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Abstract. We present evidence that statistics drawn from an automated parser can aid in stylometric analysis.  The problem considered is that of clustering a collection of texts by author, without any baseline texts of known authorship.  We use a feature based on relative frequencies of grammar rules as computed by an automated parser, the CMU Link Grammar parser.  We compare this feature against standard “data-driven” features: letter, punctuation, and function word frequencies, and mean and variance of sentence length.  On two corpora—(1) the Federalist Papers and (2) selections from Twain, Hawthorne, and Melville—our results indicate that syntactic and data-driven features combined yield accuracy as good as or better than data-driven features alone.  We analyze the results using a cluster validity measure that may be of independent interest.

Keywords. author attribution, stylometry, automated parsing, clustering, cluster validity

1. Introduction

The goal of this paper is to study how differences in writing style manifest themselves statistically, and in particular, to evaluate whether syntactic features reveal information about style that data-driven features do not.  By syntactic features, we mean statistics drawn from parses of a text’s sentences; by data-driven features, we mean statistics drawn from a text itself (such as word and punctuation mark counts).  The hypothesis is that data-driven features are more effective than syntactic ones at distinguishing style, but that the combination of both is more effective than either alone.

This hypothesis is of practical interest.  For decades, stylometry has used data-driven features to help determine authorship of texts, both for historical research and for plagiarism and fraud cases.  But there is an enormous variety of data-driven features, and finding ones that work for a specific set of texts is something of a black art.  Thus, it is worth asking whether including syntactic features can improve the accuracy of author attribution.

There is intriguing evidence that the answer is yes.  Baayen et al. (1996) found that syntactic features helped substantially in distinguishing between two writers of crime fiction.  Their methods were somewhat different from ours: they used an annotated corpus and classified texts based on a sample with known authorship, whereas we used an automated parser and clustered texts by author.  Still, our work is related to theirs, and may provide independent evidence for their claims.

The title of Baayen et al.’s paper is “Outside the Cave of Shadows: Using Syntactic Annotation to Enhance Authorship Attribution.”  In Baayen et al.’s view, function words are analogous to the shadows on the cave wall in Plato’s parable.  Function word frequencies are merely a reflection of what really separates one author from another, the authors’ differing use of syntax.  Baayen et al. argue that “by focusing on syntax we are tapping into the more abstract, largely unconscious and hence most revealing habits of our authors … as we move from the relatively concrete domain of words into the more abstract domain of syntax, the use of elementary units becomes less subject to conscious manipulation and thematic development.”


The cave metaphor suggests that clustering documents by style may be more difficult than clustering by subject.  Given just an alphabetized list of the words occurring in a text, it is usually not difficult to discern the text’s subject given enough time.  Internet search engines such as GoogleTM rely on this property of texts.  But if a text’s subject resides largely in the words, then where does its style reside?  The answer is unclear.  One could probably learn little about style from an alphabetized list of a text’s words, even though, as Mosteller and Wallace (1984) and others showed, differing frequencies of a few function words may suffice to distinguish one writer’s style from another’s.  According to Baayen et al., differing function word frequencies are just an artifact of more fundamental differences in syntax.


Baayen et al.’s paper ends with a note: “We are not very optimistic about the use of fully automatic parsers, but follow-up research should not disregard this possibility.”  However, there is reason to doubt Baayen et al.’s pessimism.  Unlike other potential applications of automated parsing, stylometry does not require highly accurate parses.  It only requires parses that yield statistically significant ‘fingerprints’ for particular authors.

2. Summary of Results

In this paper, we give empirical results to support the hypothesis that automated parsing can aid author attribution.

The problem we consider is the following: given a collection of texts and an integer K(1, partition the texts into at most K clusters such that, to the greatest accuracy possible, all texts in a given cluster were written by the same author.  The ‘accuracy’ is defined in terms of the number of texts that must be moved from one cluster to another for the clustering to be perfect.  In Section 5 we define the accuracy measure formally, and we prove some of its statistical properties in an appendix.


An important aspect of our work is that there is no training corpus; we simply want to cluster stylistically similar texts.  This runs counter to what Baayen et al. (1996) calls the “tradition, as exemplified in the study by Mosteller and Wallace,” of comparing “texts of unknown authorship with texts of which authorship is beyond doubt.”  If the clustering approach makes the problem more difficult, it also more closely reflects the reality of certain authorship controversies.  For example, in applying stylometry to the bible, we do not have access to baselines of undisputed authorship, so the goal is generally to find clusters with stylistic similarities (as in Greenwood, 1992, which studies the Pauline epistles).

Our experiments compared how accurately texts are clustered using a variety of features, including data-driven features (letter, punctuation, and word frequencies, and mean and variance of sentence length), a syntactic feature (frequencies of grammar rules as computed by a parser), and combined data-driven and syntactic features.  Section 4 explains and justifies the features.  In all cases we used the K-means algorithm for clustering; see Section 4 for details of the algorithm.  The test corpora were (1) a selection of 18 short passages from novels by Twain, Hawthorne, and Melville, and (2) a selection of 31 Federalist Papers.

The parser we used was the Carnegie Mellon Link Grammar parser (Temperley et al., 2001), version 3.0.  Instead of building a parse tree, this parser simply tries to find ‘syntactic links’ between words (see Grinberg et al., 1995 for details).  As an example, the sentence “James Madison wrote the disputed Federalist Papers” is parsed to

  +----------------------------Xp----------------------------+

  |                    +---------------Osn---------------+   |

  +-----Wd-----+       +------Op-----+                   |   |

  |     +---G--+---Ss--+     +---DD--+          +----G---+   |

  |     |      |       |     |       |          |        |   |

///// James Madison wrote.v the disputed.a Federalist Papers .
The Link Grammar parser seems well suited to stylometric applications, in which one only cares about the relative frequencies of syntactic features, not about the logical structure of a particular sentence.  Additional reasons we chose this parser were its good handling of fragments and ill-formed or ungrammatical sentences, its free availability as a C library, and its parsing efficiency.

The results, though inconclusive, support the hypothesis that data-driven and syntactic features combined can yield greater accuracy than either alone.  Section 6 gives the results in detail, and Section 7 analyzes them.

3. Related Work

Besides the paper of Baayen et al. (1996) discussed previously, we mention two other papers relevant to the present work.

 
Forsyth and Holmes (1996) catalog the advantages and disadvantages of various data-driven features.  They evaluated five features on a benchmark suite, establishing what they call a “preliminary ‘pecking order’” of features:

· Letter frequencies, 69% accuracy

· Frequencies of most frequent words, 73% accuracy (the principle is that the most frequent words tend to be function words)

· Bigram frequencies, 74% accuracy

· Progressive pairwise chunking, 75% accuracy

· Monte-Carlo feature-finding, 79% accuracy
The accuracy is the proportion of texts assigned the correct author when a given feature is used for classification.  The last two features were introduced by Forsyth and Holmes; we elected not to implement them.

Ledger and Merriam (1994) used cluster analysis, as well as multivariate analysis, to try to determine which acts of The Two Noble Kinsmen were written by Shakespeare and which by John Fletcher.  Particularly noteworthy is that they achieved interesting results using only letter frequency as a feature.

There has been considerable work on clustering texts by genre (see, for example, Kessler et al., 1997).  Here, though, our concern is clustering by author (or, more abstractly, by style), given a collection of texts that often belong to the same genre.

4. Features and Clustering Method

We consider each feature to be a set of real-valued components.  For example, the letter frequency feature has 26 components, and the mean sentence length feature has only one component.  For each text, we compute all components of all features being used and store the results as a vector.  If more than one feature is being used, we normalize the components so that each feature counts equally.  We then cluster the vectors using the K-means algorithm, with the number K of clusters given as input.  (For a description of the K-means algorithm, see e.g. Mirkin, 1996)  Originally we normalized the vectors by replacing components with their standard deviations, but we found that eliminating this step consistently improved results.  We measure similarity using the L1 (or city-block) norm, which produced more accurate results than the L2 (or Euclidean) norm and several other p-norms that we tried.  The centroid of a cluster is taken to be the mean of the points in it.


In the remainder of the section, we explain and justify the features used in our experiments.

Letter frequency (non-case-sensitive).  We chose to include letter frequency for two reasons: first, it is a simple baseline for comparison against such features as word frequency, and second, several papers (such as Ledger and Merriam, 1994) reported unexpectedly good results with it.

Punctuation frequency.  We count frequencies of 15 punctuation symbols commonly used in English text: ! $ % & ( ) - ; : ‘ “ , . / ?.  The intuition is that frequencies of certain characters, such as exclamation points and parentheses, may reflect differences in writing styles.

Mean sentence length.  Various heuristics for dealing with quotations, headings, and nonstandard punctuation are used to demarcate sentences.  Since it is probably the simplest stylometric feature, we considered it crucial to include mean sentence length as a baseline.  This feature might help to distinguish simple styles from more ponderous ones.

Standard deviation of sentence length.  Intuitively, lively or informal writing might contain sentences of widely differing lengths, while formulaic writing might have less variation.

Word frequency.  We compute the frequencies in a given text of the twenty most common words in the entire corpus, out of a list of 294 words chosen to be relatively “content-neutral” (mostly function words and pronouns).  Word frequency is one of the cornerstones of stylometry; for example, it was key to Mosteller and Wallace’s study of the Federalist Papers (Mosteller and Wallace, 1984).  There are two reasons for using a pre-selected list of words.  First, it allows one to make only one pass through the corpus rather than making two passes and maintaining a hash table.  Second, we did not want to cluster texts based on common words signifying similar subject matter (such as names of characters in a novel).

Word frequency is harder to use in clustering than in classification with baselines of known authorship.  The reason is that one cannot choose a set of words in advance (such as “whilst” and “upon” in the case of the Federalist Papers) with high potential to discriminate between specific authors.

Grammar rule frequency.  This feature is identical to the word frequency feature, but is run on a corpus of grammar rules for sentences rather than on the sentences themselves.  As mentioned in Section 1, we generated grammar rules using the Link Grammar parser.  We attempted to parse only sentences 35 words long or less, since the parser almost never succeeded in parsing longer sentences.  We allowed up to three seconds of processing time per sentence, and up to three null links (or errors) per parse.  Sentences that could not be parsed within these limits were omitted.  We were able to parse about 40% of sentences in both of the test corpora.  The output was simply the sequence of grammar rules; structural information about the positions of the rules in sentences was ignored.  We considered 239 distinct grammar rules (all of the Link Grammar’s basic link types, together with their extensions).

Bigram frequency.  We obtained consistently poor results with bigram frequency (alone and in conjunction with other features), so we chose to remove it from the collection of features.  If grammar rule frequency performed well compared to bigram frequency, it is not clear what would be demonstrated.

5. Cluster Matching

There are numerous ways to measure the validity of clusters (see for example Mirkin, 1996).  But many measures seem to be specific to hierarchical clustering schemes, or deal with the structure of clusters themselves, rather than comparing them to external data.  For this work, we elected to use cluster matching, a simple, intuitive measure that may be of independent interest.  In this section we introduce the measure and state some theorems about its properties; the theorems are proved in an appendix.

We define the accuracy A to be 1 – K( / ((K-1)m), where K ( 2 is the number of clusters, m ( K is the number of texts, and ( is the error, or minimum number of texts that must be moved from one cluster to another before the computed clusters are equivalent to the true clusters up to ordering.  (We need “up to ordering” because the clusters returned by algorithms such as K-means are unlabeled.)  We assume that both the true clustering and the computed clustering are partitions of the texts, which they always are in our experiments; clusters are not overlapping or hierarchical.  We then have the following:

Theorem 1: 0 ( A ( 1.

Furthermore, one can check that a perfect clustering has A = 1, while a clustering in which each true cluster contributes an equal number of texts to each computed cluster has A = 0.  The accuracy measure has another nice property:

Theorem 2: Given a computed clustering and a true clustering, A can be computed in polynomial time, by reduction to the maximum-weight bipartite matching problem.

The A values given in this paper were computed by hand; if the corpora were much larger, it would become worthwhile to implement, say, the Ford-Fulkerson algorithm (see Cormen et al., 2001) to perform the matching.


How can we prove that a given accuracy is statistically significant?  We might first ask what the expected accuracy would be for a given list of true clusters, were each text placed into one of the K computed clusters uniformly at random.  This is related to the classic urn model in statistics, and we can show the following:

Theorem 3: Suppose each true cluster has ( texts, ((K) = m / K is a function of K satisfying ( = ((K), and texts are placed uniformly at random into computed clusters.  Then the expected accuracy is O(log K / K).

Given an error (, we might also want to know the probability p that placing texts into computed clusters uniformly at random would produce error less than or equal to (.  We do not know a tight result, but can give an upper bound:

Theorem 4: 
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This upper bound would not apply were the clustering algorithm given prior information about cluster sizes (for example, if it knew to find K clusters of roughly the same size).  But in our experiments, the algorithm was not given any such information.

6. Experimental Results

The goal of the experiments was to compare syntactic and data-driven features’ effectiveness at clustering texts by author.  We assembled two test corpora.  The first consisted of 18 texts, three passages of approximately 2500 words each from six nineteenth-century American novels: The Adventures of Huckleberry Finn and A Connecticut Yankee in King Arthur’s Court by Mark Twain; The Scarlet Letter and The House of The Seven Gables by Nathaniel Hawthorne; and Moby Dick and Typee by Herman Melville.  We chose these by the following criteria: the texts should be by famous authors, they should all be from the same register, country, and historical period; they should span more than one work by each author; and they should be readily available in electronic form.  The second corpus consisted of 31 Federalist Papers: ten accepted as Alexander Hamilton’s on historical grounds (1, 6, 7, 30, 33, 34, 68, 71, 79, 85), ten accepted as James Madison’s on historical grounds (10, 37, 38, 39, 40, 41, 42, 43, 44, 45), and eleven previously under dispute (49, 50, 51, 52, 53, 54, 55, 56, 57, 62, 63) but now accepted to be Madison’s.

Tables 1 and 2 and Figure 1 summarize the results.  “Errors” is the minimum number of texts that must be moved from one cluster to another; accuracy is as defined in Section 5; “Max p” is an upper bound on the result occurring by chance, as implied by Theorem 4; and “Time (s)” is the number of seconds needed for clustering, not including the time needed for the parsing program.  Recall that, when features were tested in conjunction, they were always weighed equally.  For the Federalist Papers corpus, disputed papers were counted as Madison’s, in keeping with the current consensus.

	Table 1: Results with 19th-century novels corpus

	Feature set tested
	Errors
	Accuracy
	Max p
	Time (s)

	Letter frequency
	8
	0.333
	Not sig.
	1.412

	Punctuation mark frequency
	1
	0.917
	5.73(10-7
	1.021

	Word frequency
	4
	0.667
	8.69(10-4
	1.810

	Letters and punctuation
	1
	0.917
	5.73(10-7
	2.003

	Punctuation and words
	2
	0.833
	1.01(10-5
	1.572

	Letters, punctuation, and words
	2
	0.833
	1.01(10-5
	2.704

	Mean sentence length
	7
	0.417
	Not sig.
	0.490

	St. dev. of sentence length
	7
	0.417
	Not sig.
	0.461

	Mean and st. dev. Of length
	7
	0.417
	Not sig.
	0.540

	Grammar rule frequency
	2
	0.833
	1.01(10-5
	1.320

	Grammar rules and punctuation
	1
	0.917
	5.73(10-7
	1.700

	Grammar rules and words
	5
	0.583
	5.12(10-3
	1.870

	Grammar rules, punctuation, and words
	2
	0.833
	1.01(10-5
	2.300


	Table 2: Results with Federalist Papers corpus

	Feature set tested
	Errors
	Accuracy
	Max p
	Time (s)

	Letter frequency
	10
	0.355
	Not sig.
	2.413

	Punctuation mark frequency
	9
	0.419
	2.94(10-2
	1.472

	Word frequency
	8
	0.484
	1.07(10-2
	2.520

	Letters and punctuation
	15
	0.032
	Not sig.
	2.924

	Punctuation and words
	14
	0.097
	Not sig.
	2.233

	Letters, punctuation, and words
	15
	0.032
	Not sig.
	3.615

	Mean sentence length
	10
	0.355
	Not sig.
	0.701

	St. dev. of sentence length
	11
	0.290
	Not sig.
	0.752

	Mean and st. dev. Of length
	10
	0.355
	Not sig.
	0.872

	Grammar rule frequency
	14
	0.097
	Not sig.
	1.710

	Grammar rules and punctuation
	7
	0.548
	3.33(10-3
	2.200

	Grammar rules and words
	10
	0.355
	Not sig.
	2.410

	Grammar rules, punctuation, and words
	12
	0.281
	Not sig.
	3.570


[image: image2.wmf]0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Letter

frequency

Punctuation

mark

frequency

Word

frequency

Letters and

punctuation

Mean

sentence

length

St. dev. of

sentence

length

Grammar

rule

frequency

Rules and

punctuation

Rules,

punctuation,

and words

Accuracy of clusters

19th-century corpus

Federalist corpus


Figure 1: Accuracy of clusters under different feature combinations

7. Analysis

In general, features generated reasonably accurate clusters for the 19th-century novels corpus, and poor clusters for the Federalist Papers corpus.  This is unsurprising, since the Federalist Papers is a challenging benchmark problem in stylometry, and the novels corpus includes three writers with widely differing styles.  (Twain, in particular, tended not to be clustered with Melville and Hawthorne.)  What interests us here is the relative performance of the features, and what these performances indicate about the “cave of shadows” hypothesis of Baayen et al. (1996).

Letter frequency alone produced statistically insignificant results for both corpora.  Punctuation frequency was highly effective, both by itself and in conjunction with other features.  This supports the hypothesis that punctuation frequency is a more direct reflection of style than such features as letter frequency and bigram frequency.  Mean sentence length and standard deviation of sentence length did not produce statistically significant results, which might be caused by their having only a single component each.  In the novels corpus, features that worked well individually tended to work well together—for example, letter frequency combined with punctuation frequency was as effective as punctuation frequency alone.  But strangely, this effect disappears in the Federalist Papers corpus; no combination of data-driven features produced statistically significant results.


The results for grammar rule frequency yield tentative support for our thesis.  In the novels corpus, feature combinations involving grammar rules were competitive with those involving only data-driven features; neither was a clear winner.  (Larger corpora would be required to reach a conclusion; we were limited by the processing time needed to parse the corpora.)  In the Federalist Papers corpus, the best-performing feature set was grammar rule frequency combined with punctuation frequency, with 7 errors out of 31 texts and p<3.33(10-3.

All of these results seem poor compared to, for example, the apparently perfect accuracy that Mosteller and Wallace (1984) achieved.  But since the clustering approach does not allow fine-tuning beforehand with texts of known authorship, statistically significant results, rather than near-perfect ones, may be the best achievable.

We hope that this paper will encourage further research on using automated parsing for stylometric applications.  In particular, to address the usefulness of automated parsing for stylometry, one would ideally want a comparison of hand parses against machine-generated parses for some hand-parsed corpus, using the same set of syntactic features for both.
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Appendix: Proofs of Theorems in Section 5

Proof of Theorem 1: A ( 1 because K ( 2, ( ( 0, and m ( 1.  For A ( 0, we use the probabilistic method.  For any list C1 … CK of computed clusters, consider the mean error over all K! assignments of computed clusters to true clusters.  Let Ti be a true cluster; then Ti is equally likely to be assigned to any of the computed clusters.  Letting Sij be the number of texts Ti shares with Ci (so that Si1 + … + Sik = |Ti|), the mean error contributed by Ti then is

1 / K [(|Ti| - Si1) + … + (|Ti| - Sik)]

         =
1 / K [K|Ti| - (Si1 + … + Sik)]

         = (1 – 1 / K) |Ti|.

So adding the mean error contributed by all true clusters, the mean error over all assignments is

(1 – 1 / K) (|T1| + … + |Tk|)

         =
(1 – 1 / K)m.

Therefore, there must exist at least one assignment for which the error is ( (1 – 1/K)m.  So ( ( (1 – 1 / K)m, or rearranging, A = 1 – Ke / (K-1) m ( 0. (
Proof of Theorem 2: We create a weighted bipartite graph G with the true clusters T1 … TK as left vertices and the computed clusters C1 … CK as right vertices.  The weight of edge (Ti, Cj) equals the number of texts in Cj that are not in Ti.  We then find a minimum-weight perfect matching for G, which can be done in polynomial time (Cormen et al. 2001).  The matching thus obtained will minimize the sum, over all computed clusters, of the number of texts that do not belong to the corresponding true cluster and thus have to be moved to a different cluster.  This is equivalent to minimizing the error.  Summing the weights of edges in the matching yields (, from which we can compute A. (
Proof of Theorem 3: Let T be any true cluster.  We have ( texts from T distributed uniformly at random into K computed clusters, and we would like to know, on average, the maximum number X(K,() of these texts that fall into any one computed cluster.  In terms of the urn model, we would like to know the “limit distribution of maximal occupancy” if ( balls are thrown uniformly at random into K urns, a problem discussed in Kolchin et al. (1978), p. 94-115.  Kolchin et al.’s Theorem II.6.1 implies that if ( = o(K log K), then in the limit, the distribution of the maximum number of balls in an urn becomes concentrated at R-1 and R, where R > ( / K is a solution to the equation

R! (( / K)-R = K e-(/K.

This equation can give us an asymptotic upper bound on X(K,(): if ( = ((K), then X(K,() = O(( log K / K).

Let ( = ( / K = ((1), and R = ( log K / K = ( log K.  We want to show that for any (, the inequality

R! (-R > K e-(
holds asymptotically (i.e., for all K > some K0).  Using Stirling’s approximation (and dropping the ((2(R), which can only make the inequality weaker), we obtain

(R/e)R (-R > Ke-(
Substituting R = ( log K and taking the logarithm of both sides:


( log K log[( log K / e] – ( log ( log K > log K - (
Algebraic manipulation leads to


log log K + 1 / log K > 1/( + 1

which holds asymptotically since ( = ((1).

Now, for each computed cluster Cj, let tj be the maximum number of texts Cj has in common with any true cluster.  Since all ( texts in Cj must be moved to the same true cluster, (-tj is the minimum error Cj could contribute.  From the upper bound in the urn model, the expected value of tj is X(K,() = O(( log K / K), so Cj’s expected error is ( - O(( log K / K).  Since the random variable tj depends only on the distribution of Cj’s texts, we can sum the expected error over all Cj, obtaining that the expected ( is

K( - O(( log K).

So the expected accuracy is

       A
= 1 – K ( / ((K-1) m)

= 1 – K[K( - O(( log K)] / ((K-1) K()

= O(log K / K). (
Proof of Theorem 4: Suppose the matching of computed clusters to true clusters were fixed.  Then the probability q of the error being less than or equal to ( would just be the probability of from m-( to m successes out of m independent trials (assignments of texts into computed clusters), each one having success probability 1/K.  From the binomial distribution,
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There are K! possible matchings of computed clusters to true clusters, and we’re interested in the probability that any of them have error less than or equal to (.  By the union bound, this is ( K! q. (
References

Baayen, H., H. van Halteren, and F. Tweedie (1996) Outside the Cave of Shadows: Using Syntactic Annotation to Enhance Authorship Attribution.  Literary and Linguistic Computing 11(3).

Cormen, T.H., C.E. Leiserson, R.L. Rivest, and C. Stein (2001).  Introduction to Algorithms, McGraw-Hill.

Forsyth, R.S. and D.I. Holmes (1996) Feature-Finding for Text Classification.  Literary and Linguistic Computing 11(4).

Greenwood, H.H. (1992) St. Paul Revisited—a Computational Result.  Literary and Linguistic Computing 7(1).

Grinberg, D., J. Lafferty and D. Sleator (1995) A robust parsing algorithm for link grammars.  In Proceedings of the Fourth International Workshop on Parsing Technologies, Prague.

Kessler, B., G. Nunberg and H. Schütze (1997) Automatic Detection of Text Genre.  In Proceedings of 35th Annual Meeting of the Association for Computational Linguistics (ACL).

Kolchin, V., B. Sevast’yanov, and V. Chistyakov (1978) Random Allocations, Wiley.

Ledger, G. and T. Merriam (1994) Shakespeare, Fletcher, and the Two Noble Kinsmen.  Literary and Linguistic Computing 9(3).

Mirkin, B. (1996) Mathematical Classification and Clustering (Nonconvex Optimization and its Applications Vol. 11), Kluwer.

Mosteller, F. and D. L. Wallace (1984) Applied Bayesian and Classical Inference: The Case of the Federalist Papers, Springer Series in Statistics.

Temperley, D., D. Sleator, and J. Lafferty (2001) The Link Grammar Parser (software).  [http://www.link.cs.cmu.edu/link]











































17

_1067784066.unknown

_1067784381.unknown

