circuits. Fi-
nally, above the relativization barrier, we can learn Baale
circuits relative toeveryoracle A.'* As we move upward
from the black-box barrier toward the relativization barri

we can notice “steam bubbles” starting to form, as the as-
sumptions needed for black-box learning shift from implau-
sible P = NP), to plausible (the standard derandomization
assumptions that collapge'” with ZPPNP and PP with

BP - PP), and finally to no assumptions at all.

To switch metaphors again, the oracle results have laid

before us a rich and detailed landscape, which a nonrel-

ativizing Lewis-and-Clark expedition might someday visit
more fully.

IThere is one important caveat: $§, we currently only know how to
learn self-reducible functions, such as the characteratictions ofNP-
complete problems. For if the circuits from the two compgtprovers
disagree with each other, then we need to know which one ¢t tru

2. The Oracle for PP

In this section we construct an oracle relative to which
PP has linear-size circuits. To do so, we first need a lemma
about multilinear polynomials.

Lemmal Letp : {0,1}" — R be a real multilinear
polynomial of degree at mosyN /7, and suppose that
p(X)| < 2|p(0N)] forall X € {0,1}" with Hamming
weight1. Then there exists aX < {0,1}" such that
p (X)| = 61p(0™)].

Lemma 1 follows immediately from the well-known
lower bound of Nisan and Szegedy [29] on the approximate
degree of the OR function, which in turn built on earlier re-
sults of Ehlich and Zeller [13] and Rivlin and Cheney [33].

We can now prove the main result.

Theorem 2 There exists an oracle relative to whiB® has
linear-size circuits.

Proof. For simplicity, we first give an oracle that works
for a specific value ofn, and then generalize to all
simultaneously. LetM;, M,,... be an enumeration of
PTIME (n'°&™) machines. Then it suffices to simulate
My, ..., M,, for in that case every/; will be simulated
on all but finitely manyn.

The oracle A will consist of 2°* “rows” and n2"
“columns,” with each row labeled by a strimge {0, 1}5”,
and each column labeled by a pdjt,z) wherei ¢
{1,...,n} andz € {0,1}". Then given a triplgr,i, z)
as input,A will return the bitA (r, 4, z).

We will constructA via an iterative procedure. Initially
Ais empty (that is,A (r,i,z) = 0 for all r,4,x). Let A,
be the state ofl after thet'" iteration. Also, letM; .. (A;)
be a Boolean function that equdlsf M; accepts on input
x € {0,1}" and oracle string!;, and0 otherwise. Then to
encodea rowr means to sel; (r,4,x) := M, , (A;—1) for
all i, z. Ata high level, our entire procedure will consist of
repeating the following two steps, for al> 1:

(1) Choose a set of rows C {0,1}°" of 4;_;.

(2) Encode each € S, and letA, be the result.

The problem, of course, is that each time we encode a
rowr, theM; , (A;)'s mightchange as aresult. Sowe need
to show that, by carefully implementing step (1), we can
guarantee that the following condition holds after a finite
number of steps.

(C) There exists an such that4; (r,i,z) = M, , (A;) for
all i, x.



If (C) is satisfied, then clearly/y, ..., M, will have
linear-size circuits relative td,, since we can just hardwire
r into the circuits.

We will use the following fact, which is immediate from
the definition ofPP. For alli, z, there exists a multilinear
polynomialp; , (A), whose variables are the bits 4f such
that:

(i) If M; . (A) = 1thenp, . (A) > 1.
(i) If M; . (A) =0thenp;, (A) < —1.
(iii) p; . has degree at most°s™.

(V) [pie (A)] < 27" forall A,

Now for all integerd) < k < n'°e™ andb € {0,1}, let

- 2
Giopr (A) =22F73 ¢ (Qk + (—1)%0,-,;1c (A)) )

Then we will use the following polynomial as a progress

measure:

1
nlogn

Q(A4) = H H H Qiz,bk (A) -

1,2 be{0,1} k=0
Notice that

deg (Q) <n2™-2- (n'8™ +1) - 2deg (p; ) = 2" oM.

logn

Sincel/8 < qizpx (A) < 5-227"" forall i,x,b, k, we

also have
Q(A) < (5 g2 n)mn‘z(nmg ) garbe
n logn
1 n2 ~2~(n +1) ototn
Q(A)z(g) — 92"t

forall A. The key claim is the following.

At any given iteration, suppose there ismsuch that, by
encoding-, we can satisfy conditior€j. Then there exists
a setS C {0,1}"" such that, by encoding eachc S, we
can increase) (A;) by at least a factor o® (that is, ensure
that@ (A:) > 2Q (A¢—1)).

The above claim readily implies that) can be satisfied

after a finite number of steps. For, by what was said previ-

ously,@ (A;) can double at mot*+°(™) times—and once

Q (A:) can no longer double, by assumption we can encode

an r that satisfies). (As a side note, “running out of

rows” is not an issue here, since we can re-encode rows thaff degree at mostleg (Q) < v/237/7.

were encoded in previous iterations.)

We now prove the claim. Call the pdfi, ) sensitiveto
row r if encodingr would change the value off; , (A). If
there exists a row to which no(i, z) is sensitive, then we

simply encode that row and are done. Suppose, on the other

hand, that for every there exists arfi, ) that is sensitive
to r.
(i,x) that is sensitive to at leag6”/ (n2") > 23" rows.
Fix that (i, x), and letry, ..., ros. be the firs23" rows to
which (i, z) is sensitive. Also, given a binary strifg =
Y1...Yesn, letS (V) be the set of alt-; such thaty; = 1,
and letA(Y) be the oracle obtained by starting frafnand
then encoding eachy € S (Y).

Setb equal toM; , (A), and set equal to the least inte-
ger such thae* > |p; . (4)|. Then we will think ofQ (A)
as the product of two polynomials(A) andv (A), where
q(A) =qizpr (A),andv (A) = Q (A) /q (A) is the prod-
uct of all other terms irf) (4). Notice thaty (A) > 0 and
v (A) > 0forall A. Also,

0(4) =20 4 (24 (<1 i ()

< 22k—3 + (2k _ 2k—1)2

3 .92k

3 .

Here the second line follows sinee® < (—1)bpi,z (4) <
—2k=1 On the other hand, |&t be any23™-bit string with
Hamming weightl, so thatA(Y) is obtained fromA by
encoding a single row to whicfi, ) is sensitive. Then we
have(—1)" p;. (A®)) > 0, and therefore

q (A(Y)) _ 923 <2k 4 (1) pia (A(Y)))Q
> 92k=3 4 (2k)2

9 92k

8

> 3q(A).

There are now two cases. The first is that there exists a

Y with Hamming weightl such that (AY)) > 2v (4).
In this case

o) (Am) —q (Am) v (Am)
>34(4) - o (4)
=2q¢(A)v(4)
=2Q (A).
So we simply sef = S (V) and are done.

The second case is thatf AY)) < 2v(A) for all Y

with Hamming weightl. In this case, we can consideas
3n
a real multilinear polynomial in the bits &f € {0, 1}2 ,
Then Lemma
3n
1 implies that there exists & € {0,1}> such that
lo (AD)| = v (AY)) > 6v(A). Furthermore, for all
Y we have
q (A(Y))

q(A)

22k73 1

- 73 — a5
392 3

Then by a counting argument, there exists a single



Hence Let us make three remarks about Theorem 2. First, if we
care about constants, it is clear that the advican be re-

Q (A(Y)) =q (A(Y)) v (A(Y)) duced t3n+o (n) bits for a specifia:, or 12n-+o (n) for all
1 n simultaneously. Presumably these bounds are not tight.
> 34(A4)-6v(4) Second, one can easily extend Theorem 2 to give an oracle

5 relative to whichPE = PTIME (2°(™) has linear-size cir-
cuits, and henc®EXP C P/poly by a padding argument.
=2Q(4). Third, Han, Hemaspaandra, and Thierauf [18] showed that
MA C BPPpath C PP. Soin addition to implying the result
of Buhrman, Fortnow, and Thierauf thistA has linear-size
circuits relative to an oracle, Theorem 2 also yields the new
result thatBPP .., has linear-size circuits relative to an or-

So again we can sét= S (Y). This completes the claim.
All that remains is to handIBTIME (n'°¢™) machines

that could queryany bit of the oracle string, rather than

just the bits corresponding to a specific The oracleA

. . . ; acle.
will now take as Input dist of stringsR = (r1,...,r), In Appendices 8 and 9, we will explain how the tech-
with o € {0,1}°% for all ¢, in addition toi,=. Call  niques of Theorem 2 can be used to prove several other
R an (-secretif A(R,i,z) = M;,(A) foralln < 2, results. In particular, in Appendix 8 we give relativized
i € {1,...,n}, andz € {0,1}". Then we will try to  worlds wherePNP = PEXP and®P = PEXP, and in Ap-
satisfy the following. pendix 9 we generalize the result of Beigel [8] that no small
perceptron solves the ODDMAXBIT problem.
(C") There exists an infinite list of strings, 3, ..., , such
thatR; := (r],...,r;) is an-secret for al¥ > 1.

3. Quantum Circuit Lower Bounds

If (C') is satisfied, then clearly eadl; can be simu- _ _ o
lated by linear-size circuits. For all > 4, simply find In this section we show, by a nonrelativizing argument,
the smallest/ such that2‘ > n, then hardwireR; into that PP does not have circuits of size®, not even quan-
the circuit for sizen. Sincel < 2n, this requires at most  tum circuits with quantum advice. We first show tfrat

5 (21 RS 24) < 20n bits. does not have quantum circuits of siz& by a direct diag-
To construct an oraclel that Satisfies((’), we iterate onalization argument. Our argument will use the fOIIOWing
overall/ > 1. Suppose by induction that; , is an  lemma of Aaronson [1].

¢ — 1)-secret; then we want to ensure tligtis an/-secret
( ) eyt Lemma 3 (“Almost As Good As New Lemma”)

5-2
for somer, € {0,1}" . To do so, we use a procedure g,pnose a two-outcome measurement of a mixed quantum
essentially identical to the one for a specific The only state p yields outcome with probability 1 — . Then

differ%gce is this: previously, all we needed was a row after the measurement, we can recover a sfaseich that
{0,1}°" such that nqi, z) pair was sensitive to particu- 15 = pll. < VE
tr — .

lar change to- (hamely, settingd; (r, i, z) := M, 5 (Ai—1)
for all 4,z). But in the general case, the “row” labeled (Recall that the trace distandg — o||,, between two

by R = (r1,...,7¢) consists of all tripleSR’,i,z) such  mixed state ando is the maximum bias with which those
thatR' = (ry,...,7¢,7,4,-..,7;,) forsomeL > fand  states can be distinguished via a single measurement. In
T441,---,77. Furthermore, we do not yet know how later particular, trace distance satisfies the triangle inetupli

iterations will affect this “row.” So we should call a pair

(i, z) “sensitive” toR, if there isanyoracle4’ such that (1) ~ Theorem 4 PPP does not have quantum circuits of size
A’ disagrees withA only in row R, and (2)M; , (A") # for any fixedk. Furthermore, this holds even if the circuits
M; . (A). can use quantum advice.

Fortunately, this new notion of sensitivity requires no
significant change to the proof. Suppose that for every row
Rofthe form(ri,...,7;_,,7) there exists ai, z) that is
sensitive toR. Then as before, there exists @h «’) that OF _

Also, letC be the set of all circuits of size*, and letC, C C

. . 14 £ P

is sensitive to atleast™® / (2227 +1 ) > 2% rows of that be the subset of circuits i@ that correctly decide the firgt
form. For each of those rows, fix a Change td? to which inputsl‘h e T Then we define the |angua@€] {0, 1}”
(i',2') is sensitive. We thereby obtain a polynona(A) by the following iterative procedure. First, if at leastfrfl
with the same propertigs as before—in particular, there ex-the circuits inC acceptz;, then setz; ¢ L, and otherwise
ists a stringy” € {0,1}* such tha) (A™)) > 2Q (A). setr; € L. Next, if at least half of the circuits i@, accept
] x9, then setrs ¢ L, and otherwise set; € L. In general,

Proof. For simplicity, let us first explain wh?P” does not
haveclassicalcircuits of sizen*. Fix an input lengttn, and
letxy,...,zon be alexicographic ordering ef-bit strings.



let N = [log, |C’|] + 1. Thenforallt < N, if at least half
of the circuits inC; acceptz;,1, then setx;1 ¢ L, and
otherwise set;, € L. Finally, setr; ¢ Lforallt > N.

It is clear that the resulting languadds in PP?. Given
an inputx,, we just reject ift > N, and otherwise call
the PP oraclet times, to decide ift; € L for eachi ¢
{1,...,t}. Note that, once we know;,...,z;, we can
decide in polynomial time whether a given circuit belongs
to C;, and can therefore decide RP whether the majority
of circuits inC; accept or reject; ;. On the other hand,
our construction guarantees thét, ;| < |C;| /2 forall ¢ <
N. ThereforgCx| < |C| /2Y = 1/2, which means that
Cn is empty, and hence no circuit it correctly decides
Llye+ey LN~

The above argument extends naturally to quantum cir- with probability at leastt — 2~1° for all t.

cuits. LetC be the set of all quantum circuits of sizé,
over a basis of (say) Hadamard and Toffoli gdfes(Note

1/2, then setl (x¢11) := 0, and otherwise sét (x;41) :=
1. Finally, setL (z;) :=0forallt > N.

By a simple extension of the resBQP C PP due to
Adleman, DeMarrais, and Huang [3], Aaronson [2] showed
that polynomial-time quantum computation with postse-
lected measurement can be simulateBin(indeed the two
are equivalent; that i20stBQP = PP). In particular, a
PP machine can simulate the postselected quantum algo-
rithm A; above, and thereby decide whether the final mea-
surement will yield0) or |1) with greater probability, con-
ditioned on all previous measurements having yielded the
correct outcomes. It follows thdt € PPP.

On the other hand, suppose by way of contradiction that
there exists a quantum circuit € C’ that outputsL ()
Then the
probability thatC' succeeds on, ..., zy simultaneously
is at least (say).9, by Lemma 3 together with the trian-

that these circuits need not be bounded-error.) Thentlie firsgle inequality. Hence the probability tha; succeeds on

step is to amplify each circu® € C a polynomial number
times, so thatiC’s initial error probability was at most/3,
then its new error probability is at most (s&y)'°". LetC’
be the resulting set of amplified circuits. Now |ét) be a
uniform superposition over all descriptions of circuit€in
together with an “answer register” that is initially set@:

> 16)10).

cec’

1
1o)== W

For each inputs; € {0,1}", let U, be a unitary transfor-
mation that map$C) |0) to |C) |C (z:)) for eachC € C’,
where|C (z;)) is the output ofC on inputz;. (In general,
|C (x¢)) will be a superposition of0) and|1).) To imple-
mentU;, we simply simulate running’ on z;, and then run
the simulation in reverse to uncompute garbage qubits.
Let N = [log, |C'|] + 2. Also, given an input,, let
L (x¢) =1if 2, € LandL (z;) = 0 otherwise. Fix < N,
and suppose by induction that we have alreadylsgt;)
forall : < ¢t. Then we will use the following quantum
algorithm, calledA;, to setL (z¢41).
Set |¢) == [¢o)
For i:=1to t
Set [y) := U; [v)
Measure the answer register
If the measurenent outcone

is not L(x;), then FAIL
Next 1
Set |¢) := U1 |¢)
Measure t he answer register

Say that A; succeeds if it outputsL (z;) for all
x1,...,x:. Conditionedon A; succeeding, if the final mea-
surement yields the outcome) with probability at least

12ghij [37] showed that this basis is universal. Any finite, ensal set
of gates with rational amplitudes would work equally well.

x1,...,xy IS at least0.9/ |C'|. Yet by construction A4,
succeeds with probability at mosf2?, which is less than
0.9/|C'| whent = N — 1. This yields the desired contra-
diction.

Finally, to incorporate quantum advice of size= n*,
all we need to do is add asrqubit “quantum advice reg-
ister” to |40 ), which U;’s can use when simulating the cir-
cuits. We initialize this advice register to the maximally
mixed state o qubits. The key fact (see [1] for example)
is that, whatever the “true” advice stdt®, we can decom-
pose the maximally mixed state into

1
§Z|¢j><¢j|7
j=1

where |¢1),. .., |¢2s) form an orthonormal basis and
|p1) = |¢). By linearity, we can then track the evolu-
tion of each of thes®® components independently. So
the previous argument goes through as before, if we set
N = [log,|C'|] + s + 2. (Note that we are assuming
the advice states are suitably amplified, which increases th
running time ofA; by at most a polynomial factor.h
Similarly, for all time-constructible functiong (n) <
27, one can show that the claBS IME (f (n))"" does not
have quantum circuits of sizg(n) /n?. So for example,
EPP requires quantum circuits of exponential size.
Having shown a quantum circuit lower bound ft",
we now bootstrap our way down t®P. To do so, we
use the following “quantum Karp-Lipton theorem” (or more
precisely, “quantum LFKN theorem”). Hel&QP /poly is
BQP with polynomial-size classical advicBQP /qpoly is
BQP with polynomial-size quantum advicMA is like
MA but with quantum verifiers and quantum witnesses, and
QCMA is like MA but with quantum verifiers ancassical
witnesses. Also, recall that the counting hierar€hy is



the union ofPP, PPPP, PPPP™ and so on.

Theorem5 If PP C BQP/poly then QCMA PP,
and indeedCH collapses toQCMA. Likewise, ifPP C
BQP/qgpoly thenCH collapses taQMA.

Proof. Let L be a language iftH. It is clear that we
could decideL in quantum polynomial time, if we were
given polynomial-size quantum circuits forP®-complete
language such as MISAT. For Fortnow and Rogers [16]
showed thaBQP is “low” for PP; that is, PPE®" = PP,
So we could use the quantum circuits folBBAT to col-
lapsePPP" to PPEQP = PP to BQP, and similarly for all
higher levels ofCH.

AssumePP C BQP/poly; then clearlyP#P = PPP is
contained inBQP /poly as well. So inQCMA we can do
the following: first guess a bounded-error quantum circuit
C for computing the permanent opaly (n) x poly (n) ma-
trix over a finite fieldF,, for some prime» = © (poly (n)).
(For convenience, hefgly (n) means “a sufficiently large
polynomial depending o.”) Then verify that with1 —

o (1) probability,C works on at least &— 1/ poly (n) frac-
tion of matrices. To do so, simply simulate the interactive
protocol for the permanent due to Lund, Fortnow, Karloff,
and Nisan [26], but witlC' in place of the prover. Next, use

the random self-reducibility of the permanent to generate a

new circuitC’ that, with1 — o (1) probability, is correct on
everypoly (n) x poly (n) matrix overF,. Since EERMA-
NENT is #P-complete over all fields of characteristicZ 2
[42], we can then us€"’ to decide MAISAT instances of
sizepoly (n), and therefore the languadeas well.

The casePP C BQP/gpoly is essentially identical, ex-
cept that inQMA we guess a quantum circuit with quantum

Theorem 7 QCMAgxp ¢ BQP/poly, and QMAgxp ¢
BQP/qgpoly.

Proof. Suppose by contradiction tha@CMAgxp C
BQP/poly. Then clearlyEXP < BQP/poly as well.
Babai, Fortnow, and Lund [6] showed that any language
in EXP has a two-prover interactive protocol where the
provers are inEXP. We can simulate such a proto-
col in QCMA as follows: first guess (suitably amplified)
BQP/poly circuits computing the provers’ strategies. Then
simulate the provers and verifier, and accept if and only
if the verifier accepts. It follows thaEXP = QCMA,
and thereforeQCMA = PPP as well. So by padding,
QCMAgxp = EXPPP. But we know from Theorem 4 that
EXPPP ¢ BQP/poly, which yields the desired contradic-
tion. The proof thaQMAgxp ¢ BQP /qpoly is essentially
identical, except that we guess quantum circuits with quan-
tum advice.m

One can strengthen Theorem 7 to show QIstAgxp re-
quires quantum circuits of half-exponential size. However
in contrast to the case f&*EXP, here the bound does not
scale down tdQMA. Indeed, it turns out that the smallest
f for which we getanysuperlinear circuit size lower bound
for QMATIME (f (n)) is itself half-exponential.

4. The Oracle for BPPh'P

In this section we construct an oracle relative to which
BPP"\‘IP has linear-size circuits.

Theorem 8 There exists an oracle relative to whiBIﬁ’P"\"P
has linear-size circuits.

advice. That quantum advice states cannot be reused indef- _ ) )
initely does not present a problem here: we simply guess aP"00f.  As in Theorem 2, we first give an oracld

boosted circuit, or elspoly (n) copies of the original cir-
cuit. m

By combining Theorems 4 and 5, we immediately obtain
the following.

Corollary 6 PP does not have quantum circuits of size
for any fixedk, not even quantum circuits with quantum
advice.

Proof. Suppose by contradiction thBP had such circuits.
Then certainlyPP C BQP/gpoly, so QMA = PP
PPP = CH by Theorem 5. BuP"? doesnot have such
circuits by Theorem 4, and therefore neither dBés m

More generally, for allf(n) < 2" we find that
PTIME(f (f (n))) requires quantum circuits of size ap-
proximatelyf (n). For examplePEXP requires quantum
circuits of “half-exponential” size.

Finally, we point out a quantum analogue of Buhrman,
Fortnow, and Thierauf’s classical nonrelativizing sefiara
[11].

that works for a specific value af. Let My, Mo, ...
NP

be an enumeration of “syntacti@PTIME (n'°&™) | ma-
chines, where syntactic means not necessarily satisfiimg t
promise. Then it suffices to simulaié, ..., M,,. We as-
sume without loss of generality that only tN® oracle (not
the M;’s themselves) query, and that eacNP call is actu-
ally anNTIME (n) call (so in particular, it involves at most
nlos™ queries toA). Let M, . . (A) be a Boolean function
that equalsl if M; accepts on input € {0,1}", random

stringz € {0,1}""", and oraclet, and0 otherwise. Then
letp; . (A) := EX, [M; . . (A)] be the probability thad/;
acceptse.

The oracleA will consist of2°" rows andn2" columns,
with each row labeled by € {0,1}*", and each col-
umn labeled by ar{i, z) pair wherei € {1,...,n} and
x € {0,1}". We will constructA via an iterative pro-
cedureP. Initially A is empty (that is,A (r,i,2) = 0
for all r,i,z). Let A; be the state ofl after thet'” itera-
tion. Then toencodea rowr means to setl; (r,i,x) :=



round (p; 5 (A¢—1)) for all ¢, 2, whereround (p) = 1 if
p > 1/2 andround (p) = 0if p < 1/2.

Call an(i, =) pairsensitiveto rowr, if encodingr would
changep; , (A) by atleasti /6. ThenP consists entirely of
repeating the following two steps, for=1,2,3.. .

(1) If there exists am to which no(i, z) is sensitive, then
encode and halt.

(2) Otherwise, by a counting argument, there exists a pair

(j,y) thatis sensitive to at leasf = 23"/ (n2") rows,
callthemry,...,rn. Let A®) be the oracle obtained
by starting fromA and then encoding,. Choose an
integerk € {1,..., N} (we will specify how later),
and setd; := AE@I.

SupposeP halts after ¢ iterations, and letr be
the row encoded by step (1).
|piw (At) — Diw (Ai—1)] < 1/6 for all 4,z.  So in par-
ticular, if p; » (A;) > 2/3 thenp; . (A;—1) > 1/2 and
thereforeA, (r,i,x) = 1. Likewise, if p; , (4;) < 1/3
thenp, , (A4+—1) < 1/2 and therefored, (r,i,x) = 0.
It follows that any validBPTIME (nlog")"\‘lp machine in
{M,..., M,} has linear-size circuits relative tb,—since
we can just hardwire € {0,1}*" into the circuits.

It remains only to show tha® halts after a finite number
of steps, for some choice &fs. Given an input;, random
stringz, and oracled, let.S; . , (A) be the set oNP queries
made byM; that accept. Then we will use

W (A) =3 EX[|Sia,: (A)]

as our progress measure. Since eathcan query the
NP oracle at mosh'°&™ times, clearly0 < [S; ... (A)| <
nlog™ for all i, z, z, and therefore

0 < W(A) < nomn. nlogn

for all A. On the other hand, we claim that whenever step
(2) is executed, it € {1,..., N} is chosen uniformly at
random then

1

EX [W (AU“)” > W (A) + 5 -2,

So in step (2), we should simply choogeto maxi-
mize W (A®).  For we will then haveW (4;) >

(1/6 — 27+ ¢ for all ¢, from which it follows thatP
halts after at most

nam . nlog n

— 2n+o(n)
1/6 — 2—n+o(m)

iterations.
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Then by assumption,

We now prove the claim. Observe that for each accept-
ing NP queryq € S; ... (A), there are at most'°s" rows
r), such that encoding;, would cause; ¢ S, . (A%)).
For to change’s output from ‘accept’ to ‘reject,” we would
have to eliminate (say) the lexicographically first accept-
ing path of theNP oracle, and that path can depend on at
mostn!°8” rows of A. Hence by the union bound, for all
i,x,z, Awe have

Fl’cr [Si,w,z (A) & Siz.- (A(k))}

> prfed s (4]
qesi,w,z(A)
nlogn

N

<

IN

|Si,w,z (A)|
n2 logn

23n/ (TLQ")
— 2—2n+0(n).

Soin particular, for alf, x, A,

(a®)]

Sia;z

Ly

St (A9)| 2 1S,z (A)
> |Sz',z,z (A)| (1 o 2—2n+o(n))
On the other hand, by assumption there exists a pair
(4,y) that is sensitive to row, for everyk € {1,...,N}.
Furthermore, givery andz, the outputd/; , . (A) of M; is

a function of theNP oracle responses; , . (4), and can
change only ifS; ,, . (A) changes. Therefore

Pr |Sjus (%) # Si.c (4)

> Pr M (40) 7 M (4)

Y

1
6

So by the union bound,

S (AD)] > 1852 (W]
> Pr (852 (A9) # Sy.x (4)]
k

_ E,g {Sjyy,z (A) Z Sy, (A(

Pr [
k,z

)]

> _ 2—2n+o(n).

| =



Putting it all together,
Ex |w (4%)]

S (19)]

1
> Z _ 9—2n+o(n) . __ o—2n+o(n)
> =2 + 2 IS ()] (12 )
_ % o 272n+o(n) + (1 o 272n+o(n)) 1774 (A)
1
=W (A)+¢ - g-nto(n)

which completes the claim.
To handle all values ofi simultaneously, we use ex-

actly the same trick as in Theorem 2. That is, we replace

r by ané-tuple R = (r1,....r¢) wherer, € {0,1}%%;
define the “row” R, to consist of all triples(R},i,x)
such thatL > ¢ andr}, ry, for all h < ¢; and
call the pair (i, z) “sensitive” to row R, if there is any
oracle A’ that disagrees with4 only in R,, such that
Ipiz (A") — pix (A)| > 1/6. We then run the proceduf?
repeatedly to encode, o, . . ., where “encoding’, means
settingA; (Ry, 4, ) := round (p; . (A¢—1)) forall n < 2°,
i€{l,...,n},andz € {0,1}". The restof the proof goes
through as beforem

Let us make seven remarks about Theorem 8.

(1) Since we never needed tiB®P promise, it is clear
that Theorem 8 generalizesReomiseBPP".

(2) A corollary of Theorem 8 is that any Karp-Lipton
collapse toBPP}|" would require nonrelativizing tech-
niques. For relative to the oraclé from the theorem,
we haveNP C BPP|" C P/poly. On the other hand,

if PHA = BPPHPA, thenBPPh‘PA would not have linear-
size circuits by Kannan’s Theorem [20] (which relativizes)
thereby yielding a contradiction.

is, BPP with f (n) adaptiveNP queries) has circuits of size
O (n+ f(n)). Forclearly we can simulatg(n) adaptive
queries usin@’ (™ nonadaptive queries. We then repeat
Theorem 8 with the boundl < W (A) < n2" - 2/("),

5. Black-Box Learning in Algorithmica

“Algorithmica” is one of Impagliazzo’s five possible
worlds [19], the world in whichP = NP. In this sec-
tion we show that in Algorithmica, black-box learning of
Boolean circuits is possible i\P. Let us first define what
we mean by black-box learning.

Definition 9 Say that black-box learning is possible in a
complexity clasg if the following holds. There exists
a C machineM such that, for all Boolean functiong :
{0,1}" — {0, 1} with circuit complexity at most(n), the
machine)M / outputs a circuit forf given(0™,0(")) as in-
put. Also,M has approximation ratie (n) if for all f, any
circuit output byM has size at most(n) a (n).

The above definition is admittedly somewhat vague, but
for most natural complexity classést is clear how to make
it precise. Firstly, by € machine” we really meanFC
machine,” where~(C is the function version of. Secondly,
for semantic classes, we do not care if the machine violates
the promise on inputs not of the for{ﬂ”, OS<”>>, or oracles
f that do not have circuit complexity at mosgn).

Let us give a few examples. First, almost by definition,
black-box learning is possible &, with approximation ra-
tio 1. Second, as pointed out by Umans [41], the result of
Bshouty et al. [9] implies that black-box learning is possib
in ZPPNP | with approximation rati@) (n/logn). Third,
under plausible assumptions, black-box learning is ptessib
in PNP with approximation raticO (n/logn).*® Fourth,
if E requires MaJSAT-oracle circuits of size®(™), then

(3) If we care about constants, we can reduce the advicePlack-box learning is possible PP with approximation ra-

r 10 2n + o (n) bits for a specific, or 8n + o (n) for all n
simultaneously.
(4) As with Theorem 2, one can easily modify Theorem

8 to give a relativized world wherBPEXP|\¥ C P/poly.

Thus, Theorem 8 provides an alternate generalization o

the result of Buhrman, Fortnow, and Thierauf [11] that
MAexp C P/poly relative to an oracle.
(5) SinceBPP.;; C BPP|" (as is not hard to show

using approximate counting), Theorem 8 also provides an

alternate proof theBPP .., has linear-size circuits relative
to an oracle.

(6) Completely analogously to Theorem 12, one can
modify Theorem 8 to give oracles relative to whieN” =
BPEXP” andeP = BPEXP|".

(7) For any functionf, the construction of Theorem 8
actually yields an oracle relative to whi&PPNPl/ ()] (that

11

tio 1. For this assumption implies thB? = BP - PP, and
hence thakt C PP by Toda’s theorem.
On the other hand:

fProposition 10 Black-box learning is impossible MP, or

for that matter inAM, IP, or MIP.

Proof. Suppose there are two possibilities: eittfeis the
identically zero function, or elsg is a point function (that

is, there exists g such thatf (x) = 1 ifand only if z = ).
In both cases (n) = O(n). But since the verifier has

B3For it follows from a general result of Klivans and van Melkek [22]
that if E requires SAT-oracle circuits of si2*(") thenPNP = zppNP,
(Here a SAT-oracle circuit is a circuit with oracle accesS#T.) Further-
more, the derandomization result of [22] is “black-box exgng,” in the
sense that if th& PPNP machine doesn't “cheat” by exploiting the internal
structure of the circuit to be learned, then neither doeBWS simulation.



only oracle access tfj, it is obvious that no polynomially-

PromiseBPP"F as well. So we can convelt; ; into a de-

bounded sequence of messages from the prover(s) coulderministic polynomial-time maching/; ; such that for all

convince the verifier thaf is identically zero. We omit

z,if |B(X;)| < 3 |B(X;-1)| thenM/, (z) accepts, while

the details, which were worked out by Fortnow and Sipser it |3 (x;,)| > 2 |B(X;_1)| thenM/, (=) rejects.

[17]. m
We now prove the main result.

Theorem 11 If P = NP, then black-box learning is possi-
ble inP\” (indeed, with approximation rativ).

Proof. Fix n, and supposg : {0,1}" — {0, 1} has circuits
of sizes = s (n). Let3 be the set of all circuits of size so
that|B| = s°(*). Also, say that a circui€ € B succeeds
oninputz € {0,1}" if C (z) = f (x), andfails otherwise.
Then given a list of inputX = (a1, z2,...), let B(X) be
the set of circuits ir3 that succeed on everye X.

For the remainder of the proof, 1&f; = (z1,...,z:) be
alistoft inputs, and forald <i < ¢, letX; = (z1,...,z;)
be the prefix ofX; consisting of the first inputs (so in par-
ticular, Xy is the empty list). Then our first claim is that
there exists alNP/ machineQ; with the following behav-
ior:

e Ifthere exists anX; such thatB3 (X;)| < 2 |B (X;_1)|
foralli € {1,...,t}, thenQ, accepts.

o If for all X, there exists ann € {1,...,t} such that
IB(X;)| > 3|B(X;-1)|, then@, rejects.

(As usual, if neither of the two stated conditions hold,
then the machine can behave arbitrarily.)

In what follows, we can assume without loss of general-

ity that¢ is polynomially bounded. For, sin@®mecircuit
C € B succeeds on every input, we must hggé X, )| > 1
forall i. ThereforeQ; can acceptonly if3| (3/4)" > 1, or
equivalently ift = O (slog s).

Let f (X)) := (f (21),..., f (x+)), and letz be a “wit-
ness string” consisting of; andf (X;). Then giverz and
1 < t, we can easily decide whether a circ@itbelongs to
the setB (X;): we simply check whethet' (z;) = f (z;)

Using M; ;, we can then rewrit€); as follows: “Does
there exist a witness, of the form(X,, f (X;)), such that
M{y1 ()N A Mt',t (2)?" This proves the claim, since the
above query is clearly iNP/ .

To complete the theorem, we will need one
other predicate A; (z,z), with the following behav-
ior.  For all z (Xy, f(Xy)) andxz € {0,1}", if
Preepix,) [C(z) =1] > 2/3 then A; (z,2) accepts,
while if PrCEB(Xt) [C (x) = O] > 2/3 then A; (z,x)
rejects.

It is clear that we can implement, in PromiseBPPNF,
again because of approximate counting and the ease of
deciding membership i8 (X;). So by the assumption
P = NP, we can also implemem; in P.

Now letC; . be the lexicographically first circult’ € B
suchthat (z) = A; (z,z) forallz € {0,1}". Notice that
Aq (z,x) is anexplicit procedure that is, we can evaluate
it without recourse to the oracle fgt. So givenz, we can
find Cy . in AL = PNP™ "and hence also iR.

Let t* be the maximunt for which Q; accepts, and let
z = (X4, f (Xy+)) be any accepting witness f@-. Then
forallz € {0,1}", we have

Pr

C
cen, €@

f@)] =

[SSRI )

For otherwise the sequencge;, ..., z:, z) would satisfy
Q@+ +1, thereby contradicting the maximality of. An im-
mediate corollary is thatl;- (z,x) f(x) forall z €
{0,1}". HenceC;- . is the lexicographically first circuit
for f, independently of the particular accepting witness
ThePh‘Pf learning algorithm now follows easily. For all
t = O (slog s), the algorithm submits the quety; to the
NP oracle. Italso submits the following query, call&g ;,
forallt = O(slogs) andj = O (slogs): “Does there

forall j <. So by standard results on approximate count- exist a witness: = (X, f (X;)) satisfyingQ;, such that

ing due to Stockmeyer [39] and Sipser [38], we can approx-

imate the cardinality3 (X;)| in BPP"". More precisely,
for all ¢, 4 there exists #romiseBPPN" machinel; ; such
that for allz = (X, f (X})):

o If |B(X;)] < 2|B(X;_1)|thenM,, (z) accepts with
probability at leas2/3 (where the probability is over
M, ;'s internal randomness).

o If [B(X;)| > 2|B(X;_1)| thenM,; (z) rejects with
probability leas®/3.

Now by the Sipser-Lautemann Theorem [38, 25],
the assumptionP NP implies that PromiseP
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the j** bit in the description of’; . isal?”

Using the responses to tlig’s, the algorithm then de-
terminest*. Finally it reads a description @f;- . off the
responses to thg,- ;'s. m

Consider the following question: “why hasn't any-
one managed to show a Karp-Lipton collapsePﬁT‘JD or

BPP||"?" We might hope to answer this question by prov-
ing a “metaresult,” stating that any such collapse would re-
quire non-black-box techniques. But Theorem 11 yields
the “metametaresult” that wean’'t show such a metaresult,
without also showing tha® # NP!

As a final note, one corollary of Theorem 11 is that if
P = NP, then black-box learning is possible NP /log.



For since theF‘i\“D algorithm of Theorem 11 does not take enlightening conversations; the anonymous reviewers for
any input, we simply count how many of P queriesre-  their comments; and Boaz Barak, Dieter van Melkebeek,
turn a positive answer, and then feed that number as advice&sasha Razborov, Rahul Santhanam, Ronen Shaltiel, Luca
to theNP/log machine. Trevisan, Chris Umans, Umesh Vazirani, Hoeteck Wee, and
Chris Wilson for helpful discussions and correspondence.

6. Open Problems
References

The main open problem is, of course, to prove better non-
relativizing lower bounds. For example, can we show that
BPP)" does not have linear-size circuits? To do so, we
would presumably need a nonrelativizing technique that ap-
plies directly to the polynomial hierarchy, without reqog
the full strength of#£P. Arora, Impagliazzo, and Vazirani
[4] argue that “local checkability,” as used for example in

the PCP Theorem, constitutes such a technique (though see

Fortnow [14] for a contrary view). For us, the relevant
guestion is not which techniques are “truly” nonrelativiz-
ing, but simply which ones lead to lower bounds!

Here are a few other problems.

(1) Can we show thaPNP £ PEXP? If so, then
we would obtain perhaps the first nonrelativizing separa-
tion of uniform complexity classes that does not follow
immediately from a collapse such # = PSPACE or
MIP = NEXP.

(2) Can we show thaPEXP requires circuits of expo-
nential size, rather than just half-exponential?

(3) As mentioned in Section 1.2, Bshouty et al.'s algo-
rithm does not find aninimalcircuit for a Boolean function
f, but only a circuit within arO (n/ logn) factor of mini-
mall* Can we improve this approximation ratio, or alter-
natively, show that doing so would require nonrelativizing
techniques? -

(4) Is black-box learning possible P\” or ZPP}|", un-

der some computational assumption that we actually believe

(for example, a derandomization assumption)? Alterna-
tively, can we show that black-box learningnspossiblen
Ph”’ under some plausible computational assumption?

(5) Can we show that iNP C P/poly thenPH C PP?
Of course, Theorem 2 implies that nonrelativizing tech-
nigues would be needed.
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S. Toda. PP is as hard as the polynomial-time hierarchy.

after at mos®(™ steps, meaning thatwill never require
more tharnO (n) bits to represent. Indeed, this is true even
if we are dealing withPTIME (2™) machines, rather than
PTIME (n'°&™) machines.

Now consider aPTIME# (2*) machineM;. We can

simulate M; in DTIME(nQ)NPA, as follows. Given an
input z € {0,1}", first find the unique rowR =
(15T i0g, n1) fOr whicht is maximal—in other words,
the last such row to have been encoded. This requires
adaptive queries to tH¢P oracle, each of sizé (n). Then
outputA (R, i, ).

It follows thatPE C DTIME (nQ)NP relative to A, and
(by padding) thaPEXP = PNP. Indeed, once th@"\"
machine finds the,’s, it can use them to decide an arbitrary
language irPNP™ | which is whyPNP = PNP™™C a5 well.

For (i), the change to Theorem 2 is even simpler. When-
ever we encode a roR = (rq,...,r¢), instead of setting
Ay (R,i,z) == M, 5 (A1) for all 4, z, we now set

Ay (Rii,z) =M, (Aa) & @D A (R i),
R'#R



where the sum moa ranges over allR’ (rl,...,1p)
other thanR itself. Then when we are done, by assumption
A will satisfy

D

R=(71,...,T¢)

A (R) 7;) m)

foralln < 2¢, i € {1,...,n}, andz € {0,1}". So
to simulate aPE machinel/; on inputz, a ®DTIME (n)
machine just needs to return the above sum.
®DTIME? (n) = PE4, and®P* = PEXP* by padding.
]

9. Appendix: Perceptrons

Perceptrons have played an important role in Al an
complexity theory since the 1960’s [28]. For our purposes
a perceptron is a deptheircuit, which consists of a thresh-
old of AND’s of negated or non-negated literals. Tdire
of the perceptron is the number of AND gates, while the
order is the maximum fan-in of any AND gate. Suppose a
perceptron has sizgand foralli € {1,...,s}, letz; bethe
output of thei’” AND gate. Then the perceptron accepts if
and only if

121+ -+ eszs >0,

for some integerey, ..., cs called theweights Given a
perceptron with size and weights if—w, ..., w}, clearly
there exists an equivalent perceptron with size and
weights in{—1,1}. For simplicity, from now on we as-
sume that all weights belong {fo-1, 1}.

Our concern here is with a particular problem called
ODDMAXBIT. Given anN-bitstringX = z;...xzy, and
promised that there exists arsuch thatr; = 1, leti* be
the maximum such. Then the ODDMAXBIT problem is
to compute* (mod 2)—that is, to decide whethéft is odd

or even. The idea behind this problem is to model canoni-

cal PNP-complete problems [24], such as “Given a Boolean
formulayp, does the lexicographically last satisfying assign-
ment top end in a) oral?”

It is not hard to see that ODDMAXBIT can be solved
by a perceptron of siz€N/2] and order[N/2], or by a
perceptron of siz&V*! — 1 and orderl. On the other
hand, call a perceptron “small” if it has si2&°" and order
N°M). Then Beigel [8] showed the following:

Theorem 13 (Beigel [8]) No small perceptron can solve
ODDMAXBIT.

Now imagine we havé perceptrons\fy, ..., My, to-
gether witht ODDMAXBIT instancesXy, ..., X, each
of sizeN. Also, suppose that eadld; is trying to solve the
corresponding instanck;, but can access bits froemy of
the k instances. Clearly/; will still be wrong for some
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values ofX;. But can the perceptrons at least conspire so
that they are never all wrorgimultaneously Formally, let

us say that the “problem sefXy, ..., X; defeatsthe per-
ceptronsM;, ..., My, if M; outputs an incorrect answer
to X, for everyj € {1,...,k}. Then we can show the
following generalization of Theorem 13.

Theorem 14 For any k = N°(1) small perceptrons, there
exists a problem set that defeats them.

HenceProof. Follows from simple modifications to the proof of

Theorem 2. We can interpret each column of the orzkle
as an ODDMAXBIT instance, and each row as an intdlex
{1,...,N}. We can also interpret al§TIME" (T (n))
machine as a perceptron over the bitslpfvith size at most
27() and order at mosT (n). Let us takeA to havek

g columns andV rows, and letA (i, j) be the bit ofA in

the i*"* row and;** column. Also, letM;,..., M, be a
collection ofk perceptrons, each with size at mast and
order at mosf whereT = N°(). ThenM; (A) is the
output of M (either0 or 1) given A.

To create an oracld that defeats\/y, ..., My, we use
the iterative procedure from Theorem 2 (the one for a par-
ticular value ofn), but with two changes. First, we say
that M is sensitive to row, if thereexistsa change to row
i that would causé\/; to change its output. To “encode”
row i then means to make any such change. Second, we no
longer reuse rows from previous iterations, but instead pro
ceed steadily downwards, using a fresh blockodfk>77)
rows for each iteration. This ensures that when the proce-
dure halts, we obtain a row such that (i) none of thé
perceptrons are sensitive to any change to iawand (ii)
no row belowi* has yet been modified (i.el (¢, 7) = 0 for
alls > +* and ally).

Indeed, we can easily obtain two adjacent roWwsand
i* + 1 thatboth satisfy these properties, wiiti even and
i* + 1 odd. We can then defealt/,,..., M; as fol-
lows: forallj € {1,...,k}, setA(i*,j) := M, (A) and
A(i*+1,5) := 1 — M; (A). This ensures that thg”
ODDMAXBIT instance has the answerif )/, outputs0,
ando if M; outputsl.

All that remains is to show that the procedure halts be-
fore running out of rows. Define the polynomi@l as in
Theorem 2. One can check thidg (Q) = O (kT?), and
that2—O*T) < @ (A) < 20(k°) for all A. It follows that
Q can double at mosD (k7%) times, and hence that there
can be at mosb (k7?) iterations. Also, within each itera-
tion, we want there to exist a perceptrbfy that is sensitive
to more thanleg (Q)* = O (k*T'*) rows, which means that
we wantO (k3T*) rows per iteration. So the total number
of rows we need is

O (kT? - K*T*) = O (k*T°) = N°O),

which is less tharV for sufficiently largeN. m



