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We present quantum observable Markov decision processes (QOMDPs), the quantum analogues
of partially observable Markov decision processes (POMDPs). In a QOMDP, an agent’s state is
represented as a quantum state and the agent can choose a superoperator to apply. This is similar
to the POMDP belief state, which is a probability distribution over world states and evolves via a
stochastic matrix. We show that the existence of a policy of at least a certain value has the same
complexity for QOMDPs and POMDPs in the polynomial and infinite horizon cases. However, we
also prove that the existence of a policy that can reach a goal state is decidable for goal POMDPs
and undecidable for goal QOMDPs.

I. INTRODUCTION

Partially observable Markov decision processes
(POMDPs) are a world model commonly used in
artificial intelligence [1–5]. POMDPs model an agent
acting in a world of discrete states. The agent is
not told its state, but it can take actions and receive
observations about the world. The actions it takes are
non-deterministic; before taking an action, the agent
knows only the probability distribution of its next state
given its current state. Similarly, an observation does
not give the agent direct knowledge of its current state,
but the agent knows the probability of receiving a
given observation in each possible state. The agent is
rewarded for its actual, hidden state at each time step,
but, although it knows the reward model, it is not told
the reward it received. POMDPs are often used to
model robots, because robot sensors and actuators give
them a very limited understanding of their environment.

As we will discuss further in Section II, we can maxi-
mize future expected reward in a POMDP by maintain-
ing a probability distribution, known as a belief state,
over the agent’s current state. By carefully updating
this belief state after every action and observation, we
can ensure that it reflects the correct probability that
the agent is in each world state. We can make decisions
using only the agent’s belief about its state without ever
needing to reason more directly about its exact state.

In this paper, we introduce and study “quantum ob-
servable Markov decision processes” (QOMDPs). A
QOMDP is similar in spirit to a POMDP, but allows
the belief state to be a quantum state (superposition or
mixed state) rather than a simple probability distribu-
tion. We represent the action and observation process
jointly as a superoperator. POMDPs are then just the
special case of QOMDPs where the quantum state is al-
ways diagonal in some fixed basis.
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Although QOMDPs are the quantum analogue of
POMDPs, they have different computability proper-
ties. Our main result, in this paper, is that there ex-
ists a decision problem (namely, goal state reachability)
that is computable for POMDPs but uncomputable for
QOMDPs.

One motivation for studying QOMDPs is simply that
they’re the natural quantum generalizations of POMDPs,
which are central objects of study in AI. Moreover,
as we show here, QOMDPs have different computabil-
ity properties than POMDPs, so the generalization is
not an empty one. Beyond this conceptual motivation,
though, QOMDPs might also find applications in quan-
tum control and quantum fault-tolerance. For example,
the general problem of controlling a noisy quantum sys-
tem, given a discrete “library” of noisy gates and mea-
surements, in order to manipulate the system to a desired
end state, can be formulated as a QOMDP. Indeed, the
very fact that POMDPs have turned out to be such a
useful abstraction for modeling classical robots, suggests
that QOMDPs would likewise be useful for modeling con-
trol systems that operate at the quantum scale. At any
rate, this seems like sufficient reason to investigate the
complexity and computability properties of QOMDPs,
yet we know of no previous work in that direction. This
paper represents a first step.

II. PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES (POMDPS)

For completeness, in this section we give an overview
of Markov decision processes and POMDPs.

A. Fully Observable Case

We begin by defining fully observable Markov deci-
sion processes (MDPs). This will facilitate our discus-
sion of POMDPs because POMDPs can be reduced to
continuous-state MDPs. For more details, see Russell
and Norvig, Chapter 17 [3].
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A Markov Decision Process (MDP) is a model of an
agent acting in an uncertain but observable world. An
MDP is a tuple 〈S,A, T,R, γ〉 consisting of a set of
states S, a set of actions A, a state transition function
T (si, a, sj) : S×A×S → [0, 1] giving the probability that
taking action a in state si results in state sj , a reward
function R(si, a) : S×A→ R giving the reward of taking
action a in state si, and a discount factor γ ∈ [0, 1) that
discounts the importance of reward gained later in time.
At each time step, the agent is in exactly one, known
state, chooses to take a single action, and transitions to
a new state according to T . The objective is to act in
such a way as to maximize future expected reward.

The solution to an MDP is a policy. A policy π(si, t) :
S × Z+ → A is a function mapping states at time t to
actions. The value of a policy at state si over horizon
h is the future expected reward of acting according to π
for h time steps:

Vπ(si, h) =
R(si, π(si, h))+
γ
∑
sj∈S T (si, π(si, h), sj)Vπ(sj , h− 1) .

(1)
The solution to an MDP of horizon h is the policy that
maximizes future expected reward over horizon h. The
associated decision problem is the policy existence prob-
lem:

Definition 1 (Policy Existence Problem): The pol-
icy existence problem is to decide, given a decision process
D, a starting state s, horizon h, and value V , whether
there is a policy of horizon h that achieves value at least
V for s in D.

For MDPs, we will evaluate the infinite horizon case.
In this case, we will drop the time argument from the
policy since it does not matter; the optimal policy at
time infinity is the same as the optimal policy at time
infinity minus one. The optimal policy over an infinite
horizon is the one inducing the value function

V ∗(si) = max
a∈A

R(si, a) + γ
∑
sj∈S

T (si, a, sj)V
∗(sj)

 .
(2)

Equation 2 is called the Bellman equation, and there is a
unique solution for V ∗ [3]. Note that V ∗ is non-infinite
if γ < 1. When the input size is polynomial in |S| and
|A|, finding an ε-optimal policy for an MDP can be done
in polynomial time [3].

A derivative of the MDP of interest to us is the goal
MDP. A goal MDP is a tuple M = 〈S,A, T, g〉 where S,
A, and T are as before and g ∈ S is an absorbing goal
state so T (g, a, g) = 1 for all a ∈ A. The objective in a
goal MDP is to find the policy that reaches the goal with
the highest probability. The associated decision problem
is the Goal-State Reachability Problem:

Definition 2 (Goal-State Reachability Problem for
Decision Processes): The goal-state reachability prob-

lem is to decide, given a goal decision process D and
starting state s, whether there exists a policy that can
reach the goal state from s in a finite number of steps
with probability 1.

Note that Definition 2 is only about reaching the goal
in a finite number of steps. We are not considering the
problem of reaching the goal with probability 1 in an
infinite number of steps here, although we will discuss it
briefly in Section IV C.

When solving goal decision processes, we never need
to consider time-dependent policies because nothing
changes with the passing of time. Therefore, when an-
alyzing the goal-state reachability problem, we will only
consider stationary policies that depend solely upon the
current state.

B. Partially Observable Case

A partially observable Markov decision process
(POMDP) generalizes an MDP to the case where the
world is not fully observable. We follow the work of
Kaelbling et al. [1] in explaining POMDPs.

In a partially observable world, the agent does not
know its own state but receives information about it in
the form of observations. Formally, a POMDP is a tu-

ple 〈S,A,Ω, T,R,O,~b0, γ〉 where S is a set of states, A is
a set of actions, Ω is a set of observations, T (si, a, sj) :
S × A × S → [0, 1] is the probability of transitioning
to state sj given that action a was taken in state si,
R(si, a) : S ×A→ R is the reward for taking action a in
state si, O(sj , a, o) : S×A×Ω→ [0, 1] is the probability
of making observation o given that action a was taken

and ended in state sj , ~b0 is a probability distribution
over possible initial states, and γ ∈ [0, 1) is the discount
factor.

In a POMDP the agent’s state is “hidden”, meaning
that the agent does not know its state, but the dynamics
of the world behave according to agent’s actual state. At
each time step, the agent chooses an action, transitions
to a new state according to its hidden state before the
transition and T , and receives an observation according
to its hidden state after the transition and O. As with
MDPs, the goal is to maximize future expected reward.

POMDPs induce a belief MDP. A belief state ~b is a
probability distribution over possible states. For si ∈ S,
~bi is the probability that the agent is in state si. Since ~b

is a probability distribution, 0 ≤ ~bi ≤ 1 and
∑
i
~bi = 1. If

the agent is in belief state ~b, takes action a, and receives
observation o the new belief state is

~b′i = Pr(si|o, a,~b)
=

Pr(o|si,a,~b) Pr(si|a,~b)
Pr(o|a,~b)

=
O(si,a,o)

∑
j T (sj ,a,si)~bj

Pr(o|a,~b)
.

(3)
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This is the belief update equation. Pr(o|a,~b) =∑
k O(sk, a, o)

∑
j T (sj , a, sk)~bj is independent of i and

usually just computed afterwards as a normalizing factor

that causes ~b′ to sum to 1. We define the matrix

(τao)ij = O(si, a, o)T (sj , a, si). (4)

The belief update for seeing observation o after taking
action a is

~b′ =
τao~b∣∣∣τao~b∣∣∣

1

(5)

where |~v|1 =
∑
i ~vi is the L1-norm. The probability of

transitioning from belief state ~b to belief state ~b′ when
taking action a is

τ(~b, a, ~b′) =
∑
o∈Ω

Pr(~b′|a,~b, o) Pr(o|a,~b) (6)

where

Pr(~b′|a,~b, o) =

{
1 if ~b′ = τao~b

|τao~b|
1

0 else.

The expected reward of taking action a in belief state ~b
is

r(~b, a) =
∑
i

~biR(si, a). (7)

Now the agent always knows its belief state so the be-
lief space is fully observable. This means we can define
the belief MDP 〈B,A, τ, r, γ〉 where B is the set of all
possible belief states. The optimal solution to the MDP
is also the optimal solution to the POMDP. The only
problem is that the state space is continuous, and all
known algorithms for solving MDPs optimally in poly-
nomial time are polynomial in the size of the state space.
It was shown in 1987 that the policy existence problem
for POMDPs is PSPACE-hard [6]. If the horizon is poly-
nomial in the size of the input, the policy existence prob-
lem is in PSPACE [1]. The policy existence problem for
POMDPs in the infinite horizon case, however, is unde-
cidable [7].

A goal POMDP is a tuple P = 〈S,A,Ω, T,O,~b0, g〉
where S, A, Ω, T , and O are defined as before but instead
of a reward function, we assume that g ∈ S is a goal state.
This state g is absorbing so we are promised that for all
a ∈ A, that T (g, a, g) = 1. Moreover, the agent receives
an observation o|Ω| ∈ Ω telling it that it has reached the
goal so for all a ∈ A, O(g, a, o|Ω|) = 1. This observation
is only received in the goal state so for all si 6= g, and all
a ∈ A, O(si, a, o|Ω|) = 0. The solution to a goal POMDP
is a policy that reaches the goal state with the highest

possible probability starting from ~b0.
We will show that because the goal is absorbing and

known, the observable belief space corresponding to a

goal POMDP is a goal MDP M(P ) = 〈B,A, τ,~b0,~bg〉.
Here ~bg is the state in which the agent knows it is in g
with probability 1. We show that this state is absorbing.
Firstly the probability of observing o after taking action
a is

Pr(o|a,~bg) =
∑
j

O(sj , a, o)
∑
i

T (si, a, sj)(~bg)i

=
∑
j

O(sj , a, o)T (g, a, sj)

= O(g, a, o)

= δoo|Ω| .

Therefore, if we are in state ~bg, regardless of the action
taken, we see observation o|Ω|. Assume we take action a
and see observation o|Ω|. The next belief state is

~b′j = Pr(sj |o|Ω|, a,~bg)

=
O(sj , a, o|Ω|)

∑
i T (si, a, sj)~bi

Pr(o|Ω||a,~bg)
= O(sj , a, o|Ω|)T (g, a, sj)

= δgsj .

Therefore, regardless of the action taken, the next belief

state is ~bg so we have a goal MDP.

III. QUANTUM OBSERVABLE MARKOV
DECISION PROCESSES (QOMDPS)

A quantum observable Markov decision process
(QOMDP) generalizes a POMDP by using quantum
states rather than belief states. In a QOMDP, an agent
can apply a set of possible operations to a d-dimensional
quantum state. The operations each have K possible
outcomes. At each time step, the agent receives an ob-
servation corresponding to the outcome of the previous
operation and can choose another operation to apply.
The reward the agent receives is the expected value of
some operator in the agent’s current quantum state.

A. QOMDP Formulation

A QOMDP uses superoperators to express both ac-
tions and observations. A quantum superoperator S =
{K1, ...,KK} acting on states of dimension d is defined
by K d × d Kraus matrices [8] [9]. A set of matrices
{K1, ...,KK} of dimension d is a set of Kraus matrices if
and only if

K∑
i=1

K†iKi = Id. (8)
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If S operates on a density matrix ρ, there are K possible
next states for ρ. Specifically the next state is

ρ′i →
KiρK

†
i

Tr(KiρK
†
i )

(9)

with probability

Pr(ρ′i|ρ) = Tr(KiρK
†
i ). (10)

The superoperator returns observation i if the ith Kraus
matrix was applied.

We can now define the quantum observable Markov
decision process (QOMDP). A QOMDP is a tuple
〈S,Ω,A,R, γ, ρ0〉 where

• S is a Hilbert space. We allow pure and mixed
quantum states so we will represent states in S as
density matrices.

• Ω = {Ω1, ...,Ω|Ω|} is a set of possible observations.

• A =
{
A1, ..., A|A|

}
is a set of superoperators. Each

superoperator Aa = {Aa1 , ..., Aa|Ω|} has |Ω| Kraus

matrices, some of which may be the all-zeros ma-
trix. The return of oi indicates the application of
the ith Kraus matrix so taking action a in state ρ
returns observation oi with probability

Pr(oi|ρ, a) = Tr
(
Aai ρA

a
i
†
)
. (11)

If oi is observed after taking action a in state ρ, the
next state is

N(ρ, a, oi) =
Aai ρA

a
i
†

Tr
(
Aai ρA

a
i
†
) . (12)

• R = {R1, ..., R|A|} is a set of operators. The reward
associated with taking action a in state ρ is the
expected value of operator Ra on ρ,

R(ρ, a) = Tr(ρRa). (13)

• γ ∈ [0, 1) is a discount factor.

• ρ0 ∈ S is the starting state.

At each time step, the agent chooses a superoperator and
receives an observation. As with MDPs and POMDPs,
the agent’s goal is to maximize its future expected re-
ward.

QOMDPs are fully observable in the sense that we al-
ways know the current quantum superposition or mixed
state (this is very similar to “knowing” the probability
distribution over the possible world states in the belief
space MDP). Since we are given the initial state, we
can deduce the state of the system after n steps given
the sequence {(a1, o1), ..., (an, on)} of actions taken and
observations received.

As with MDPs, a policy for a QOMDP is a function
π : S×Z+ → A mapping states at time t to actions. The
value of the policy over horizon h starting from state ρ0

is

V π(ρ0) =

h∑
t=0

E
[
γtR(ρt, π(ρt))

∣∣π] .
Let πh be the policy at time h. Then

V πh(ρ0) = R(ρ0, πh(ρ0))+

γ

|Ω|∑
i=1

Pr(oi|ρ0, πh(ρ0))V πh−1(N(ρ0, πh(ρ0), oi)) (14)

where Pr(oi|ρ0, πh(ρ0)), N(ρ0, πh(ρ0), oi), and
R(ρ0, πh(ρ0)) are defined by equations 11, 12, and 13
respectively. The Bellman equation (equation 2) still
holds using these definitions.

A goal QOMDP is a tuple 〈S,Ω,A, ρ0, ρg〉 where S, Ω,
A, and ρ0 are as defined above. The goal state ρg must
be absorbing so that for all Ai ∈ A and all Aij ∈ Ai if

Tr(AijρgA
i
j
†
) > 0 then

AijρgA
i
j
†

Tr(AijρgA
i
j
†
)

= ρg.

As with goal MDPs and POMDPs, the objective for a
goal QOMDP is to maximize the probability of reaching
the goal state.

B. QOMDP Policy Existence Complexity

As we can always simulate classical evolution with a
quantum system, the definition of QOMDPs contains
POMDPs. Therefore we immediately find that the pol-
icy existence problem for QOMDPs in the infinite horizon
case is undecidable. We also find that the polynomial
horizon case is PSPACE-hard. We can, in fact, prove
that the polynomial horizon case is in PSPACE.

Theorem 1: The policy existence problem (Defini-
tion 1) for QOMDPs with a polynomial horizon is in
PSPACE.

Proof: Given a QOMDP 〈S,Ω,A,R, γ, ρ0〉 and hori-
zon h, consider the set of possible policies. The state
is observable and Markovian, so we need only consider
policies dependent on the current state and time-to-go.

From the starting state we can reach O((|A||Ω|)h) pos-

sible states giving us O(h |A| (|A||Ω|)h) possible policies.
This number is only exponential so we can represent it
exactly in PSPACE. Therefore, we can assign every pol-
icy and every state a number allowing us to determine
the value of policy i at state j and time step k. The value
of the policy can be at most hmaxsi∈S maxa∈AR(si, a)
so the value will also be representable in PSPACE. Thus
we can evaluate every policy and find the best one using
only polynomial space. �
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FIG. 1. The quantum measurement occurrence problem. The
starting state ρ0 is fed into the superoperator S. The output
is then fed iteratively back into S. The question is whether
there is some finite sequence of observations that can never
occur.

IV. A COMPUTABILITY SEPARATION IN
GOAL-STATE REACHABILITY

However, although the policy existence problem has
the same complexity for QOMDPs and POMDPs, we
can show that the goal-state reachability problem (Defi-
nition 2) is decidable for goal POMDPs but undecidable
for goal QOMDPs.

A. Undecidability of Goal-State Reachability for
QOMDPs

We will show that the goal-state reachability problem
is undecidable for QOMDPs by showing that we can re-
duce the quantum measurement occurrence problem pro-
posed by Eisert et al. [10] to it.

Definition 3 (Quantum Measurement Occurrence
Problem): The quantum measurement occurrence
problem (QMOP) is to decide, given a quantum superop-
erator described by K Kraus operators S = {K1, ...,KK},
whether there is some finite sequence {i1, ..., in} such that

K†i1 ...K
†
in
Kin ...Ki1 = 0.

The setting for this problem is shown in Figure 1. We
assume that the system starts in state ρ0. This state
is fed into S. We then take the output of S acting
on ρ0 and feed that again into S and iterate. QMOP is
equivalent to asking whether there is some finite sequence
of observations {i1, ..., in} that can never occur even if
ρ0 is full rank. We will reduce from the version of the
problem given in Definition 3, but will use the language
of measurement occurrence to provide intuition.

Theorem 2 (Undecidability of QMOP): The quan-
tum measurement occurrence problem is undecidable.

Proof: This can be shown using a reduction from the
matrix mortality problem. For the full proof see Eisert
et al [10]. �

We first describe a method for creating a goal QOMDP
from an instance of QMOP. The main ideas behind the

choices we make here are shown in Figure 2.

Definition 4 (QMOP Goal QOMDP): Given an in-
stance of QMOP with superoperator S = {K1, ...,KK}
and Kraus matrices of dimension d, we create a goal
QOMDP Q(S) = 〈S,Ω,A, ρ0, ρg〉 as follows:

• S is (d+ 1)-dimensional Hilbert space.

• Ω = {o1, o2, ..., od+2} is a set of d+2 possible obser-
vations. Observations o1 through od+1 correspond
to At-Goal while od+2 is Not-At-Goal.

• A =
{
A1, ..., AK

}
is a set of K superoperators each

with d+2 Kraus matrices Ai = {Ai1, ..., Aid+2} each
of dimension d+ 1× d+ 1. We set

Aid+2 = Ki ⊕ 0 =

Ki
0
...

0 ... 0

 , (15)

the ith Kraus matrix from the QMOP superoper-
ator with the d + 1st column and row all zeros.
Additionally, let

Zi = Id+1 −Aid+2

†
Aid+2 (16)

=

∑
j 6=i

K†jKj

⊕ 1 (17)

=


∑
j 6=i

K†jKj

0
0
...

0 0 ... 1

 . (18)

Now (K†jKj)
† = K†jKj and the sum of Hermitian

matrices is Hermitian so Zi is Hermitian. More-
over, K†jKj is positive semidefinite, and positive
semidefinite matrices are closed under positive ad-
dition, so Zi is positive semidefinite as well. Let
an orthonormal eigendecomposition of Zi be

Zi =

d+1∑
j=1

zij |zij〉〈zij |.

Since Zi is a positive semidefinite Hermitian ma-

trix, zij is nonnegative and real so
√
zij is also real.

We let Aij for j < d+ 2 be the d+ 1× d+ 1 matrix
in which the first d rows are all 0s and the bottom

row is
√
zij〈zij |:

(
Aij<d+2

)
pq

=
√
zij〈z

i
j |q〉δp(d+1),

Aij<d+2 =


0 ... 0
...

. . .
...

0 ... 0√
zij〈zij |

 .
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Probabilityρ0
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FIG. 2. A goal QOMDP for a QMOP instance with super-
operator S = {K1,K2,K3} with 3 possible outcomes. We
create 3 actions to correspond to the 3 outputs of the super-
operator. Each action Ai has two possible outcomes: either
the state transitions according to Ki from S or it transitions
to the goal state. Intuitively, we can think of Ai as either
outputting the observation “transitioned to goal” or observa-
tion i from S. Then it is clear that if the action sequence
{A2, A1, A3} is taken, for instance, the probability that we
do not see the observation sequence 2, 1, 3 is the probabil-
ity that the system transitions to the goal state somewhere
in this sequence. Therefore, the probability that an action
sequence reaches the goal state is the probability that the
corresponding observation sequence is not observed.

(Note that if zij = 0 then Aij is the all-zero matrix,
but it is cleaner to allow each action to have the
same number of Kraus matrices.)

• ρ0 is the maximally mixed state ρ0ij = 1
d+1δij .

• ρg is the state |d+ 1〉〈d+ 1|.

The intuition behind the definition of Q(S) is shown in
Figure 2. Although each action actually has d+2 choices,
we will show that d+1 of those choices (every one except
Aid+2) always transition to the goal state. Therefore each

action Ai really only has two choices:

1. Transition to goal state.

2. Evolve according to Ki.

Our proof will proceed as follows: Consider choosing
some sequence of actions Ai1 , ..., Ain . The probability
that we transition to the goal state is the same as the
probability that we do not evolve according to first Ki1

then Ki2 etc. Therefore, we transition to the goal state
with probability 1 if and only if it is impossible to tran-
sition according to first Ki1 then Ki2 etc. Thus in the
original problem, it must have been impossible to see the
observation sequence {i1, ..., in}. In other words, we can
reach a goal state with probability 1 if and only if there

is some sequence of observations in the QMOP instance
that can never occur. So we can use goal-state reachabil-
ity in QOMDPs to solve QMOP, giving us that goal-state
reachability for QOMDPs must be undecidable.

We now formalize the sketch we just gave. Before
we can do anything else, we must show that Q(S) is in
fact a goal QOMDP. We start by showing that ρg is
absorbing in two lemmas. In the first, we prove that
Aij<d+2 transitions all density matrices to the goal state.
In the second, we show that ρg has zero probability of
evolving according to Aid+2.

Lemma 3: Let S = {K1, ...,KK} with Kraus matrices
of dimension d be the superoperator from an instance
of QMOP and let Q(S) = 〈S,Ω,A, ρ0, ρg〉 be the corre-
sponding goal QOMDP. For any density matrix ρ ∈ S,
if Aij is the jth Kraus matrix of the ith action of Q(S)
and j < d+ 2 then

AijρA
i
j
†

Tr(AijρA
i
j
†
)

= |d+ 1〉〈d+ 1|.

Proof: Consider

(AijρA
i
j

†
)pq =

∑
h,l

AijphρhlA
i
j

†
lq

(19)

=
∑
h,l

AijphρhlA
i
j

∗
ql

(20)

= zij
∑
h,l

〈zij |h〉ρhl〈l|zij〉δp(d+1)δq(d+1) (21)

so only the lower right element of this matrix is non-zero.
Thus dividing by the trace gives

AijρA
i
j
†

Tr(AijρA
i
j
†
)

= |d+ 1〉〈d+ 1|. (22)

�

Lemma 4: Let S be the superoperator from an in-
stance of QMOP and let Q(S) = {S,Ω,A, ρ0, ρg} be the
corresponding QOMDP. Then ρg is absorbing.

Proof: By Lemma 3, we know that for j < d+ 2, we
have

Aij |d+ 1〉〈d+ 1|Aij
†

Tr(Aij |d+ 1〉〈d+ 1|Aij
†
)

= ρg.

Here we show that Tr(Aid+2ρgA
i
d+2
†
) = 0 so that the

probability of applying Aid+2 is 0. We have:

Tr
(
Aid+2|d+ 1〉〈d+ 1|Aid+2

†
)

(23)

=
∑
p

∑
hl

Aid+2ph
δh(d+1)δl(d+1)A

i
d+2

∗
pl

(24)

=
∑
p

Aid+2p(d+1)
Aid+2

∗
p(d+1)

= 0 (25)
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since the (d + 1)st column of Aid+2 is all zeros by con-
struction. Therefore, ρg is absorbing. �

Now we are ready to show that Q(S) is a goal QOMDP.

Theorem 5: Let S = {K1, ...,KK} be the superop-
erator from an instance of QMOP with Kraus matrices
of dimension d. Then Q(S) = 〈S,Ω,A, ρ0, ρg〉 is a goal
QOMDP.

Proof: We showed in Lemma 4 that ρg is absorbing,
so all that remains to show is that the actions are super-
operators. Let Aij be the jth Kraus matrix of action Ai.
If j < d+ 2 then

(Aij
†
Aij)pq =

∑
h

Aij
†
ph
Aijhq (26)

=
∑
h

Aij
∗
hp
Aijhq (27)

=
√
zij

∗
〈p|zij〉

√
zij〈z

i
j |q〉 (28)

= zij〈p|zij〉〈zij |q〉 (29)

where we have used that
√
zij
∗

=
√
zij because

√
zij is

real. Thus for j < d+ 2

Aij
†
Aij = zij |zij〉〈zij |.

Now

d+2∑
j=1

Aij
†
Aij = Aid+2

†
Aid+2 +

d+1∑
j=1

zij |zij〉〈zij | (30)

= Aid+2

†
Aid+2 + Zi (31)

= Id+1. (32)

Therefore {Aij} is a set of Kraus matrices. �

Now we want to show that the probability of not reach-
ing a goal state after taking actions

{
Ai1 , ..., Ain

}
is

the same as the probability of observing the sequence
{i1, ..., in}. However, before we can do that, we must
take a short detour to show that the fact that the goal-
state reachability problem is defined for state-dependent
policies does not give it any advantage. Technically, a
policy for a QOMDP is not time-dependent but state-
dependent. The QMOP problem is essentially time-
dependent: we want to know about a specific sequence
of observations over time. A QOMDP, however, is
state-dependent: the choice of action depends not upon
the number of time steps, but upon the current state.
When reducing a QMOP problem to a QOMDP prob-
lem, we need to ensure that the observations received in
the QOMDP are dependent on time in the same way that
they are in the QMOP instance. We will be able to do
this because we have designed the QOMDP to which we
reduce a QMOP instance such that after n time steps

there is at most one possible non-goal state. The exis-
tence of such a state and the exact state that is reach-
able depends upon the policy chosen, but regardless of
the policy, there will be at most one. This fact, which we
will prove in the following lemma, allows us to consider
the policy for these QOMDPs as time-dependent: the
action we choose at time step n is the action the state-
dependent policy chooses for the only non-goal state we
could possibly reach at time n.

Lemma 6: Let S = {K1, ...,KK} with Kraus matrices
of dimension d be the superoperator from an instance
of QMOP and let Q(S) = 〈S,Ω,A, ρ0, ρg〉 be the corre-
sponding goal QOMDP. Let π : S → A be any policy for
Q(S). There is always at most one state σn 6= ρg such
that Pr(σn|π, n) > 0.

Proof: We proceed by induction on n.
Base Case (n = 1): After 1 time step, we have applied

a single action, π(ρ0). Lemma 3 gives us that there is only
a single possible state besides ρg after the application of
this action.

Induction Step: Let ρn be the state on the nth time
step and let ρn−1 be the state on the (n− 1)st time step.
Assume that there are only two possible choices for ρn−1:
σn−1 and ρg. If ρn−1 = ρg, then ρn = ρg regardless of
π(ρg). If ρn−1 = σn−1, action π(σn−1) = Ain is taken.
By Lemma 3 there is only a single possible state besides
ρg after the application of Ain . �

Thus in a goal QOMDP created from a QMOP in-
stance, the state-dependent policy π can be considered
a “sequence of actions” by looking at the actions it will
apply to each possible non-goal state in order.

Definition 5 (Policy Path): Let S = {K1, ...,KK}
with Kraus matrices of dimension d be the superoperator
from a QMOP instance and let Q(S) = 〈S,Ω,A, ρ0, ρg〉
be the corresponding goal QOMDP. For any policy π let
σk be the non-goal state with nonzero probability after
k time steps of following π if it exists. Otherwise let
σk = ρg. Choose σ0 = ρ0. The set {σk} is the policy
path for policy π. By Lemma 6, this set is unique so this
is well-defined.

We have one more technical problem we need to ad-
dress before we can look at how states evolve under
policies in a goal QOMDP. When we created the goal
QOMDP, we added a dimension to the Hilbert space so
that we could have a defined goal state. We need to show
that we can consider only the upper-left d × d matrices
when looking at evolution probabilities.

Lemma 7: Let S = {K1, ...,KK} with Kraus matri-
ces of dimension d be the superoperator from a QMOP
instance and let Q(S) = 〈S,Ω,A, ρ0, ρg〉 be the corre-
sponding goal QOMDP. Let M be any (d+ 1)× (d+ 1)
matrix and d(M) be the upper left d×d matrix in which
the (d + 1)st column and row of M have been removed.
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Then for any action Ai ∈ A,

Aid+2MAid+2

†
= Kid(M)Ki ⊕ 0.

Proof: We consider the multiplication element-wise:

(Aid+2MAid+2

†
)pq =

d+1∑
h,l=1

Aid+2ph
MhlA

i
d+2

†
lq

(33)

=

d∑
h,l=1

Aid+2ph
MhlA

i
d+2

∗
ql

(34)

where we have used that the (d + 1)st column of Aid+2
is 0 to limit the sum. Additionally, if p = d + 1 or
q = d+ 1, the sum is 0 because the (d+ 1)st row of Aid+2
is 0. Assume that p < d+ 1 and q < d+ 1. Then

d∑
h,l=1

Aid+2ph
MhlA

i
d+2

∗
ql

=

d∑
h,l=1

KiphMhlKi
†
lq =

(
Kd(M)K†

)
ql
. (35)

Thus

Aid+2MAid+2

†
= Kid(M)K†i ⊕ 0. (36)

�

We are now ready to show that any path that does not
terminate in the goal state in the goal QOMDP corre-
sponds to some possible path through the superoperator
in the QMOP instance.

Lemma 8: Let S = {K1, ...,KK} with Kraus matrices
of dimension d be the superoperator from a QMOP in-
stance and let Q(S) = 〈S,Ω,A, ρ0, ρg〉 be the correspond-
ing goal QOMDP. Let π be any policy for Q and let {σk}
be the policy path for π. Assume π(σk−1) = Aik . Then

σk =
Kik ...Ki1d(ρ0)K†i1 ...K

†
ik
⊕ 0

Tr(Kik ...Ki1d(ρ0)K†i1 ...K
†
ik

)
.

Proof: We proceed by induction on k.
Base Case (k = 1): If k = 1 then we probabilistically

apply either some Ai1l with l < d + 2 or Ai1d+2. In the
first case, Lemma 3 gives us that the state becomes ρg.

Therefore, σ1 is the result of applying Ai1d+2 so

σ1 =
Ai1d+2ρ0A

i1
d+2

†

Tr(Ai1d+2ρ0A
i1
d+2

†
)

(37)

=
Ki1d(ρ0)K†i1 ⊕ 0

Tr(Ki1d(ρ0)K†i1 ⊕ 0)
(38)

=
Ki1d(ρ0)K†i1 ⊕ 0

Tr(Ki1d(ρ0)K†i1)
(39)

using Lemma 7 for Equation 38 and the fact that Tr(A⊕
0) = Tr(A) for Equation 39.

Induction Step: On time step k, we have ρk−1 = σk−1

or ρk−1 = ρg by Lemma 6. If ρk−1 = ρg then ρk = ρg
by Lemma 4. Therefore, σk occurs only if ρk−1 = σk−1.
In this case we apply action Aik . If we apply Aikj with
j < d + 2, ρk is the goal state by Lemma 3. Therefore,
we transition to σk exactly when ρk−1 = σk−1 and we
apply action Aikd+2. By induction

σk−1 =
Kik−1

...Ki1d(ρ0)K†i1 ...K
†
ik−1
⊕ 0

Tr(Kik−1
...Ki1d(ρ0)K†1 ...K

†
ik−1

)
. (40)

Note that

d(σk−1) =
Kik−1

...Ki1d(ρ0)K†i1 ...K
†
ik−1

Tr(Kik−1
...Ki1d(ρ0)K†1 ...K

†
ik−1

)
. (41)

Then

σk =
Aikd+2σk−1A

ik
d+2

Tr(Aikd+2σk−1A
ik
d+2

†
)

=
Kikd(σk−1)K†ik ⊕ 0

Tr(Kikd(σk−1)K†ik)
(42)

using Lemma 7. Using Equation 41 for d(σk−1), we have

Kikd(σk−1)K†ik =
Kik ...Ki1d(ρ0)K†i1 ...K

†
ik

Tr
(
Kik−1

...Ki1d(ρ0)K1...Kik−1

) ,
(43)

and

Tr(Kikd(σk−1)K†ik)

= Tr

(
Kik ...Ki1d(ρ0)K†i1 ...K

†
ik

Tr
(
Kik−1

...Ki1d(ρ0)K1...Kik−1

)) (44)

=
Tr
(
Kik ...Ki1d(ρ0)K†i1 ...K

†
ik

)
Tr
(
Kik−1

...Ki1d(ρ0)K1...Kik−1

) , (45)

Substituting equations 43 and 45 for the numerator and
denominator of equation 42 respectively, and canceling
the traces, we find

σk =
Kik ...Ki1d(ρ0)Ki1 ...Kik ⊕ 0

Tr(Kik ...Ki1d(ρ0)K†i1 ...K
†
ik

)
. (46)

�

Now that we know how the state evolves, we can
show that the probability that the system is not in the
goal state after taking actions {Ai1 , ..., Ain} should cor-
respond to the probability of observing measurements
{i1, ..., in} in the original QMOP instance.

Lemma 9: Let S = {K1, ...,KK} with Kraus matri-
ces of dimension d be the superoperator from a QMOP
instance and let Q(S) = 〈S,Ω,A, ρ0, ρg〉 be the corre-
sponding goal QOMDP. Let π be any policy and {σk}
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be the policy path for π. Assume π(σj−1) = Aij . The
probability that ρn is not ρg is

Pr (ρn 6= ρg) = Tr(Kin ...Ki1d(ρ0)K†i1 ...K
†
in

). (47)

Proof: First consider the probability that ρn is not ρg
given that ρn−1 6= ρg. By Lemma 6, if ρn−1 6= ρg then
ρn−1 = σn−1. By Lemma 8,

σn−1 =
Kin−1

...Ki1d(ρ0)K†i1 ...K
†
in−1
⊕ 0

Tr(Kin−1
...Ki1d(ρ0)K†i1 ...K

†
in−1

)
(48)

so

d(σn−1) =
Kin−1 ...Ki1d(ρ0)K†i1 ...K

†
in−1

Tr(Kin−1
...Ki1d(ρ0)K†i1 ...K

†
in−1

)
. (49)

If Ainj for j < d+ 2 is applied then ρn will be ρg. Thus
the probability that ρn is not ρg is the probability that

Aind+2 is applied:

Pr(ρn 6= ρg|ρn−1 6= ρg)

= Tr(Aind+2σn−1A
in
d+2

†
)

(50)

= Tr(Kind(σn−1)K†in ⊕ 0) (51)

= Tr(Kind(σn−1)K†in) (52)

=
Tr(Kin ...Ki1d(ρ0)K†i1 ...K

†
in

)

Tr(Kin−1
...Ki1d(ρ0)K†i1 ...K

†
ii−1

)
. (53)

Note that Pr(ρn 6= ρg|ρn−1 = ρg) = 0 by Lemma 4. The
total probability that ρn is not ρg is

Pr(ρn 6= ρg)

= Pr(ρn 6= ρg ∩ ρn−1 6= ρg) + Pr(ρn 6= ρg ∩ ρn−1 = ρg)

=
Pr(ρn 6= ρg|ρn−1 6= ρg) Pr(ρn−1 6= ρg) +

Pr(ρn 6= ρg|ρn−1 = ρg) Pr(ρn−1 = ρg)

=
Pr(ρn 6= ρg|ρn−1 6= ρg) Pr(ρn−1 6= ρg|ρn−2 6= ρg)

...Pr(ρ1 6= ρg|ρ0 6= ρg)

=

n∏
k=1

Tr(Kik ...Ki1d(ρ0)K†i1 ...K
†
ik

)

Tr(Kik−1
...Ki1d(ρ0)K†i1 ...K

†
ik−1

)

= Tr(Kin ...Ki1d(ρ0)K†i1 ...K
†
in

).

�

Since the probability that we observe the sequence of
measurements {i1, ..., in} is the same as the probability
that the sequence of actions {Ai1 , ..., Ain} does not reach
the goal state, we can solve QMOP by solving an instance
of goal-state reachability for a QOMDP. Since QMOP
is known to be undecidable, this proves that goal-state
reachability is also undecidable for QOMDPs.

Theorem 10 (Undecidability of Goal-State Reach-
ability for QOMDPs): The goal-state reachability
problem for QOMDPs is undecidable.

Proof: As noted above, it suffices to show that we
can reduce the quantum measurement occurrence prob-
lem (QMOP) to goal-state reachability for QOMDPs.

Let S = {K1, ...,KK} be the superoperator from an
instance of QMOP with Kraus matrices of dimension
d and let Q(S) = 〈S,Ω,A, ρ0, ρg〉 be the corresponding
goal QOMDP. By Theorem 5, Q(S) is a goal QOMDP.
We show that there is a policy that can reach ρg from
ρ0 with probability 1 in a finite number of steps if and
only if there is some finite sequence {i1, ..., in} such that

K†i1 ...K
†
in
Kin ...Ki1 = 0.

First assume there is some sequence {i1, ..., in} such

that K†i1 ...K
†
in
Kin ...Ki1 = 0. Consider the time-

dependent policy that takes action Aik in after k time
steps no matter the state. By Lemma 9, the probability
that this policy is not in the goal state after n time steps
is

Pr(ρn 6= ρg) = Tr(Kin ...Ki1d(ρ0)K†i1 ...K
†
in

) (54)

= Tr(K†i1 ...K
†
in
Kin ...Ki1d(ρ0)) (55)

= Tr(0) (56)

= 0 (57)

using that Tr(AB) = Tr(BA) for all matrices A and B.
Therefore this policy reaches the goal state with proba-
bility 1 after n time steps. As we have said, time cannot
help goal decision processes since nothing changes with
time. Therefore, there is also a purely state-dependent
policy (namely the one that assigns Aik to σk where σk
is the kth state reached when following π) that can reach
the goal state with probability 1.

Now assume there is some policy π that reaches the
goal state with probability 1 after n time steps. Let
{σk} be the policy path and assume π(σk−1) = Aik . By
Lemma 9, the probability that the state at time step n
is not ρg is

Pr(ρn 6= ρg|π) = Tr(Ki1 ...Kind(ρ0)K†i1 ...K
†
in

) (58)

= Tr(K†i1 ...K
†
in
Kin ...Kiid(ρ0)). (59)

Since π reaches the goal state with probability 1 after n
time steps, we must have that the above quantity is 0.
By construction d(ρ0) is full rank, so for the trace to be
0 we must have

K†i1 ...K
†
in
Kin ...Kii = 0. (60)

Thus we can reduce the quantum measurement occur-
rence problem to the goal-state reachability problem for
QOMDPs, and the goal-state reachability problem is un-
decidable for QOMDPs. �
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B. Decidability of Goal-State Reachability for
POMDPs

The goal-state reachability problem for POMDPs is
decidable. This is a known result [11], but we reproduce
the proof here, because it is interesting to see the dif-
ferences between classical and quantum probability that
lead to decidability for the former.

At a high level, the goal-state reachability problem is
decidable for POMDPs because stochastic transition ma-
trices have strictly nonnegative elements. Since we are
interested in a probability 1 event, we can treat probabil-
ities as binary: either positive or 0. This gives us a belief
space with 2|S| states rather than a continuous one, and
we can show that the goal-state reachability problem is
decidable for finite state spaces.

Definition 6 (Binary Probability MDP): Given

a goal POMDP P = 〈S,A,Ω, T,O,~b0, g〉, let M(P ) =

〈B,A, τ,~b0,~bg〉 be the corresponding goal belief MDP
with τao defined according to Equation 4. Throughout
this section, we assume without loss of generality that g is

the |S|th state in P so
(
~bg

)
i

= δi|S|. The binary probabil-

ity MDP is an MDP D(P ) = 〈Z|S|{0,1}, A, Z, ~z0, ~zg〉 where

(~zg)i = δi|S| and (~z0)i = 1 if and only if (~b0)i > 0. The
transition function Z for action a non-deterministically

applies the function Zao to ~z. For ~z ∈ Z|S|{0,1}, the result

of Zao acting on ~z is

Zao(~z)i =

{
1 if (τao~z)i > 0
0 if (τao~z)i = 0.

(61)

Let

P oa (~z) =

{
1 if τao~z 6= ~0
0 else.

(62)

If action a is taken in state ~z, Zao is applied with prob-
ability

Pr (Zao|a, ~z) =

{
1∑

o′∈Ω P
o′
a (~z)

if P ao (~z) > 0

0 else.
(63)

Note that the vector of all zeros is unreachable, so the
state space is really of size 2|S| − 1.

We first show that we can keep track of whether each
entry in the belief state is zero or not just using the binary
probability MDP. This lemma uses the fact that classical
probability involves nonnegative numbers only.

Lemma 11: Let P = 〈S,A,Ω, T,O,~b0, g〉 be a goal-

state POMDP and let D(P ) = 〈Z|S|{0,1}, A, Z, ~z0, ~zg〉 be

the associated binary probability MDP. Assume we have

~z and ~b where ~zi = 0 if and only if ~bi = 0. Let

~zao = Zao(~z)

and

~bao =
τao~b∣∣∣τao~b∣∣∣

1

.

Then ~zaoi = 0 if and only if~baoi = 0. Moreover, P oa (~z) = 0

if and only if
∣∣∣τao~b∣∣∣

1
= 0.

Proof: Using the definition of Zao from Equation 61,

~zaoi = Zao(~z)i =

{
1 if (τao~z)i > 0
0 else.

(64)

Let N =
∣∣∣τao~b∣∣∣

1
. Then

~baoi =
1

N

|S|∑
j=1

τaoij
~bj . (65)

Firstly assume ~baoi = 0. Since τaoij ≥ 0 and ~bj ≥ 0, we
must have that every term in the sum in Equation 65 is
0 individually[12]. Therefore, for all j, either τaoij = 0 or
~bj = 0. If ~bj = 0 then ~zj = 0 so τaoij ~zj = 0. If τaoij = 0
then clearly τaoij ~zj = 0. Therefore

0 =

|S|∑
j=1

τaoij ~zj = (τao~z)i = ~zaoi . (66)

Now assume ~baoi > 0. Then there must be at least one

term in the sum in Equation 65 with τaoik
~bk > 0. In this

case, we must have both τaoik > 0 and ~bk > 0. If ~bk > 0
then ~zk > 0. Therefore

~zaoi = (τao~z)i =

|S|∑
j=1

τaoij ~zj =
∑
j 6=k

τaoij ~zj +τaoik ~zk > 0. (67)

Since ~baoi ≥ 0 and ~zaoi > 0, we have shown that ~zaoi = 0

exactly when ~baoi = 0.

Now assume
∣∣∣τao~b∣∣∣

1
= 0. This is true only if τaoij

~bj = 0

for all i and j. Thus by the same reasoning as above
τaoij ~zj = 0 for all i and j so τao~z = ~0 and P oa (~z) = 0.

Now let
∣∣∣τao~b∣∣∣

1
> 0. Then there is some k with

τaoik ~zk > 0 by the same reasoning as above. Therefore

τao~z 6= ~0 so P oa (~z) = 1. �

We now show that we can reach the goal in the binary
probability MDP with probability 1 if and only if we
could reach the goal in the original POMDP with prob-
ability 1. We do each direction in a separate lemma.

Lemma 12: Let P = 〈S,A,Ω, T,O,~b0, g〉 be a goal

POMDP and let D(P ) = 〈Z|S|{0,1}, A, Z, ~z0, ~zg〉 be the cor-

responding binary probability MDP. If there is a policy
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πD that reaches the goal with probability 1 in a finite
number of steps in D(M) then there is a policy that
reaches the goal in a finite number of steps with proba-

bility 1 in the belief MDP M(P ) =
〈
B,A, τ,~b0,~bg

〉
.

Proof: For ~b ∈ B define z(~b) to be the single state

~z ∈ Zn{0,1} with ~zi = 0 if and only if ~bi = 0. Let π be the

policy for M(P ) with π(~b) = πD(z(~b)). Let ~b0,~b1, ...,~bn

be some sequence of beliefs of length n+1 that can be cre-
ated by following policy π with observations {oi1 , ..., oin}.
Then

~bk+1 =
τπ(~bk)oik~bk∣∣∣τπ(~bk)oik~bk

∣∣∣
1

=
τπ

D(z(~bk))oik~bk∣∣∣τπD(z(~bk))oik~bk
∣∣∣
1

. (68)

Define ak = πD(z(~bk)). Consider the set of states

~z0, ~z1, ..., ~zn with ~zk+1 = Zπ
D(~zk)oik

(
~zk
)
. We show by

induction that ~zk = z(~bk).

Base Case (k = 0): We have ~z0 = z(~b0) by definition.

Induction Step: Assume that ~zk = z(~bk). Then

~zk+1 = Zπ
D(~zk)oik (~zk) = Zπ

D(z(~bk))oik (~zk) = Zakoik (~zk)
(69)

by induction. Now

~bk+1 =
τaikoik~bk∣∣∣τaikoik~bk∣∣∣

1

. (70)

Therefore ~zk+1 = z(~bk+1) by Lemma 11.
We must also show that the sequence ~z0, ~z1, ..., ~zn has

nonzero probability of occurring while following πD. We
must have that P

oik
ak > 0 for all k. We know that

~b0,~b1, ...,~bn can be created by following π so the prob-

ability of ~b0,~b1, ...,~bn is greater than 0. Therefore, we
must have

Pr(o|ak,~bk) =
∣∣∣τakoik~bk∣∣∣

1
> 0 (71)

for all k, so Lemma 11 gives us that P
oik
ak > 0 for all

k. Thus {~z0, ..., ~zn} is a possible sequence of states seen
while following policy πD in the MDP D(P ). Since πD

reaches the goal state with probability 1 after n time

steps, we have ~zn = ~zg. Therefore, since ~zn = z(~bn),

we must have ~bni = 0 for all i 6= |S|, and only ~bn|S| > 0.

Since |~bn|1 = 1, we have ~bn|S| = 1. Thus ~bn = ~bg and π

also reaches the goal state with nonzero probability after
n time steps.

�

Lemma 13: Let P = 〈S,A,Ω, T,O,~b0, g〉 be a goal

POMDP and let D(P ) = 〈Z|S|{0,1}, A, Z, ~z0, ~zg〉 be the cor-

responding binary probability MDP. If there is a policy π
that reaches the goal with probability 1 in a finite number

A1

A3 A1 A6

A3A5A3 A1A1A2A1

FIG. 3. A policy in an MDP creates a tree. Here, we take
action A1 in the starting state, which can transition us non-
deterministically to three other possible states. The policy
specifies an action of A3 for the state on the left, A1 for the
state in the middle and A6 for the state on the right. Taking
these actions transition these states nondeterministically. So
this tree eventually encapsulates all states that can be reached
with nonzero probability from the starting state under a par-
ticular policy. The goal can be reached with probability 1 if
there is some depth below which every node is the goal state.

of steps in the belief state MDP B(M) = 〈B,A, τ,~b0,~bg〉
then there is a policy that reaches the goal in a finite
number of steps with probability 1 in D(P ).

Proof: MDP policies create trees of states and action
choices as shown in Figure 3. Consider the tree πT
formed by π. Nodes at depth n or greater are guaranteed

to be ~bg. For ~z ∈ Z|S|{0,1}, we let b(~z) be the deepest state

in πT for which ~bi = 0 if and only if ~zi = 0. If there are
multiple states for which this is true at the same level,
we choose the leftmost one. If no such state is found in
πT , we set b(~z) = ~bg. We define a policy πD for D(P )
by πD(~z) = π(b(~z)). Let ~z0, ~z1, ..., ~zn be any sequence
of states that can be created by following policy πD in
D(P ) for n time steps. Define ak = πD(~zk) and define
ik as the smallest number such that ~zk+1 = Zakoik (~zk)
(some such Zakoik exists since ~z0, ..., ~zn can be created
by following πD). Now consider b(~zk). We show by
induction that this state is at least at level k of πT .

Base Case (k = 0): We know that ~b0i = 0 if and only
if ~z0

i = 0 so b(~z0) is at least at level 0 of πT .
Induction Step: Assume that ~zk is at least at level k

of πT . Then

~zk+1 = Zakoik
(
~zk
)
. (72)

Therefore by Lemma 11,

~b′ =
τakoik b(~zk)

|τakoik b(~zk)|1
(73)

has entry i 0 if and only if ~zk+1
i = 0. Now P akok (~zk) 6= 0

only if |τakoik b(~zk)|1 6= 0 also by Lemma 11. Since
~z1, ..., ~zn is a branch of πD, we must have P akok > 0.

Therefore |τakoik b(~zk)|1 > 0. Now ak = π(b(~zk)) so
~b′ is a child of b(~zk) in πT . Since, by induction, the level

of b(~zk) is at least k, the level of ~b′ is at least k+1. Now
~b = b(~zk+1) is the deepest state in the tree with ~bi = 0
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if and only if ~zk+1
i = 0 so level of b(~zk+1) is at least the

level of ~b′. Therefore b(~zk+1) has level at least k + 1.
Thus the level of b(~zn) is at least n. We have b(~zn) =

~bg since π reaches the goal state in at most n steps. Since
b(~zn)i = δi|S|, we have that ~zn = ~zg. Therefore πD is a
policy for D(P ) that reaches the goal with probability 1
in at most n steps. �

We have now reduced goal-state reachability for
POMDPs to goal-state reachability for finite-state
MDPs. We briefly show that the latter is decidable.

Theorem 14 (Decidability of Goal-State Reach-
ability for POMDPs): The goal-state reachability
problem for POMDPs is decidable.

Proof: We showed in Lemmas 12 and 13 that goal-
state reachability for POMDPs can be reduced to goal-
state reachability for a finite state MDP. Therefore, there
are only O(|A||S|) possible policies (remember that for
goal decision processes, we need only consider time in-
dependent policies). Given a policy π, we can evaluate
it by creating a directed graph G in which we connect
state si to state sj if τ(si, π(si), sj) > 0. The policy π
reaches the goal from the starting state in a finite number
of steps with probability 1 if the goal is reachable from
the starting state in G and no cycle is reachable. The
number of nodes in the graph is at most the number of
states in the MDP so we can clearly decide this problem.
Thus goal-state reachability is decidable for POMDPs.
�

C. Other Computability Separations

Although we looked only at goal-state reachability
here, we conjecture that there are other similar prob-

lems that are undecidable for QOMDPs despite being
decidable for POMDPs.

For instance, the zero-reward policy problem is a likely
candidate for computability separation. In this problem,
we still have a goal QOMDP(POMDP) but states other
than the goal state are allowed to have zero reward. The
problem is to decide whether the path to the goal state is
zero reward. This is known to be decidable for POMDPs,
but seems unlikely to be so for QOMDPs.

V. FUTURE WORK

We were only able to give an interesting computability
result for a problem about goal decision processes, which
ignore the reward function. It would be a great to prove
a result about QOMDPs that made nontrivial use of the
reward function.

We also proved computability results, but did not con-
sider algorithms for solving any of the problems we posed
beyond a very simple PSPACE algorithm for policy exis-
tence. Are there quantum analogues of POMDP algo-
rithms or even MDP ones?

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under Grants No. 0844626
and 1122374, as well as an NSF Waterman Award.

[1] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra,
Artificial Intelligence 101, 99 (1998).

[2] J. Pineau, G. Gordon, and S. Thrun, in International
joint conference on artificial intelligence, Vol. 18 (2003)
pp. 1025–1032.

[3] S. Russell and P. Norvig, Artificial Intelligence: A Mod-
ern Approach, 2nd ed. (Pearson Hall, New Jersey, 2003)
chapter 17.

[4] M. T. J. Spaan and N. Vlassis, Journal of Artificial In-
telligence Research 24, 195 (2005).

[5] T. Smith and R. Simmons, in Uncertainty in Artificial
Intelligence (2004) pp. 520–527.

[6] C. H. Papadimitriou and J. N. Tsitsiklis, Mathematics of
Operations Research 12, 441 (August 1987).

[7] O. Madani, S. Hanks, and A. Condon, in Association for
the Advancement of Artificial Intelligence (1999).

[8] Actually, the quantum operator acts on a product state of
which the first dimension is d. In order to create quantum
states of dimension d probabilistically, the superoperator
entangles the possible next states with a measurement

register and then measures that register. Thus the op-
erator actually acts on the higher-dimensional product
space, but for the purposes of this discussion, we can
treat it as an operator that probabilistically maps states
of dimension d to states of dimension d.

[9] R. B. Griffiths, “Quantum Channels, Kraus Operators,
POVMs,” Quantum Computation and Quantum Infor-
mation Theory Course Notes, Carnegie Mellon Univer-
sity (Spring 2010).

[10] J. Eisert, M. P. Mueller, and C. Gogolin, Physical Review
Letters 108 (2012).

[11] J. Rintanen, in International Conference on Automated
Planning and Scheduling (2004) pp. 345–354.

[12] This holds because probabilities are nonnegative. A sim-
ilar analysis in the quantum case would fail at this step.


	Quantum POMDPs
	Abstract
	Introduction
	Partially Observable Markov Decision Processes (POMDPs)
	Fully Observable Case
	Partially Observable Case

	Quantum Observable Markov Decision Processes (QOMDPs)
	QOMDP Formulation
	QOMDP Policy Existence Complexity

	A Computability Separation in Goal-State Reachability
	Undecidability of Goal-State Reachability for QOMDPs
	Decidability of Goal-State Reachability for POMDPs
	Other Computability Separations

	Future Work
	Acknowledgments
	References


