
A Linear-Optical Proof that the Permanent is #P-Hard

Scott Aaronson∗

For Les Valiant, on the occasion of his Turing Award

Abstract

One of the crown jewels of complexity theory is Valiant’s 1979 theorem that computing the
permanent of an n × n matrix is #P-hard. Here we show that, by using the model of linear-
optical quantum computing—and in particular, a universality theorem due to Knill, Laflamme,
and Milburn—one can give a different and arguably more intuitive proof of this theorem.

1 Introduction

Given an n× n matrix A = (ai,j), the permanent of A is defined as

Per (A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i).

A seminal result of Valiant [15] says that computing Per (A) is #P-hard, if A is a matrix over (say)
the integers, the nonnegative integers, or the set {0, 1}.1 Here #P means (informally) the class of
counting problems—problems that involve summing exponentially-many nonnegative integers—and
#P-hard means “at least as hard as any #P problem.”2,3

More concretely, Valiant gave a polynomial-time algorithm that takes as input an instance
ϕ (x1, . . . , xn) of the Boolean satisfiability problem, and that outputs a matrix Aϕ such that Per (Aϕ)
encodes the number of satisfying assignments of ϕ. This means that computing the permanent is
at least as hard as counting satisfying assignments.

Unfortunately, the standard proof that the permanent is #P-hard is notoriously opaque; it
relies on a set of gadgets that seem to exist for “accidental” reasons. Could there be an alternative
proof that gave more, or at least different, insight? In this paper, we try to answer that question
by giving a new, quantum-computing-based proof that the permanent is #P-hard. In particular,
we will derive the permanent’s #P-hardness as a consequence of the following three facts:

∗MIT. Email: aaronson@csail.mit.edu. This material is based upon work supported by the National Science
Foundation under Grant No. 0844626. Also supported by a DARPA YFA grant and a Sloan Fellowship.

1See Hrubes, Wigderson, and Yehudayoff [7] for a recent, “modular” presentation of Valiant’s proof (which also
generalizes the proof to the noncommutative and nonassociative case).

2See the Complexity Zoo (www.complexityzoo.com) for the definitions of #P and other complexity classes used
in this paper.

3If A is a nonnegative integer matrix, then Per (A) is itself a #P function, which implies that it is #P-complete

(the term for functions that are both #P-hard and in #P). If A can have negative or fractional entries, then strictly
speaking Per (A) is no longer #P-complete, but it is still #P-hard and computable in the class FP

#P.

1

(1) Postselected linear optics is capable of universal quantum computation, as shown in a cele-
brated 2001 paper of Knill, Laflamme, and Milburn [9] (henceforth referred to as KLM).4

(2) Quantum computations can encode #P-hard quantities in their amplitudes.

(3) Amplitudes in n-photon linear-optics circuits can be expressed as the permanents of n × n
matrices.

Even though our proof is based on quantum computing, we stress that we have made it entirely
self-contained : all of the results we need (including the KLM Theorem [9], and even the construction
of the Toffoli gate from 1-qubit and CSIGN gates) are proved in this paper for completeness.
We assume some familiarity with quantum computing notation (e.g., kets and quantum circuit
diagrams), but not with linear optics.

1.1 Motivation

If one counts the complexity of all of the individual pieces we use—especially the universality
results for quantum gates—then our reduction from #P to the permanent ends up being at least
as complicated as Valiant’s, and probably more so. In our view, however, this is similar to how
writing a program in C++ tends to produce a longer, more complicated executable file than writing
the same program in assembly language. Normally, one also cares about the length and readability
of the source code! Our purpose in this paper is to illustrate how quantum computing provides a
powerful “high-level programming language” in which one can, among other things, easily rederive
the most celebrated result in the theory of #P-hardness.

But why does the world need a new proof that the permanent is #P-hard—especially a proof
invoking what some might consider to be exotic concepts? Let us offer several answers:

• Any theorem as basic as the #P-hardness of the permanent deserves several independent
proofs. And our proof really is “independent” of the standard one: rather than composing
variable and clause gadgets,5 we multiply matrices corresponding to quantum gates, and use
ideas from linear optics to keep track of how such multiplications affect the permanent. One
way to see the difference is that our proof never uses the notion of a cycle cover.

• While our proof, like the standard one, requires “gadgets” (one to simulate a Toffoli gate
using CSIGN gates, another to simulate a CSIGN gate using postselected linear optics), the
connection to quantum computing gives those gadgets a natural semantics. In other words,
the gadgets were introduced for “practical” reasons having nothing to do with proving the
permanent #P-hard, and can be motivated independently of that goal. If one already
knows the quantum universality gadgets, then we offer what seems like a major advance in
complexity-theoretic pedagogy: a proof that the permanent is #P-hard that can be repro-
duced on-the-spot from memory!

4KLM actually prove the stronger (and more practically-relevant) result that linear optics with adaptive measure-

ments is capable of universal quantum computation. For our purposes, however, we only need the weaker fact that
postselected measurements suffice for universal QC, which KLM prove as a lemma along the way to their main result.

5Indeed, our proof does not even go through the Cook-Levin Theorem: it reduces a #P computation directly to
the permanent, without first reducing #P to #3SAT .

2

• As Kuperberg [10] pointed out, by their nature, any #P-hardness proofs (including ours) that
are based on “quantum postselection” almost immediately yield hardness of approximation
results as well.

• We expect that the quantum postselection approach used here could lead to #P-hardness
proofs for many other problems—including problems not already known to be #P-hard by
other means. In this direction, one natural place to look would be special cases of the
permanent.

1.2 Related Work

By now, there are many examples where quantum computing has been used to give new or sim-
pler proofs of classical complexity theorems; see Drucker and de Wolf [6] for an excellent survey.
Within the area of counting complexity, Aaronson [1] showed that the class PP is equal to PostBQP

(quantum polynomial-time with postselection), and then used that theorem to give a simpler proof
of the landmark result of Beigel, Reingold, and Spielman [4] that PP is closed under intersection.
Later, also using the PostBQP = PP theorem, Kuperberg [10] gave a “quantum proof” of the result
of Jaeger, Vertigan, and Welsh [8] that computing the Jones polynomial is #P-hard, and even
showed that a certain approximate version is #P-hard (which had not been shown previously).
Kuperberg’s argument for the Jones polynomial is conceptually similar to our argument for the
permanent.

There is also precedent for using linear optics as a tool to prove theorems about the permanent.
Scheel [14] observed that the unitarity of linear-optical quantum computing implies the interesting
fact that |Per (U)| ≤ 1 for all unitary matrices U .

Rudolph [13] showed how to encode quantum amplitudes directly as matrix permanents, and
in the process, gave a “quantum-computing proof” that the permanent is #P-hard. However, a
crucial difference is that Rudolph starts with Valiant’s proof based on cycle covers, then recasts it
in quantum terms (with the goal of making Valiant’s proof more accessible to a physics audience).
By contrast, our proof is independent of Valiant’s; the tools we use were invented for separate
reasons in the quantum computing literature.

There has been a great deal of work on linear-optical quantum computing, beyond the seminal
KLM Theorem [9] on which this paper relies. Recently, Aaronson and Arkhipov [2] studied the
complexity of sampling from a linear-optical computer’s output distribution, assuming no adaptive
measurements are available. By using the #P-hardness of the permanent as an “input axiom,”
they showed that this sampling problem is classically intractable unless P#P = BPPNP. More
relevant to this paper is an alternative proof that Aaronson and Arkhipov gave for their result.
Inspired by work of Bremner, Jozsa, and Shepherd [5], the alternative proof combines Aaronson’s
PostBQP = PP theorem [1] with the fact that postselected linear optics is universal for PostBQP,
and thereby avoids any direct appeal to the #P-hardness of the permanent. In retrospect, that
proof was already much of the way toward a linear-optical proof that the permanent is #P-hard;
this paper simply makes the connection explicit.

2 Background

Not by accident, this section constitutes the bulk of the paper. First, in Section 2.1, we fix some
facts and notation about standard (qubit-based) quantum computing. Then, in Section 2.2, we

3

� ��� � ��� �� � � � ���� �
Figure 1: Simulating a Toffoli gate using CSIGN and 1-qubit gates.

give a short overview of those aspects of linear-optical quantum computing that are relevant for us,
and (for completeness) prove the KLM Theorem in the specific form we will need.

2.1 Quantum Circuits

Abusing notation, we will often identify a quantum circuit Q with the unitary transformation that
it induces: for example, 〈0 · · · 0|Q |0 · · · 0〉 represents the amplitude with which Q maps its initial
state to itself. We use |Q| to denote the number of gates in Q.

The first ingredient we need for our proof is a convenient set of quantum gates (in the standard
qubit model). Thus, let G be the set of gates consisting of (1) all 1-qubit gates, and (2) the 2-qubit
controlled-sign gate

CSIGN =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,

which flips the amplitude if and only if both qubits are |1〉.6 Then Barenco et al. [3] showed that
G is a universal set of quantum gates, in the sense that G generates any unitary transformation
on any number of qubits (without error). For our purposes, however, the following weaker result
suffices.

Lemma 1 G generates the Toffoli gate, the 3-qubit gate that maps each basis state |x, y, z〉 to
|x, y, z ⊕ xy〉.

Proof. The circuit can be found in Nielsen and Chuang [11] for example, but we reproduce it in
Figure 1 for completeness. In the diagram,

H =
1√
2

(
1 1
1 −1

)

is the Hadamard gate,

B =
1

2

(√
2 +

√
2 i

√
2−

√
2

i
√

2−
√
2

√
2 +

√
2

)

is another 1-qubit gate, and the six vertical bars represent CSIGN gates.

6A more common 2-qubit gate than CSIGN is the controlled-NOT (CNOT) gate, which maps each basis state
|x, y〉 to |x, y ⊕ x〉. However, CSIGN is more convenient for linear-optics purposes, and is equivalent to CNOT by
conjugating the second qubit with a Hadamard gate.

4

2.2 Linear-Optical Quantum Computing

We now give a brief overview of linear-optical quantum computing (LOQC), an alternative quantum
computing model based on identical photons rather than qubits. For a detailed introduction to
LOQC from a computer science perspective, see Aaronson and Arkhipov [2].

In LOQC, each basis state of our quantum computer has the form |S〉 = |s1, . . . , sm〉, where
s1, . . . , sm are nonnegative integers summing to n. Here si represents the number of photons in the
ith location or “mode,” and the fact that s1 + · · · + sm = n means that photons are never created
or destroyed. One should think of m and n as both polynomially-bounded. For this paper, it
will be convenient to assume that m is even, that n = m/2, and that the initial state has the form
|I〉 = |0, 1, 0, 1, . . . , 0, 1〉: that is, one photon in each even-numbered mode, and no photons in the
odd-numbered modes.

Let Φm,n be the set of nonnegative integer tuples S = (s1, . . . , sm) such that s1 + · · ·+ sm = n,
and let Hm,n be the Hilbert space spanned by basis states |S〉 with S ∈ Φm,n. Then a general
state in LOQC is just a unit vector in Hm,n:

|ψ〉 =
∑

S∈Φm,n

αS |S〉

with
∑

S∈Φm,n
|αS |2 = 1.

To transform |ψ〉, one can select any m ×m unitary transformation U = (uij). This U then
induces a larger unitary transformation ϕ (U) on the Hilbert space Hm,n of n-photon states. There
are several ways to define ϕ (U), but perhaps the simplest is the following formula:

〈S|ϕ (U) |T 〉 = Per (US,T)√
s1! · · · sm!t1! · · · tm!

(*)

for all tuples S = (s1, . . . , sm) and T = (t1, . . . , tm) in Φm,n. Here US,T is the n×n matrix obtained
from U by taking si copies of the ith row of U and tj copies of the jth column, for all i, j ∈ [m].
To illustrate, if

U =

(
1 0
0 −1

)

and |S〉 = |T 〉 = |2, 1〉, then

US,T =

1 1 0
1 1 0
0 0 −1

 .

Intuitively, the reason the permanent arises in formula (*) is that there are n! ways of mapping
the n photons in basis state |S〉 onto the n photons in basis state |T 〉. Since the photons are
identical bosons, quantum mechanics says that each of those n! ways contributes a term to the total
〈S|ϕ (U) |T 〉, with the contribution given by the product of the transition amplitudes uij for each
of the n photons individually.

It turns out that ϕ (U) is always unitary and that ϕ is a homomorphism. Both facts seem
surprising viewed purely as algebraic consequences of formula (*), but of course they have natural
physical interpretations: ϕ (U) is unitary because it represents an actual physical transformation
that can be applied, and ϕ is a homomorphism because generalizing from one photon to n photons
must commute with composing beamsplitters. In this paper, we will not need that ϕ (U) is unitary;
see Aaronson and Arkhipov [2] for a proof of that fact. Below we prove that ϕ is a homomorphism.

5

Lemma 2 ϕ is a homomorphism.

Proof. We want to show that for all tuples S, T ∈ Φm,n and all m×m unitaries U, V ,

〈S|ϕ (V U) |T 〉 = 〈S|ϕ (V)ϕ (U) |T 〉 =
∑

R∈Φm,n

〈S|ϕ (V) |R〉 〈R|ϕ (U) |T 〉 .

By equation (*), the above is equivalent (after multiplying both sides by
√
s1! · · · sm!t1! · · · tm!) to

the identity

Per
(
(V U)S,T

)
=

∑

R∈Φm,n

Per (VS,R) Per (UR,T)

r1! · · · rm!
. (**)

We will prove identity (**) in the special case n = m and S = T = I = (1, 1, . . . , 1), since the
general case is analogous. We have

Per (V U) =
∑

σ∈Sn

n∏

i=1

(V U)i,σ(i)

=
∑

R∈Φn,n

 1

r1! · · · rn!
∑

τ,ξ∈Sn

n∏

i=1

(VI,R)i,ξ(i) (UR,I)i,τ(i)

=
∑

R∈Φn,n

Per (VI,R) Per (UR,I)

r1! · · · rn!
.

In the second line above, we decomposed the sum by thinking about each permutation σ ∈ Sn as
a product of two permutations: one, τ , that maps n particles in the initial configuration |I〉 to
n particles in the intermediate configuration |R〉 when U is applied, and another, ξ, that maps n
particles in the intermediate configuration |R〉 to n particles in the final configuration |I〉 when V is
applied. This yields the same result, as long as we remember to sum over all possible intermediate
configurations R ∈ Φn,n, and also to divide each summand by r1! · · · rn!, which is the size of R’s
automorphism group (i.e., the number of ways to permute the n particles within |R〉 that leave |R〉
unchanged).

In the standard qubit model, every unitary transformation can be decomposed as a product of
gates, each of which acts nontrivially on only 1 or 2 qubits. Similarly, in LOQC, every unitary
transformation can be decomposed as a product of linear-optics gates, each of which acts nontrivially
on only 1 or 2 modes. Then a linear-optics circuit is simply a list of linear-optics gates applied to
specified modes (or pairs of modes) starting from the initial state |I〉 = |0, 1, . . . , 0, 1〉.7

The last notion we need is that of postselected LOQC. In our context, postselection simply
means measuring the number of photons in a given mode i, and conditioning on a particular result
(for example, 0 photons, or 1 photon). After we postselect on the number of photons in some

7A crucial difference between standard quantum circuits and linear-optics circuits is that, whereas a standard quan-
tum gate is the tensor product of a small (say 4 × 4) unitary matrix with an exponentially-large (say 2n−2 × 2n−2)
identity matrix, a linear-optics gate is the direct sum of a small (say 2× 2) unitary matrix with a polynomially-large
(say (m− 2)× (m− 2)) identity matrix. It is only the homomorphism U → ϕ (U) that produces exponentially-large
matrices. One consequence, pointed out by Reck et al. [12], is that, whereas most n-qubit unitary transformations re-
quire Ω

(

22n
)

gates to implement (as follows from an easy dimension argument), everym-mode unitary transformation
U can be implemented using only O

(

m2
)

linear-optics gates.

6

� �������� �����	
 ������
���� ���������������� ����������
Figure 2: Simulating CSIGN by NS1 and Hadamard.

mode, we will never use that mode for further computation.8 For this reason, without loss of
generality, we can defer all postselected measurements until the end of the computation.

Our #P-hardness proof will fall out as a corollary of the following universality theorem, which
is implicit in the work of KLM [9]. Indeed, we could just appeal to the KLM construction as a
“black box,” but we choose not to do so, since the properties of the construction that we want are
slightly different from the properties KLM want, and we wish to verify in detail that the desired
properties hold.

Theorem 3 (following KLM [9]) Postselected linear optics can simulate universal quantum com-
putation. More concretely: there exists a polynomial-time classical algorithm that converts a quan-
tum circuit Q over the gate set G into a linear-optics circuit L, so that

〈I|ϕ (L) |I〉 = 〈0 · · · 0|Q |0 · · · 0〉
4Γ

,

where Γ is the number of CSIGN gates in Q and |I〉 = |0, 1, . . . , 0, 1〉 is the standard initial state.

Proof. To encode a (qubit-based) quantum circuit by a postselected linear-optics circuit, KLM use
the so-called dual-rail representation of a qubit using two optical modes. In this representation,
the qubit |0〉 is represented as |0, 1〉, while the qubit |1〉 is represented as |1, 0〉. Thus, to simulate
a quantum circuit that acts on k qubits, we need 2k optical modes. (We will also need additional
modes to handle postselection, but we can ignore those for now.) Let the modes corresponding to
qubit i be labeled (i, 0) and (i, 1) respectively. Notice that the initial state |0 · · · 0〉 in the qubit
model maps onto the initial state |I〉 in the optical model.

Since ϕ is a homomorphism by Lemma 2, to prove the theorem it suffices to show how to
simulate the gates in G. Simulating a 1-qubit gate is easy: simply apply the appropriate 2 × 2
unitary transformation to the Hilbert space spanned by |0, 1〉 and |1, 0〉. The interesting part is
how to simulate a CSIGN gate. To do so, KLM use another gate that they call NS1, which applies
the following unitary transformation to a single mode:

NS1 : α0 |0〉+ α1 |1〉+ α2 |2〉 → α0 |0〉+ α1 |1〉 − α2 |2〉 .

(We do not care how NS1 acts on |3〉, |4〉, and so on, since those basis states will never arise in our
simulation.) Using NS1, it is not hard to simulate CSIGN on two qubits i and j. The procedure,
shown in Figure 2, is this: first apply a Hadamard transformation to modes (i, 0) and (j, 0). One

8In physics language, all photon-number measurements are assumed to be “demolition” measurements.

7

can check that this induces the following transformation on the state of (i, 0) and (j, 0):

|0, 0〉 → |0, 0〉

|1, 0〉 → |1, 0〉 + |0, 1〉√
2

|0, 1〉 → |1, 0〉 − |0, 1〉√
2

|1, 1〉 → |2, 0〉 − |0, 2〉√
2

The key point is that we get a state involving 2 photons in the same mode, if and only if the
modes (i, 0) and (j, 0) both contained a photon. Next, apply NS1 gates to both (i, 0) and (j, 0).
This flips the amplitude if and only if we started with |1, 1〉. Finally, apply a second Hadamard
transformation to (i, 0) and (j, 0), to complete the implementation of CSIGN.

We now explain how to implement NS1 on a given mode i, using postselection. To do so, we
need two additional modes j and k, which are initialized to the states |0〉 and |1〉 respectively. First
we apply the following 3× 3 unitary transformation to i, j, k:

W :=

1−
√
2

√
3√
2
− 2 1

21/4√
3√
2
− 2

√
2− 1

2
1
2 − 1√

2
1

21/4
1
2 − 1√

2
1
2

 .

Then we postselect on j and k being returned to the state |0, 1〉. As shown in [9], this postselection
always succeeds with amplitude 1/2 (corresponding to probability 1/4); and that conditioned on it
succeeding, the effect is to apply NS1 in mode i. To prove this, observe that since the number of
photons is conserved, the effect of W on mode i must have the form

α0 |0〉+ α1 |1〉+ α2 |2〉 → λ0α0 |0〉+ λ1α1 |1〉+ λ2α2 |2〉 ,

for some λ0, λ1, λ2. Using formula (*), we then calculate

λ0 = w33 =
1

2
,

λ1 = Per

(
w11 w13

w31 w33

)
=

1

2
,

λ2 =
1

2
Per

w11 w11 w13

w11 w11 w13

w31 w31 w33

 = −1

2
.

This implies that the CSIGN circuit shown in Figure 2 succeeds with amplitude 1/4 (corresponding
to probability 1/16), and furthermore, we know when it succeeds.

In the proof of Theorem 3, the main reason the matrix W looks complicated is simply that it
needs to be unitary. However, notice that unitarity is irrelevant for our #P-hardness application—
and if we drop the unitarity requirement, then we can replace W by a simpler 2× 2 matrix, such
as

Y :=

(
1−

√
2

√
2

1 1

)
.

8

To implement NS1 on a given mode i, we would apply Y to i as well as another mode j that initially
contains one photon, then postselect on j still containing one photon after Y is applied. One can
verify by calculation that the effect on mode i is

α0 |0〉+ α1 |1〉+ α2 |2〉 → λ0α0 |0〉+ λ1α1 |1〉+ λ2α2 |2〉

where λ0 = λ1 = 1 and λ2 = −1.

3 Main Result

In this section we deduce the following theorem, as a straightforward consequence of Theorem 3.

Theorem 4 The problem of computing Per (A), given a matrix A ∈ Z
N×N of poly (N)-bit integers

written in binary, is #P-hard under many-one reductions.

In classical complexity theory, one is often more interested in various corollaries of Theorem 4:
for example, that computing Per (A) remains #P-hard even if A is a nonnegative integer matrix,
or a {−1, 0, 1}-valued matrix, or a {0, 1}-valued matrix. Valiant [15] gave simple reductions by
which one can deduce all of these corollaries from Theorem 4. We do not know how to use the
linear-optics perspective to get any additional insight into the corollaries.

Let C be a classical circuit that computes a Boolean function C : {0, 1}n → {−1, 1}, and let
∆C :=

∑
x∈{0,1}n C (x). Then computing ∆C , given C as input, is a #P-hard problem essentially

by definition. On the other hand, it is easy to encode ∆C as an amplitude in a quantum circuit:

Lemma 5 There exists a classical algorithm that takes a circuit C as input, runs in poly (n, |C|)
time, and outputs a (qubit-based) quantum circuit Q, consisting of gates from G, such that

〈0 · · · 0|Q |0 · · · 0〉 = ∆C

2n
.

Proof. Let DC be a 2n × 2n diagonal unitary matrix whose (x, x) entry is C (x). Then since the
Toffoli gate is universal for classical computation, a quantum circuit consisting of 1-qubit gates and
Toffoli gates can easily apply DC . To do so, one uses the standard “uncomputing” trick:

|x〉 → |x〉 |hC (x)〉 → C (x) |x〉 |hC (x)〉 → C (x) |x〉 ,

where hC (x) is the complete history of a computation using Toffoli gates that produces C (x).
Now let F = H⊗n

2 be the quantum Fourier transform over Zn
2 (i.e., the Hadamard gate applied to

each of n qubits), and let Q = FDCF . Then

〈0|⊗nQ |0〉⊗n =

 1√

2n

∑

x∈{0,1}n
〈x|

DC

 1√

2n

∑

x∈{0,1}n
|x〉

 =

∆C

2n
.

Finally, by Lemma 1, we can simulate each of the Toffoli gates in Q using gates from the set G.
Let Q be the quantum circuit from Lemma 5, and assume Q uses k = poly (n, |C|) qubits. By

Theorem 3, we can simulate Q by a linear-optics circuit L such that

〈I|ϕ (L) |I〉 = 〈0 · · · 0|Q |0 · · · 0〉
4Γ

,

9

where Γ = poly (n, |C|) is the number of CSIGN gates in Q. Furthermore, the circuit L uses
m := 2k + 4Γ optical modes. Let U be the m × m unitary matrix induced by L, and let V be
the (m/2)× (m/2) submatrix of U obtained by taking the even-numbered rows and columns only.
Then we have

Per (V) = 〈I|ϕ (L) |I〉

=
〈0 · · · 0|Q |0 · · · 0〉

4Γ

=
∆C

2n4Γ

where the first line follows from formula (*) and the third from Lemma 5. Since V can be produced
in polynomial time given C, this already shows that computing Per (V) to sufficient precision is
#P-hard.

However, we still need to deal with the issue that the entries of V are real numbers.9 Let
b := ⌈log2 (n!) + 2n + 2Γ⌉. Then notice that truncating the entries of V to b bits of precision
produces a matrix Ṽ such that

∣∣∣Per(Ṽ)− Per (V)
∣∣∣ ≤ n!

(
1−

(
1− 1

2b

)n)

≤ n! · n
2b

≤ 1

2n+24Γ

for sufficiently large n, and hence
⌊
2n4Γ Per(Ṽ)

⌉
= 2n4Γ Per (V) = ∆C .

For this reason, we can assume that each entry of V has the form k/2b for some integer k ∈
[
−2b, 2b

]
.

Now set A := 2bV . Then A is an integer matrix satisfying Per (A) = 2bn Per (V), whose entries
can be specified using b+O (1) = poly (n, |C|) bits each. This completes the proof of Theorem 4.

We conclude by noticing that our proof yields not only Theorem 4, but also the following
corollary:

Corollary 6 The problem of computing sgn (Per (A)) := Per (A) / |Per (A)|, given a matrix A ∈
Z
N×N of poly (N)-bit integers written in binary, is #P-hard under Turing reductions.

Proof. By the above equivalences, it suffices to show that computing sgn (∆C) is #P-hard. This
is true because, given the ability to compute sgn (∆C), we can determine ∆C exactly using binary
search. In more detail, given a positive integer k, let C [k] denote the circuit C modified to contain
k additional inputs x such that C (x) = 1, and let C [−k] denote C modified to contain k additional
x’s such that C (x) = −1. Then clearly

∆C[k] = ∆C + k,

∆C[−k] = ∆C − k.

9Indeed, the matrices that we multiply to obtain U can be complex matrices, but U itself (and hence the submatrix
V) will always be real.

10

Thus we can use the following strategy: compute the signs of ∆C[1],∆C[−1],∆C[2],∆C[−2],∆C[4],∆C[−4],and
so on, increasing k by successive factors of 2, until a k is found such that sgn

(
∆C[k]

)
6= sgn

(
∆C[2k]

)
.

At that point, we know that ∆C must be between k and 2k. Then by computing sgn
(
∆C[3k/2]

)
,

we can decide whether ∆C is between k and 3k/2 or between 3k/2 and 2k, and so on recursively
until ∆C has been determined exactly.

Corollary 6 implies, in particular, that approximating Per (A) to within any multiplicative factor
is #P-hard—since to output a multiplicative approximation, at the least we would need to know
whether Per (A) is positive or negative.

Using a more involved binary search strategy (which we omit), one can show that, for any
β (N) ∈ [1,poly (N)], even approximating |∆C | or ∆2

C to within a multiplicative factor of β (N)
would let one compute ∆C exactly, and is therefore #P-hard under Turing reductions. It follows
from this that approximating |Per (A)| or Per (A)2 to within a multiplicative factor of β (N) is
#P-hard as well. (Aaronson and Arkhipov [2] gave a related but more complicated proof of the
#P-hardness of approximating |Per (A)| and Per (A)2, which did not first replace Per (A) with ∆C .)

4 Acknowledgments

I am grateful to Alex Arkhipov and Michael Forbes for helpful discussions, and to Andy Drucker,
Greg Kuperberg, Avi Wigderson, Ronald de Wolf, and the anonymous reviewers for their comments.

References

[1] S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Proc.
Roy. Soc. London, A461(2063):3473–3482, 2005. quant-ph/0412187.

[2] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. In Proc. ACM
STOC, 2011. ECCC TR10-170, arXiv:1011.3245.

[3] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,
J. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Phys. Rev. A,
52(3457), 1995. quant-ph/9503016.

[4] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. J. Comput. Sys.
Sci., 50(2):191–202, 1995.

[5] M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum compu-
tations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. London, A467(2126):459–
472, 2010. arXiv:1005.1407.

[6] A. Drucker and R. de Wolf. Quantum proofs for classical theorems. Theory of Computing
Graduate Surveys, (2):1–54, 2011. arXiv:0910.3376, ECCC TR03-048.

[7] P. Hrubes, A. Wigderson, and A. Yehudayoff. Relationless completeness and separations. In
Proc. IEEE Conference on Computational Complexity, pages 280–290, 2010. ECCC TR10-040.

[8] F. Jaeger, D. L. Vertigan, and D. Welsh. On the computational complexity of the Jones and
Tutte polynomials. Math. Proc. Cambridge Philos. Soc., 108(1):35–53, 1990.

11

[9] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with
linear optics. Nature, 409:46–52, 2001. See also quant-ph/0006088.

[10] G. Kuperberg. How hard is it to approximate the Jones polynomial? arXiv:0908.0512, 2009.

[11] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

[12] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani. Experimental realization of any discrete
unitary operator. Phys. Rev. Lett., 73(1):58–61, 1994.

[13] T. Rudolph. A simple encoding of a quantum circuit amplitude as a matrix permanent.
arXiv:0909.3005, 2009.

[14] S. Scheel. Permanents in linear optical networks. quant-ph/0406127, 2004.

[15] L. G. Valiant. The complexity of computing the permanent. Theoretical Comput. Sci.,
8(2):189–201, 1979.

12

