
The Equivalence of Sampling and Searching

Scott Aaronson∗

Abstract

In a sampling problem, we are given an input x ∈ {0, 1}n, and asked to sample approximately
from a probability distribution Dx over poly (n)-bit strings. In a search problem, we are given
an input x ∈ {0, 1}n, and asked to find a member of a nonempty set Ax with high probability.
(An example is finding a Nash equilibrium.) In this paper, we use tools from Kolmogorov
complexity to show that sampling and search problems are “essentially equivalent.” More
precisely, for any sampling problem S, there exists a search problem RS such that, if C is any
“reasonable” complexity class, then RS is in the search version of C if and only if S is in the
sampling version. What makes this nontrivial is that the same RS works for every C.

As an application, we prove the surprising result that SampP = SampBQP if and only
if FBPP = FBQP. In other words, classical computers can efficiently sample the output
distribution of every quantum circuit, if and only if they can efficiently solve every search
problem that quantum computers can solve.

1 Introduction

The Extended Church-Turing Thesis (ECT) says that all computational problems that are feasibly
solvable in the physical world are feasibly solvable by a probabilistic Turing machine. By now,
there have been almost two decades of discussion about this thesis, and the challenge that quantum
computing poses to it. This paper is about a related question that has attracted surprisingly little
interest: namely, what exactly should we understand the ECT to state? When we say “all
computational problems,” do we mean decision problems? promise problems? search problems?
sampling problems? possibly other types of problems? Could the ECT hold for some of these types
of problems but fail for others?

Our main result is an equivalence between sampling and search problems: the ECT holds for
one type of problem if and only if it holds for the other. As a motivating example, we will prove the
surprising fact that, if classical computers can efficiently solve any search problem that quantum
computers can solve, then they can also approximately sample the output distribution of any
quantum circuit. The proof makes essential use of Kolmogorov complexity. The technical tools
that we will use are standard ones in the algorithmic information theory literature; our contribution
is simply to apply those tools to obtain a useful equivalence principle in complexity theory that
seems not to have been known before.

While the motivation for our equivalence theorem came from quantum computing, we wish to
stress that the theorem itself is much more general, and has nothing to do with quantum computing
in particular. Throughout this paper, we will use the names of quantum complexity classes—such
as BQP (Bounded-Error Quantum Polynomial-Time), the class of languages efficiently decidable

∗MIT. Email: aaronson@csail.mit.edu. This material is based upon work supported by the National Science
Foundation under Grant No. 0844626, a TIBCO Chair, and an Alan T. Waterman award.

1

by a quantum algorithm—but only as “black boxes.” No familiarity with quantum computing is
needed.

The rest of the paper is organized as follows. Section 1.1 contains a general discussion of the
relationships among decision problems, promise problems, search problems, and sampling problems;
it can be safely skipped by readers already familiar with this material. Section 1.2 states our main
result, as well as its implications for quantum computing in general and linear-optics experiments in
particular. Section 1.3 explains how Kolmogorov complexity is used to prove the main result, and
situates the result in the context of earlier work on Kolmogorov complexity. Next, in Section 2,
we review some needed definitions and results from complexity theory (in Section 2.1), algorithmic
information theory (in Section 2.2), and “standard” information theory (in Section 2.3). We prove
the main result in Section 3, and the example application to quantum computing in Section 3.1.
Finally, in Section 4, we present several extensions and generalizations of the main result, which
address various shortcomings of it. Section 4 also discusses numerous open problems.

1.1 Background

Theoretical computer science has traditionally focused on language decision problems, where given
a language L ⊆ {0, 1}∗, the goal is to decide whether x ∈ L for any input x. From this perspective,
asking whether quantum computing contradicts the ECT is tantamount to asking:

Problem 1 Does BPP = BQP?

However, one can also consider promise problems, where the goal is to accept all inputs in a
set LYES ⊆ {0, 1}∗ and reject all inputs in another set LNO ⊆ {0, 1}∗. Here LYES and LNO are
disjoint, but their union is not necessarily all strings, and an algorithm can do whatever it likes
on inputs not in LYES ∪ LNO. Goldreich [5] has made a strong case that promise problems are at
least as fundamental as language decision problems, if not more so. To give one relevant example,
the task

Given a quantum circuit C, estimate the probability p (C) that C accepts

is easy to formulate as a promise problem, but has no known formulation as a language decision
problem. The reason is the usual “knife-edge” issue: given any probability p∗ ∈ [0, 1] and error
bound ε ≥ 1/poly (n), we can ask a simulation algorithm to accept all quantum circuits C such
that p (C) ≥ p∗+ε, and to reject all circuits C such that p (C) ≤ p∗−ε. But we cannot reasonably
ask an algorithm to decide whether p (C) = p∗ + 2−n or p (C) = p∗ − 2−n: if p (C) is too close to
p∗, then the algorithm’s behavior is unknown.

Let PromiseBPP and PromiseBQP be the classes of promise problems solvable by probabilistic
and quantum computers respectively, in polynomial time and with bounded probability of error.
Then a second way to ask whether quantum mechanics contradicts the ECT is to ask:

Problem 2 Does PromiseBPP = PromiseBQP?

Now, if one accepts replacing languages by promise problems, then there seems little reason
not to go further. One can also consider search problems, where given an input x ∈ {0, 1}n, the

goal is to output any element of some nonempty “solution set” Ax ⊆ {0, 1}poly(n).1 Perhaps the

1Search problems are also called “relational problems,” for the historical reason that one can define such a problem
using a binary relation R ⊆ {0, 1}∗ × {0, 1}∗, with (x, y) ∈ R if and only if y ∈ Ax. Another name often used is

2

most famous example of a search problem is finding a Nash equilibrium, which Daskalakis et al.
[3] showed to be complete for the class PPAD. By Nash’s Theorem, every game has at least one
Nash equilibrium, but the problem of finding one has no known formulation as either a language
decision problem or a promise problem.

Let FBPP and FBQP be the classes of search problems solvable by probabilistic and quantum
computers respectively, with success probability 1− δ, in time polynomial in n and 1/δ.2 Then a
third version of the “ECT question” is:

Problem 3 Does FBPP = FBQP?

There is yet another important type of problem in theoretical computer science. These are
sampling problems, where given an input x ∈ {0, 1}n, the goal is to sample (exactly or, more
often, approximately) from some probability distribution Dx over poly (n)-bit strings. Well-known
examples of sampling problems include sampling a random point in a high-dimensional convex body
and sampling a random matching in a bipartite graph.

Let SampP and SampBQP be the classes of sampling problems that are solvable by proba-
bilistic and quantum computers respectively, to within ε error in total variation distance, in time
polynomial in n and 1/ε.3 Then a fourth version of our question is:

Problem 4 Does SampP = SampBQP?

Not surprisingly, all of the above questions are open. But we can ask an obvious meta-question:

What is the relationship among Problems 1-4? If the ECT fails in one sense, must it
fail in the other senses as well?

In one direction, there are some easy implications:

SampP = SampBQP =⇒ FBPP = FBQP (1)

=⇒ PromiseBPP = PromiseBQP (2)

=⇒ BPP = BQP. (3)

For the first implication, if every quantumly samplable distribution were also classically samplable,
then given a quantum algorithm Q solving a search problem R, we could approximate Q’s output
distribution using a classical computer, and thereby solve R classically as well. For the second and
third implications, every promise problem is also a search problem (with solution set Ax ⊆ {0, 1}),
and every language decision problem is also a promise problem (with the empty promise).

So the interesting part concerns the possible implications in the “other” direction. For example,
could it be the case that BPP = BQP, yet PromiseBPP 6= PromiseBQP? Not only is this a formal
possibility, but it does not even seem absurd, when we consider that

“function problems.” But that is inaccurate, since the desired output is not a function of the input, except in the
special case |Ax| = 1. We find “search problems” to be the clearest name, and will use it throughout. The one
important point to remember is that a search problem need not be an NP search problem: that is, solutions need not
be efficiently verifiable.

2The F in FBPP and FBQP stands for “function problem.” Here we are following the standard naming convention,
even though the term “function problem” is misleading for the reason pointed out earlier.

3Note that we write SampP instead of “SampBPP” because there is no chance of confusion here. Unlike with deci-
sion, promise, and relation problems, with sampling problems it does not even make sense to talk about deterministic
algorithms.

3

(1) the existing candidates for languages in BQP \ BPP (for example, decision versions of the
factoring and discrete log problems [8]) are all extremely “special” in nature, but

(2) PromiseBQP contains the “general” problem of estimating the acceptance probability of an
arbitrary quantum circuit.

A second example of a difficult and unsolved meta-question is whether PromiseBPP = PromiseBQP

implies SampP = SampBQP. Translated into “physics language,” the question is this: suppose we
had an efficient classical algorithm to estimate the expectation value of any observable in quantum
mechanics. Would that imply an efficient classical algorithm to simulate any quantum experiment,
in the sense of sampling from a probability distribution close to the one quantum mechanics pre-
dicts? The difficulty is that, if we consider a quantum system of n particles, then a measurement
could in general have cn possible outcomes, each with probability on the order of c−n. So, even
supposing we could estimate any given probability to within ±ε, in time polynomial in n and 1/ε,
that would seem to be of little help for the sampling task.

1.2 Our Results

This paper shows that two of the four types of problem discussed above—namely, sampling problems
and search problems—are “equivalent” in a very non-obvious sense. Specifically, given any sampling
problem S, we will construct a search problem R = RS such that, if C is any “reasonable” model of
computation, then S is in SampC (the sampling version of C) if and only if R is in FC (the search
version of C). Here is a more formal statement of the result:

Theorem 5 (Sampling/Searching Equivalence Theorem) Let S be any sampling problem.
Then there exists a search problem RS such that

(i) If O is any oracle for S, then RS ∈ FBPPO.

(ii) If B is any probabilistic Turing machine solving RS, then S ∈ SampPB.

(Importantly, the same search problem RS works for all O and B.)

As one application, we show that the “obvious” implication SampP = SampBQP =⇒ FBPP =
FBQP can be reversed:

Theorem 6 FBPP = FBQP if and only if SampP = SampBQP. In other words, classical comput-
ers can efficiently solve every FBQP search problem, if and only if they can approximately sample
the output distribution of every quantum circuit.

As a second application (which was actually the original motivation for this work), we extend
a recent result of Aaronson and Arkhipov [1]. These authors gave a sampling problem that is
solvable using a simple linear-optics experiment (so in particular, in SampBQP), but is not solvable
efficiently by a classical computer, unless the permanent of a Gaussian random matrix can be
approximated in BPPNP. More formally, consider the following problem, called |GPE|2 (the GPE

stands for Gaussian Permanent Estimation):

Problem 7 (|GPE|2) Given a matrix X ∈ C
n×n of independent N (0, 1) Gaussians, output a real

number y such that
∣

∣

∣
y − |Per (X)|2

∣

∣

∣
≤ ε · n!, (4)

with probability at least 1− δ over X ∼ N (0, 1)n×n
C

, in poly (n, 1/ε, 1/δ) time.

4

The main result of [1] is the following:

Theorem 8 (Aaronson and Arkhipov [1]) SampP = SampBQP implies |GPE|2 ∈ FBPPNP.

The central conjecture made in [1] is that |GPE|2 is #P-complete. If this is the case, then
SampP = SampBQP would imply P#P = BPPNP, which in turn would imply PH = BPPNP by
Toda’s Theorem [9]. Or to put it differently: we could rule out a polynomial-time classical algo-
rithm to sample the output distribution of a quantum computer, under the sole assumption that the
polynomial hierarchy is infinite.

Now, by using Theorem 6 from this paper, we can deduce, in a completely “automatic” way,
that the counterpart of Theorem 8 must hold with search problems in place of sampling problems:

Corollary 9 FBPP = FBQP implies |GPE|2 ∈ FBPPNP. So in particular, assuming |GPE|2 is
#P-complete and PH is infinite, it follows that FBPP 6= FBQP.

Indeed, assuming |GPE|2 is #P-complete, even the containment FBQP ⊆ FBPPPH would imply
P#P = PH and hence (by Toda’s Theorem) that the polynomial hierarchy collapses.

1.3 Proof Overview

Let us explain the basic difficulty we need to overcome to prove Theorem 5. Given a probability
distribution Dx over {0, 1}poly(n), we want to define a set Ax ⊆ {0, 1}poly(n), such that the ability
to find an element of Ax is equivalent to the ability to sample from Dx. At first glance, such a
general reduction seems impossible. For let R = {Ax}x be the search problem in which the goal
is to find an element of Ax given x. Then consider an oracle O that, on input x, returns the
lexicographically first element of Ax. Such an oracle O certainly solves R, but it seems useless if
our goal is to sample uniformly from the set Ax (or indeed, from any other interesting distribution
related to Ax).

Our solution will require going outside the black-box reduction paradigm.4 In other words,
given a sampling problem S = {Dx}x, we do not show that S ∈ SampPO, where O is any oracle
that solves the corresponding search problem RS . Instead, we use the fact that O is computed by
a Turing machine. We then define RS in such a way that O must return, not just any element in
the support of Dx, but an element with near-maximal Kolmogorov complexity.

The idea here is simple: if a Turing machine B is probabilistic, then it can certainly output a
string y with high Kolmogorov complexity, by just generating y at random. But the converse also
holds: if B outputs a string y with high Kolmogorov complexity, then y must have been generated
randomly. For otherwise, the code of B would constitute a succinct description of y.

Given any set A ⊆ {0, 1}n, it is not hard to use the above “Kolmogorov trick” to force a
probabilistic Turing machine B to sample almost-uniformly from A. We simply ask B to produce
k samples y1, . . . , yk ∈ A, for some k = poly (n), such that the tuple 〈y1, . . . , yk〉 has Kolmogorov
complexity close to k log2 |A|. Then we output yi for a uniformly random i ∈ [k].

However, one can also generalize the idea, to force B to sample from an arbitrary distribution
D, not necessarily uniform. One way of doing this would be to reduce to the uniform case,
by dividing the support of D into poly (n) “buckets,” such that D is nearly-uniform within each
bucket, and then asking B to output Kolmogorov-random elements in each bucket. In this paper,
however, we will follow a more direct approach, which exploits the beautiful known connection

4This was previously done for different reasons in a cryptographic context—see for example Barak’s beautiful PhD
thesis [2].

5

between Kolmogorov complexity and Shannon information. In particular, we will use the notion
of a universal randomness test from algorithmic information theory [6, 4]. Let U be the “universal
prior,” in which each string y ∈ {0, 1}∗ occurs with probability proportional to 2−K(y), where K (y)
is the prefix-free Kolmogorov complexity of y. Then given any computable distribution D and
fixed string y, the universal randomness test provides a way to decide whether y was “plausibly
drawn from D,” by considering the ratio PrD [y] /PrU [y]. The main technical fact we need to prove
is simply that such a test can be applied in our complexity-theoretic context, where we care (for
example) that the number of samples from D scales polynomially with the inverses of the relevant
error parameters.

From one perspective, our result represents a surprising use of Kolmogorov complexity in the
seemingly “distant” realm of polynomial-time reductions. Let us stress that we are not using
Kolmogorov complexity as just a technical convenience, or as shorthand for a counting argument.
Rather, Kolmogorov complexity seems essential even to define a search problem RS with the prop-
erties we need. From another perspective, however, our use of Kolmogorov complexity is close in
spirit to the reasons why Kolmogorov complexity was defined and studied in the first place! The
whole point, after all, is to be able to talk about the “randomness of an individual object,” without
reference to any distribution from which the object was drawn. And that is exactly what we need,
if we want to achieve the “paradoxical” goal of sampling from a distribution, using an oracle that
is guaranteed only to output a fixed string y with specified properties.

2 Preliminaries

2.1 Sampling and Search Problems

We first formally define sampling problems, as well as the complexity classes SampP and SampBQP

of sampling problems that are efficiently solvable by classical and quantum computers respectively.

Definition 10 (Sampling Problems, SampP, and SampBQP) A sampling problem S is a col-
lection of probability distributions (Dx)x∈{0,1}∗, one for each input string x ∈ {0, 1}n, where Dx

is a distribution over {0, 1}p(n), for some fixed polynomial p. Then SampP is the class of sam-
pling problems S = (Dx)x∈{0,1}∗ for which there exists a probabilistic polynomial-time algorithm B

that, given
〈

x, 01/ε
〉

as input, samples from a probability distribution Cx such that ‖Cx −Dx‖ ≤ ε.
SampBQP is defined the same way, except that B is a quantum algorithm rather than a classical
one.

Let us also define search problems, as well as the complexity classes FBPP and FBQP of search
problems that are efficiently solvable by classical and quantum computers respectively.

Definition 11 (Search Problems, FBPP, and FBQP) A search problem R is a collection of

nonempty sets (Ax)x∈{0,1}∗, one for each input string x ∈ {0, 1}n, where Ax ⊆ {0, 1}p(n) for some
fixed polynomial p. Then FBPP is the class of search problems R = (Ax)x∈{0,1}∗ for which there

exists a probabilistic polynomial-time algorithm B that, given an input x ∈ {0, 1}n together with
01/ε, produces an output y such that

Pr [y ∈ Ax] ≥ 1− ε, (5)

where the probability is over B’s internal randomness. FBQP is defined the same way, except that
B is a quantum algorithm rather than a classical one.

6

2.2 Algorithmic Information Theory

We now review some basic definitions and results from the theory of Kolmogorov complexity. Recall
that a set of strings P ⊂ {0, 1}∗ is called prefix-free if no x ∈ P is a prefix of any other y ∈ P .

Definition 12 (Kolmogorov complexity) Fix a universal Turing machine U , such that the set
of valid programs of U is prefix-free. Then K (y), or the prefix-free Kolmogorov complexity of y,
is the minimum length of a program x such that U (x) = y. We can also define the conditional
Kolmogorov complexity K (y|z), as the minimum length of a program x such that U (〈x, z〉) = y.

We are going to need two basic lemmas that relate Kolmogorov complexity to standard infor-
mation theory, and that can be found in the book of Li and Vitányi [6] for example. The first
lemma follows from Shannon’s noiseless channel coding theorem, together with the Kraft-Chaitin
lemma.

Lemma 13 Let D = {px} be any computable distribution over strings, and let x be any element in
the support of D. Then

K (x) ≤ log2
1

px
+K (D) +O (1) , (6)

where K (D) represents the length of the shortest program to sample from D. The same holds if
we replace K (x) and K (D) by K (x|y) and K (D|y) respectively, for any fixed y.

The next lemma follows from a counting argument.

Lemma 14 ([6]) Let D = {px} be any distribution over strings (not necessarily computable).
Then there exists a universal constant b such that

Pr
x∼D

[

K (x) ≥ log2
1

px
− c

]

≥ 1−
b

2c
. (7)

The same holds if we replace K (x) by K (x|y) for any fixed y.

2.3 Information Theory

This section reviews some basic definitions and facts from information theory. Let A = {px}x
and B = {qx}x be two probability distributions over [N]. Then recall that the variation distance
between A and B is defined as

‖A − B‖ :=
1

2

N
∑

x=1

|px − qx| , (8)

while the KL-divergence is

DKL (A||B) :=
N
∑

x=1

px log2
px
qx

. (9)

The variation distance and the KL-divergence are related as follows:

Proposition 15 (Pinsker’s Inequality) ‖A − B‖ ≤
√

2DKL (A||B).

We will also need a fact about KL-divergence that has been useful in the study of parallel
repetition, and that can be found (for example) in a paper by Rao [7].

7

Proposition 16 ([7]) Let R be a distribution over [N]k, with marginal distribution Ri on the ith

coordinate. Let D be a distribution over [N]. Then

k
∑

i=1

DKL (Ri||D) ≤ DKL

(

R||Dk
)

. (10)

3 Main Result

Let S = {Dx}x be a sampling problem. Then our goal is to construct a search problem R =
RS = {Ax}x that is “equivalent” to S. Given an input of the form

〈

x, 01/δ
〉

, the goal in the search
problem will be to produce an output Y such that Y ∈ Ax,δ, with success probability at least 1− δ.
The running time should be poly (n, 1/δ).

Fix an input x ∈ {0, 1}n, and let D := Dx be the corresponding probability distribution over
{0, 1}m. Let py := PrD [y] be the probability of y. We now define the search problem R. Let
N := m/δ2.1, and let Y = 〈y1, . . . , yN 〉 be an N -tuple of m-bit strings. Then we set Y ∈ Ax,δ if
and only if

log2
1

py1 · · · pyN
≤ K (Y | x, δ) + β, (11)

where β := 1 + log2 1/δ.
The first thing we need to show is that any algorithm that solves the sampling problem S also

solves the search problem R with high probability.

Lemma 17 Let C = Cx be any distribution over {0, 1}m such that ‖C − D‖ ≤ ε. Then

Pr
Y∼CN

[Y /∈ Ax,δ] ≤ εN +
b

2β
. (12)

Proof. We have

Pr
Y∼CN

[Y /∈ Ax,δ] ≤ Pr
Y∼DN

[Y /∈ Ax,δ] +
∥

∥CN −DN
∥

∥ (13)

≤ Pr
Y∼DN

[Y /∈ Ax,δ] + εN. (14)

So it suffices to consider a Y drawn from DN . By Lemma 14,

Pr
Y∼DN

[

K (Y | x, δ) ≥ log2
1

py1 · · · pyN
− β

]

≥ 1−
b

2β
. (15)

Therefore

Pr
Y∼DN

[Y /∈ Ax,δ] ≤
b

2β
, (16)

and we are done.
The second thing we need to show is that any algorithm that solves the search problem R also

samples from a distribution that is close to D in variation distance.

Lemma 18 Let B be a probabilistic Turing machine, which given input
〈

x, 01/δ
〉

outputs an N -
tuple Y = 〈y1, . . . , yN 〉 of m-bit strings. For some δ ≤ 1/2, suppose that

Pr
[

B
(

x, 01/δ
)

∈ Ax,δ

]

≥ 1− δ, (17)

8

where the probability is over B’s internal randomness. Let R = Rx be the distribution over outputs
of B (x), and let C = Cx be the distribution over {0, 1}m that is obtained by from R by choosing
one of the yi’s uniformly at random. Then there exists a constant QB, depending on B, such that

‖C − D‖ ≤ δ +QB

√

β

N
. (18)

Proof. Let R′ be a distribution that is identical to R, except that we condition on B
(

x, 01/δ
)

∈
Ax,δ. Then by hypothesis, ‖R −R′‖ ≤ δ. Now let R′

i be the marginal distribution of R′ on the
ith coordinate, and let

C′ =
1

N

N
∑

i=1

R′
i (19)

be the distribution over {0, 1}m that is obtained from R′ by choosing one of the yi’s uniformly at
random. Then clearly ‖C − C′‖ ≤ δ as well. So by the triangle inequality,

‖C − D‖ ≤
∥

∥C − C′
∥

∥+
∥

∥C′ −D
∥

∥ ≤ δ +
∥

∥C′ −D
∥

∥ , (20)

and it suffices to upper-bound ‖C′ −D‖.
Let qY := PrR [Y]. Then by Lemma 13,

K (Y | x, δ) ≤ log2
1

qY
+K (R) +O (1) (21)

for all Y ∈ ({0, 1}m)N . Also, for all Y ∈ Ax,δ, by assumption we have

log2
1

py1 · · · pyN
≤ K (Y | x, δ) + β. (22)

Combining, for Y ∈ Ax,δ we have

log2
1

py1 · · · pyN
≤ log2

1

qY
+K (R) +O (1) + β. (23)

This implies the following upper bound on the KL-divergence between R′ and DN :

DKL

(

R′||DN
)

≤
1

1− δ

∑

Y ∈({0,1}m)N∩Ax,δ

qY log2
qY

py1 · · · pyN
(24)

≤
1

1− δ
max

Y ∈Ax,δ

log2
qY

py1 · · · pyN
(25)

≤
1

1− δ
(K (R) +O (1) + β) . (26)

So by Proposition 16,

N
∑

i=1

DKL

(

R′
i||D

)

≤ DKL

(

R′||DN
)

≤
1

1− δ
(K (R) +O (1) + β) , (27)

and by Proposition 15,

1

2

N
∑

i=1

∥

∥R′
i −D

∥

∥

2
≤

1

1− δ
(K (R) +O (1) + β) . (28)

9

So by Cauchy-Schwarz,

N
∑

i=1

∥

∥R′
i −D

∥

∥ ≤

√

2N (β +K (R) +O (1))

1− δ
. (29)

Hence
∥

∥C′ −D
∥

∥ ≤

√

2β + 2K (R) +O (1)

(1− δ)N
≤ QB

√

β

N
(30)

for some constant QB depending on B, where we used the assumption δ ≤ 1/2. So

‖C − D‖ ≤
∥

∥C − C′
∥

∥+
∥

∥C′ −D
∥

∥ ≤ δ +QB

√

β

N
. (31)

By combining Lemmas 17 and 18, we can now prove Theorem 5: that for any sampling problem
S = (Dx)x∈{0,1}∗ (where Dx is a distribution over m = m (n)-bit strings), there exists a search
problem RS = (Ax)x∈{0,1}∗ that is “equivalent” to S in the following two senses.

(i) Let O be any oracle that, given
〈

x, 01/ε, r
〉

as input, outputs a sample from a distribution Cx
such that ‖Cx −Dx‖ ≤ ε, as we vary the random string r. Then RS ∈ FBPPO.

(ii) Let B be any probabilistic Turing machine that, given
〈

x, 01/δ
〉

as input, outputs a Y ∈

({0, 1}m)N such that Y ∈ Ax,δ with probability at least 1− δ. Then S ∈ SampPB .

Proof of Theorem 5 (Sampling/Searching Equivalence Theorem). For part (i), given an
input

〈

x, 01/δ
〉

, suppose we want to output an N -tuple Y = 〈y1, . . . , yN 〉 ∈ ({0, 1}m)N such that
Y ∈ Ax,δ, with success probability at least 1− δ. Recall that N = m/δ2.1. Then the algorithm is
this:

(1) Set ε := δ
2N = δ3.1

2m .

(2) Call O on inputs
〈

x, 01/ε, r1
〉

, . . . ,
〈

x, 01/ε, rN
〉

, where r1, . . . , rN are independent random
strings, and output the result as Y = 〈y1, . . . , yN 〉.

Clearly this algorithm runs in poly (n, 1/δ) time. Furthermore, by Lemma 17, its failure
probability is at most

εN +
b

2β
≤ δ. (32)

For part (ii), given an input
〈

x, 01/ε
〉

, suppose we want to sample from a distribution Cx such
that ‖Cx −Dx‖ ≤ ε. Then the algorithm is this:

(1) Set δ := ε/2, so that N = m/δ2.1 = Θ
(

m/ε2.1
)

.

(2) Call B on input
〈

x, 01/δ
〉

, and let Y = 〈y1, . . . , yN 〉 be B’s output.

(3) Choose i ∈ [N] uniformly at random, and output yi as the sample from Cx.

10

Clearly this algorithm runs in poly (n, 1/ε) time. Furthermore, by Lemma 18 we have

‖Cx −Dx‖ ≤ δ +QB

√

β

N
(33)

≤
ε

2
+QB

√

ε2.1 (2 + log 1/ε)

m
, (34)

for some constant QB depending only on B. So in particular, there exists a constant CB such that
‖Cx −Dx‖ ≤ ε for all m ≥ CB . For m < CB , we can simply hardwire a description of Dx for every
x into the algorithm (note that the algorithm can depend on B; we do not need a single algorithm
that works for all B’s simultaneously).

In particular, Theorem 5 means that S ∈ SampP if and only if RS ∈ FBPP, and likewise
S ∈ SampBQP if and only if RS ∈ FBQP, and so on for any model of computation that is “below
recursive” (i.e., simulable by a Turing machine), and that is able to implement the extremely
simple algorithms in the proof of Theorem 5. (In particular, the model must be able to compute
functions like ε = δ3.1/2m and N = m/δ2.1, and it must be able to sample a polynomial number of
independent random strings, and also choose one string uniformly at random from a polynomially
long list.)

3.1 Implication for Quantum Computing

We now apply Theorem 5 to prove Theorem 6, that SampP = SampBQP if and only if FBPP =
FBQP.
Proof of Theorem 6. First, suppose SampP = SampBQP. Then consider a search problem
R = (Ax)x in FBQP. By assumption, there exists a polynomial-time quantum algorithm Q that,
given

〈

x, 01/δ
〉

as input, outputs a y such that y ∈ Ax with probability at least 1− δ. Let Dx,δ be

the probability distribution over y’s output by Q on input
〈

x, 01/δ
〉

. Then to solve R in FBPP,
clearly it suffices to sample approximately from Dx,δ in classical polynomial time. But we can do
this by the assumption that SampP = SampBQP.5

Second, suppose FBPP = FBQP. Then consider a sampling problem S in SampBQP. By
Theorem 5, we can define a search counterpart RS of S, such that

S ∈ SampBQP =⇒ RS ∈ FBQP (35)

=⇒ RS ∈ FBPP (36)

=⇒ S ∈ SampP. (37)

Hence SampP = SampBQP.
Theorem 6 is easily seen to relativize: for all oracles A, we have SampPA = SampBQPA if and

only if FBPPA = FBQPA. (Of course, when proving a relativized version of Theorem 5, we have
to be careful to define the search problem RS using Kolmogorov complexity for Turing machines
with A-oracles.)

5As mentioned in Section 1, the same argument shows that SampP = SampBQP (or equivalently, FBPP = FBQP)
implies BPP = BQP. However, the converse is far from clear: we have no idea whether BPP = BQP implies
SampP = SampBQP.

11

4 Extensions and Open Problems

4.1 Equivalence of Sampling and Decision Problems?

Perhaps the most interesting question we leave open is whether any nontrivial equivalence holds
between sampling (or search) problems on the one hand, and decision or promise problems on the
other. In Theorem 5, it was certainly essential to consider large numbers of outputs; we would
have no idea how to prove an analogous result with a promise problem PS or language LS instead
of the search problem RS .

One way to approach this question is as follows: does there exist a sampling problem S that is
provably not equivalent to any decision problem, in the sense that for every language L ⊆ {0, 1}∗,
either S /∈ SampPL, or else there exists an oracle O solving S such that L /∈ BPPO? What if we
require the oracle O to be computable? As far as we know, these questions are open.

One might object that, given any sampling problem S, it is easy to define a language LS

that is “equivalent” to S, by using the following simple enumeration trick. Let M1,M2, . . . be
an enumeration of probabilistic Turing machines with polynomial-time alarm clocks. Given a
sampling problem S = (Dx)x∈{0,1}∗ and an input X =

〈

x, 01/ε
〉

, say that Mt succeeds on X if
Mt (X) samples from a distribution CX such that ‖CX −Dx‖ ≤ ε. Also, if x is an n-bit string,
define the length of X =

〈

x, 01/ε
〉

to be ℓ (X) := n+ 1/ε.
We now define a language LS ⊆ {0, 1}∗. For all n, let f (n) be the least t such that Mt succeeds

on all inputs X satisfying ℓ (X) ≤ n. Then for all y ∈ {0, 1}n, we set y ∈ LS if and only if the
Turing machine encoded by y halts in at most nf(n) steps when run on a blank tape.

Proposition 19 S ∈ SampP if and only if LS ∈ P.

Proof. First suppose S ∈ SampP. Then there exists a polynomial-time Turing machine that
succeeds on every input X =

〈

x, 01/ε
〉

. Let Mt be the lexicographically first such machine. Then
it is not hard to see that LS consists of a finite prefix, followed by the nt-time bounded halting
problem. Hence LS ∈ P.

Next suppose S /∈ SampP. Then no machine Mt succeeds on every input X, so f (n) grows
without bound as a function of n. By standard diagonalization arguments, the nf(n)-time bounded
halting problem is not in P for any f that grows without bound, regardless of whether f is time-
constructible.6 Therefore LS /∈ P.

Admittedly, Proposition 19 feels like cheating—but why exactly is it cheating? Notice that we
did give a procedure to decide whether y ∈ LS for any input y. This fact makes Proposition 19 at
least somewhat more interesting than the “tautological” way to ensure S ∈ SampP ⇐⇒ LS ∈ P:

“Take LS to be the empty language if S ∈ SampP, or an EXP-complete language if
S /∈ SampP!”

In our view, the real problem with Proposition 19 is that it uses enumeration of Turing machines
to avoid the need to reduce the sampling problem S to the language LS or vice versa. Of course,
Theorem 5 did not quite reduce S to the search problem RS either. However, Theorem 5 came
“close enough” to giving a reduction that we were able to use it to derive interesting consequences
for complexity theory, such as SampP = SampBQP if and only if FBPP = FBQP. If we attempted
to prove similar consequences from Proposition 19, then we would end up with a different language

6Note, also, that it is irrelevant whether there exists a polynomial p such that Mf(n) halts in at most p (n) steps
for all n. The index f (n) determines how long we need to simulate y for, not the running time of Mf(n).

12

LS , depending on whether our starting assumption was S ∈ SampP, S ∈ SampBQP, or some other
assumption. By contrast, Theorem 5 constructed a single search problem RS that is equivalent to
S in the classical model, the quantum model, and every other “reasonable” computational model.

4.2 Was Kolmogorov Complexity Necessary?

Could we have proved Theorem 5 without using Kolmogorov complexity or anything like it, and
without making a computability assumption on the oracle for RS? One way to formalize this
question is to ask the analogue of our question from Section 4.1, but this time for sampling versus
search problems. In other words, does there exist a sampling problem S such that, for every search
problem R, either there exists an oracle O solving S such that R /∈ FBPPO, or there exists an oracle
O solving R such that S /∈ SampPO? Notice that, if R is the search problem from Theorem 5,
then the latter oracle (if it exists) must be uncomputable. Thus, we are essentially asking whether
the computability assumption in Theorem 5 was necessary.

4.3 From Search Problems to Sampling Problems

Theorem 5 showed how to take any sampling problem S, and define a search problem R = RS that
is equivalent to S. Can one go the other direction? That is, given a search problem R, can one
define a sampling problem S = SR that is equivalent to R? The following theorem is the best we
were able to find in this direction.

Theorem 20 Let R = (Ax)x be any search problem. Then there exists a sampling problem SR =
{Dx}x that is “almost equivalent” to R, in the following senses.

(i) If O is any oracle solving SR, then R ∈ FBPPO.

(ii) If B is any probabilistic Turing machine solving R, then there exists a constant ηB > 0 such
that a SampPB machine can sample from a probability distribution Cx with ‖Cx −Dx‖ ≤ 1−ηB.

Proof. Let Ux be the universal prior, in which every string y occurs with probability at least
c · 2−K(y|x), for some constant c > 0. Then to define the sampling problem SR, we let Dx be the
distribution obtained by drawing y ∼ Ux and then conditioning on the event y ∈ Ax. (Note that
Dx is well-defined, since Ux assigns nonzero probability to every y.)

For (i), notice that Dx has support only on Ax. So if we can sample a distribution Cx such
that ‖Cx −Dx‖ ≤ ε, then certainly we can output an element of Ax with probability at least 1− ε.

For (ii), let Cx,δ be the distribution over values of B
(

x, 01/δ , r
)

induced by varying the random
string r. Then we claim that ‖Cx,δ −Dx‖ ≤ 1 − Ω (1), so long as δ ≤ ∆B for some constant ∆B

depending on B. To see this, first let C′ be the distribution obtained by drawing y ∼ Cx,δ and then
conditioning on the event y ∈ Ax. Then since Pry∼Cx,δ [y ∈ Ax] ≥ 1− δ, we have ‖C′ − Cx,δ‖ ≤ δ.

Now let qy := PrC′ [y]. Then by Lemma 13, there exists a constant gB depending on B such
that

qy ≤ gB · 2−K(y|x) (38)

for all y ∈ Ax. On the other hand, let py := PrDx [y] and uy := PrUx [y]. Then there exists a
constant α ≥ 1 such that py = αuy if y ∈ Ax and py = 0 otherwise. So

py ≥ uy ≥ c · 2−K(y|x) (39)

13

for all y ∈ Ax. Hence py ≥ c
gB

qy, so

∥

∥C′ −Dx

∥

∥ =
∑

y∈Ax : py<qy

|py − qy| ≤ 1−
c

gB
. (40)

Therefore
‖Cx,δ −Dx‖ ≤

∥

∥Cx,δ − C′
∥

∥+
∥

∥C′ −Dx

∥

∥ ≤ 1−
c

gB
+ δ, (41)

which is 1− ΩB (1) provided δ ≤ c
2gB

.
We see it as an interesting problem whether Theorem 20 still holds with the condition ‖Cx −Dx‖ ≤

1− ηB replaced by ‖Cx −Dx‖ ≤ ε (in other words, with SR ∈ SampPB).

4.4 Making the Search Problem Checkable

One obvious disadvantage of Theorem 5 is that the search problem R = (Ax)x is defined using
Kolmogorov complexity, which is uncomputable. In particular, there is no algorithm to decide
whether y ∈ Ax. However, it is not hard to fix this problem, by replacing the Kolmogorov
complexity with the time-bounded or space-bounded Kolmogorov complexities in our definition of
R. The price is that we then also have to assume a complexity bound on the Turing machine B
in the statement of Theorem 5. In more detail:

Theorem 21 Let S be any sampling problem, and let f be a time-constructible function. Then
there exists a search problem RS = (Ax)x such that

(i) If O is any oracle solving S, then RS ∈ FBPPO.

(ii) If B is any BPTIME (f (n)) Turing machine solving RS, then S ∈ SampPB.

(iii) There exists a SPACE
(

f (n) + nO(1)
)

algorithm to decide whether y ∈ Ax, given x and y.

Proof Sketch. The proof is almost the same as the proof of Theorem 5. Let T := f (n) + nO(1),
and given a string y, let KSPACE(T) (y) be the T -space bounded Kolmogorov complexity of y. Then
the only real difference is that, when defining the search problem RS , we replace the conditional
Kolmogorov complexity K (Y | x, δ) by the space-bounded complexity KSPACE(T) (Y | x, δ). This
ensures that property (iii) holds.

Certainly property (i) still holds, since it only used the fact that there are few tuples Y ∈
({0, 1}m)N with small Kolmogorov complexity, and that is still true for space-bounded Kolmogorov
complexity.

For property (ii), it suffices to observe that Lemma 13 has the following “effective” version. Let
D = {py} be any distribution over strings that is samplable in BPTIME (f (n)), and let y be any
element in the support of D. Then there exists a constant CD, depending on D, such that

KSPACE(T) (y) ≤ log2
1

py
+ CD. (42)

The proof is simply to notice that, in SPACE
(

f (n) + nO(1)
)

, we can compute the probability py of
every y in the support of D, and can therefore recover any particular string y from its Shannon-Fano
code. This means that the analogue of Lemma 18 goes through, as long as B is a BPTIME (f (n))
machine.

14

In Theorem 21, how far can we decrease the computational complexity of RS? It is not hard
to replace the upper bound of SPACE

(

f (n) + nO(1)
)

by CH
(

f (n) + nO(1)
)

(where CH denotes the
counting hierarchy), but can we go further? It seems unlikely that one could check in NP (or
NTIME

(

f (n) + nO(1)
)

) whether y ∈ Ax, for a search problem RS = {Ax}x equivalent to S, but
can we give formal evidence against this possibility?

5 Acknowledgments

I thank Alex Arkhipov for helpful discussions that motivated this work, and Dana Moshkovitz for
pointing me to Proposition 16 from [7]. I also thank Nikolay Vereshchagin for catching a bug in
the proof of Lemma 18, and the anonymous reviewers for several helpful comments.

References

[1] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. Theory of
Computing, 9(4):143–252, 2013. Conference version in Proceedings of ACM STOC’2011. ECCC
TR10-170, arXiv:1011.3245.

[2] B. Barak. Non-Black-Box Techniques in Cryptography. PhD thesis, Weizmann Institute of
Science, 2003. www.wisdom.weizmann.ac.il/˜oded/PS/boaz-phd.ps.

[3] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash
equilibrium. Commun. ACM, 52(2):89–97, 2009. Earlier version in Proceedings of STOC’2006.

[4] P. Gács. Lecture notes on descriptional complexity and randomness.
www.cs.bu.edu/˜gacs/papers/ait-notes.pdf, 2010.

[5] O. Goldreich. On promise problems: a survey. In Essays in Memory of Shimon Even, pages
254–290. 2006. ECCC TR05-018.

[6] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications
(3rd ed.). Springer, 2008. First edition published in 1993.

[7] A. Rao. Parallel repetition in projection games and a concentration bound. SIAM J. Comput.,
40(6):1871–1891, 2011. ECCC TR08-013. Earlier version in STOC’2008.

[8] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. Earlier version in IEEE FOCS
1994. quant-ph/9508027.

[9] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991.

15

