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Abstract But what if Alice is a quantum advisor, who can send
Bob a quantum statg);)? Even in that case, Ambainis

This paper introduces a new technique for removing ex- et al. [4] showed that Alice has to sefdd 2™ /n) qubits for
istential quantifiers over quantum states. Using this tech- Bob to succeed with probability at lea®{3 on everyz.
nique, we show that there is no way to pack an exponentialSubsequently Nayak [11] improved this fb(2"), mean-
number of bits into a polynomial-size quantum state, in suching that there is no quantum improvement over the classical
a way that the value of any one of those bits can later be bound. Sinc&™ qubits is too many for Alice to communi-
proven with the help of a polynomial-size quantum witness. cate during her weekly meetings with Bob, it seems Bob is
We also show that any problem @MA with polynomial- out of luck.
size quantum advice, is also REPACE with polynomial- So in desperation, Bob turns for help to Merlin, the star
size classical advice. This builds on our earlier resultttha student in his department. Merlin knowysas well asz,
BQP/qpoly C PP/poly, and offers an intriguing counter-  and can thus evaluaté(x). The trouble is that Merlin

point to the recent discovery of Raz titdP /qpoly = ALL. would prefer to take credit for evaluating(x) himself, so
Finally, we show thaQCMA /qpoly C PP/poly and that he might deliberately mislead Bob. Furthermore, Merlin
QMA/rpoly = QMA/poly. (whose brilliance is surpassed only by his ego) insists that

all communication with lesser students be one-way: Bob

is to listen in silence while Merlin lectures him. On the
1. Introduction other hand, Merlin has no time to give an exponentially long
lecture, any more than Alice does.

With “helpers” like these, Bob might ask, who needs ad-
versaries? And yet, is it possible that Bob could play Al-
ice and Merlin against each other—cross-checking Merlin’s
specific but unreliable assertions against Alice’s vague bu
reliable advice? In other words, does there exist a random-
ized protocol satisfying the following properties?

Let Bob be a graduate student, anddéie ann-bit string
representing his thesis problem. Bob’s goal is to learn
f (z), wheref : {0,1}" — {0,1} is a function that maps
every thesis problem to its binary answer (“yes” or “no”).
Bob knowsz (his problem), but is completely ignorant 6f
(how to solve the problem). So to evalugtér), he’s go-
ing to need help from his thesis advisor, Alice. Like most ;) Alice and Merlin both send Bopoly (n) bits.
advisors, Alice is infinitely powerful, wise, and benevdlen
But also like most advisors, she’s too busy to find out what (i) If Merlin tells Bob the truth aboutf (z), then there
problems her students are working on. Instead, she just  exists a message from Merlin that causes Bob to accept
doles out the same adviedo all of them, which she hopes with probability at least/3.
will let them evaluatef () for anyx they might encounter.
The question is, how long doeshave to be, for Bob to be
able to evaluatg (z) for anyx?

Clearly, the answer is that has to be2™ bits long—
since otherwise will underdetermine the truth table gf

Indeed, lety (z, s) be Bob’s best guess as fC(x)_, givenz It is relatively easy to show that the answer is no: if Alice
ands. Then even if Alice can chooseprobabilistically,  sends; bits to Bob and Merlin sends bits, then for Bob
and we only require thag_(:c, s) = f (z) with probability to succeed we must hawdw + 1) = Q (2). Indeed, this
at IeasELZ/?).for everyz, still one can show that needs to g pasically tight: for alkw > 1, there exists a protocol in
bes2(2") bits long. which Merlin sendsv bits and Alice send® (- + n) bits.
*Email: scott@scottaaronson.com. Supported by ARDA, CIAR] Of course, even if Merlin didn’t send anything, it would
IQC. Part of this work was done at Caltech. suffice for Alice to sen®” bits. At the other extreme,

(iii) If Merlin lies about f (z) (i.e., claims thatf (z) = 1
when f (z) = 0 or vice versa), then no message from
Merlin causes Bob to accept with probability greater
than1/3.




if Merlin sends2™ bits, then it suffices for Alice to send Aaronson [1] showed thaBQP/qpoly C PP/poly,

ano (n)-bit “fingerprint” to authenticate Merlin’'s message. whereBQP /qgpoly is the class of problems solvableBQP

But in any event, either Alice or Merlin will have to send an with polynomial-size quantum advice. He also gave an or-

exponentially-long message. acle relative to whictlNP ¢ BQP/qpoly. Together, these
On the other hand, what if Alice and Merlin can both results seemed to place strong limits on the power of quan-

sendquantummessages? Our main result will show that, tum advice.

even in this most general scenari@pb is still out of luck However, recently Raz [14] reopened the subject, by
Indeed, if Alice sends qubits to Bob, and Merlin sends showing that in some cases quantum advice can be ex-
w qubits, then Bob cannot succeed unlegsv + 1) = traordinarily powerful.  In particular, Raz showed that

Q(2"/n?). Apart from then? factor (which we conjec-  QIP (2) /gpoly = ALL, whereQIP (2) is the class of prob-
ture can be removed), this implies that no quantum protocollems that admit two-round quantum interactive proof sys-
is asymptotically better than the classical one. It follows tems. Raz's result was actually foreshadowed by an obser-
then, that Bob ought to drop out of grad school and send hisvation in [1], thatPostBQP /qpoly = ALL. HerePostBQP

resume to Google. is the class of problems solvable in quantum polynomial
time, if at any time we can measure the computer’s state
1.1. Banishing Merlin and then “postselect” on a particular outcome occurting.

These results should make any complexity theorist a lit-
tle queasy, and not only because jumping frQ® (2) or
PostBQP to ALL is like jumping from a hilltop to the edge
of the universe. A more serious problem is that these
results fail to “commute” with standard complexity inclu-
sions. For example, even thouBhstBQP is strictly con-
C}ained inBQEXPEXP, notice thatBQEXPEXP /qpoly is
e(very) strictly contained ifPostBQP /qpoly!

But why should anyone care about this result, apart from
Alice, Bob, Merlin, and the Google recruiters? One reason
is that the proof introduces a new technique for removing
existential quantifiers over quantum states, which might be
useful in other contexts. The basic idea is for Bob to loop
over all possible messages that Merlin could have sent, an
acceptif and only if there exists a message that would caus
him to accept. The problem is that in the quantum case,
the number of possible messages from Merlin is doubly-
exponential. So to loop over all of them, it seems we'd _
first need to amplify Alice’s message an exponential num- On the other hand, the same pathologies would occur
ber of times. But surprisingly, we show that this intuition with classical randomized advice. For neither the re§ult of
is wrong: to account for any possible quantum messageRaZ [14], nor that of_Aaronson_ [1]_, makes any gssentlal use
from Merlin, it suffices to loop over all possibldassical  ©Of quantum mechanics. Thatis, instead of saying that
messages from Merlin!  For, loosely speaking, any quan- . .
tum state can eventually be detected Ey the “shado?/vs” it QIP (2) /qpoly = PostBQP /qpoly = ALL,
casts on computational basis states. However, turning thisye could equally well have said that
insight into a “de-Merlinization” procedure requires some
work: we need to amplify Alice’s and Merlin’s messages in IP (2) /rpoly = PostBPP /rpoly = ALL,

a subtle way, and then deal with the degradation of Alice’s ]
message that occurs regardless. wherelP (2) and PostBPP are the classical analogues of

QIP (2) andPostBQP respectively, andrpoly means “with
1.2. QMA With Quantum Advice polynomial-size randomized advice.
o Inspired by this observation, here we propose a gen-
eral hypothesis: thathenever quantum advice behaves like

~ Inany case, the main motivation for our resultis that it gynonentially-long classical advice, the reason has mathi
implies a new containment in quantum complexity theory: {4 4o with quantum mechanic#ore concretely:
namely that

1.3. The Quantum Advice Hypothesis

e The Quantum Advice Hypothesis:For any “natural”
QMA /qgpoly C PSPACE/poly. complexity clasg, if C/qpoly = ALL, thenC /rpoly =
ALL as well.

Here QMA is the quantum version oA, and /qpoly T - - ) .
means “with polynomial-size quantum advice.” Previously, . eHere Is the proof: given a Boolean functigh: {0, 1}" — {0,1},
it was not even known wheth@MA /qpoly = ALL, where 1 )

ALL is the class of all languages! Nevertheless, some con- hon) = 572 ety 1 @)

text mighf[ be helpful for unders_tanding why our New Con- ag the advice. Then to evaluafez) on anyz, simply measuré, ) in
tainment is of more than zoological interest. the standard basis, and then postselect on obsejarig the first register.



The evidence for this hypothesis is simply that we have  Given a complexity clas§, we write C/poly, C/rpoly,
not been able to refute it. In particular, in Appendix andC/qpoly to denoteC with polynomial-size determin-
7 we will show thatQMA/rpoly = QMA/poly. So if istic, randomized, and quantum advice respectivelo
QMA/qgpoly contained all languages—which (at least to us) for example,BPP/rpoly is the class of languages decid-
seemed entirely possibke priori—then we would have a  able by aBPP machine, given a sample from a distribu-
clear counterexample to the hypothesis. In our view, then,tion D,, over polynomial-size advice strings which depends
the significance of th&@MA /qpoly C PSPACE/poly re- only on the input lengtw. It is clear thatBPP /rpoly =
sult is that it confirms the quantum advice hypothesis in the BPP/poly = P/poly. However, in other cases the state-

most nontrivial case considered so far. mentC /rpoly = C/poly is harder to prove or is even false.
To summarize, the quantum advice hypothesis has been Admittedly, the /rpoly and /qpoly operators are not
confirmed for at least four complexity class&QP, QMA, always well-defined: for example? /qpoly is just silly,

PostBQP, andQIP (2). It remains open for other classes, andAM/rpoly seems ambiguous (since who gets to sam-
such aMA (2) (QMA with two unentangled yes-provers) ple from the advice distribution?). For interactive proof
andQSh (QMA with competing yes-prover and no-prover). classes, the general rule we adopt is thialy the verifier
gets to “measure” the adviceln other words, the prover (or
1.4. Outline of Paper provers) knows the advice distributidn_n or advice state
|4n), but not the actual results of sampling frd@m or mea-
) ) _suring|yy,). Inthe case of rpoly, the justification for this
e Section 2 surveys the complexity classes, communi- e is that, if the prover knew the sample frdp, then we
cation comple_xrty measures, and quantum information 19 immediately ge€ /rpoly = C/poly for all interactive
notions used in this paper. proof classe€, which is too boring. In the case gépoly,
) L the justification is that the verifier should be allowed to mea
e Section 3 states our “D_e-M_erI|n_|zat_|on The_orem," and sure|y,,) at any time and in any basis it likes, and it seems
then proves three of its implications: (i) a lower peperse to require the results of such measurements to be
bound on the QMA communication complexity of ran- relayed instantly to the prover.
dom access coding, (ii) a general lower bound on |, 5 private-coin protocol, the verifier might choose to
QMA communication complexity, and (iii) the inclu- 6641 some or all of the measurement results to the prover,
sionQMA/qpoly € PSPACE/poly. but in a public-coin protocol, the verifier must send a uni-
form random message that is uncorrelated with the advice.
Indeed, this explains how it can be true tHat2) /rpoly #
AM /rpoly (the former equalé\LL, while the latter equals
NP /poly), even though Goldwasser and Sipser [5] famously
showed thatP (2) = AM in the uniform setting.
For the complexity classes that appear in this paper,
it should generally be obvious what we mean®jrpoly
or C/qpoly. But to fix ideas, let us now formally define
QMA/qgpoly.

e Section 4 proves the De-Merlinization Theorem itself.
e Section 5 concludes with some open problems.

e Appendix 7 proves a few other complexity results, in-
cludingQCMA /gpoly C PP /poly andQMA /rpoly =
QMA/poly.

2. Preliminaries - _
Definition 1 QMA/qgpoly is the class of languages C

. {0,1}" for which there exists a polynomial-time quantum

2.1. Complexity Classes verifier Q, together with quantum advice statgg,)},,- 1,
such that for allz € {0,1}":
We assume familiarity with standard complexity classes

like BQP, P/poly, andMA. The classQMA (Quantum () If x € L, then there exists a quantum witngss
Merlin-Arthur) consists of all languages for which a ‘yes’ such thatQ accepts with probability at leagt/3 given
answer can be verified in quantum polynomial time, given |) [¢n) |@) as input.
a polynomial-size quantum witness stag. The com-

pleteness and soundness errorsigi The classQCMA (i) If = ¢ L, then for all pure statés|) of the witness

(Quantum Classical Merlin-Arthur) is the same @MA, register, Q accepts with probability at most/3 given
except that now the witness must be classical. Itis not |2 [¥n)[#) @sinput.
known WhetheQ MA = QCMA. Seethe Complexny Zéo 3We can also writeC /rlog (for C with logarithmic-size randomized
for more information about these and other classes. advice),C/qlog, and so on.
4By linearity, this is equivalent to quantifying over all neidt states of
2http://qwiki.caltech.edu/wiki/ComplexitZ 0o the witness register.



Here |4,,) and|p) both consist op (n) qubits for some
fixed polynomiap. Also,Q can accept with arbitrary prob-
ability if given a state other thah),,) in the advice register.

One other complexity class we will needisstBQP, or
BQP with postselection.

Definition 2 PostBQP is the class of languagesd C
{0, 1} for which there exists a polynomial-time quantum
algorithm such that for alk: € {0,1}", when the algorithm
terminates:

(i) The first qubitis|1) with nonzero probability.

(i) If z € L, then conditioned on the first qubit beifg,
the second qubit i) with probability at leas®/3.

(i) If = ¢ L, then conditioned on the first qubit beifhg,
the second qubit i) with probability at most /3.

One can similarly define PostBQPSPACE,
PostBQEXP, and so on. We will use a result of
Aaronson [2], which characteriz&stBQP as simply the
classical complexity clag3P.

2.2. Communication Complexity

Let £ : {0,1}" x {0,1}* — {0,1} be a Boolean
function. Suppose Alice has aN-bit string X and Bob
has an)M-bit stringY. ThenD' (f) is the determinis-
tic one-way communication complexity gf. that is, the
minimum number of bits that Alice must send to Bob, for
Bob to be able to outpuf (X,Y) with certainty for any

(X,Y) pair. If we let Alice’s messages be randomized, and

only require Bob to be correct with probabili/3, then

we obtainR! (f), the bounded-error randomized one-way

communication complexity of. Finally, if we let Alice’s
messages be quantum, then we ob@lr( f), the bounded-
error quantum one-way communication complexityfot
ClearlyQ' (f) < R'(f) < D' (f) forall f. See Klauck
[7] for more detailed definitions of these measures.

() If f(X,Y) = 1, then there exists ) such that Bob
acceptsdY’) [ x) ) with probability at leasg/3.

@i If f(X,Y) = 0, then for all |¢), Bob accepts
[Y') [x) |¢) with probability at most /3.

Call a protocol {a, w)” if Alice’s message consists af
gubits and Merlin’s consists af qubits. Then for all inte-
gersw > 0, we letQMA (f) denote the @QMA , one-way
communication complexity” off: that is, the minimunu
for which there exists afu, w) protocol such that Alice and
Bob succeed. Clearl@MAL (f) < Q' (f), with equality

whenw = 0.
2.3. Quantum Information

Here we review some basic facts about mixed states.
Further details can be found in Nielsen and Chuang [13]
for example.

Given two mixed statep ando, thefidelity F' (p, o) is
the maximum possible value &f)|), where|y) and|y)
are purifications ofp and o respectively. Also, given a
measurement/, let Dy, (p) be the probability distribution
over measurement outcomeshif is applied top. Then
thetrace distance|p — o||,, equals the maximum, over all
possible measurements, of | Das (p) — Das (0)||, where

N
1
ID =D =53 Ipi — v
=1

is the variation distance betweéh = (p;,...,px) and

D' = (pl,...,py). Forallpando, we have the following
relation between fidelity and trace distance:
2
lo = ol < /1= F(p,0)*.

Throughout this paper, we usg/y to denote N-
dimensional Hilbert space. One fact we will invoke re-
peatedly is that, iff is the maximally mixed state it v,
then

1 N
I= N;Wj) (1]

Now suppose that, in addition to a quantum message

| x) from Alice, Bob also receives a quantum witness

|e) from Merlin, whose goal is to convince Bob that
f(X,Y) =15 We say Alice and Bolsucceedf for all
XY,

5We assume no shared randomness or entanglement. Also, weess
for simplicity that Alice can only send pure states; noted th& increases
the message length by at most a multiplicative facto2 ¢dr an additive
factor oflog N, if we use Newman'’s Theorem [12]).

8For convenience, from now on we assume that Merlin only nésds
prove statements of the forffi(X,Y) = 1, not f (X,Y) = 0. For our
actual results, it will make no difference whether we adbfgt a&ssumption
(corresponding to the cla&MA), or the assumption in Section 1 (corre-
sponding taAQMA N coQMA).

where{|y1),. .., |[¥n)} isanyorthonormal basis foH v .

3. De-Merlinization and Its Applications

Our main result, the “De-Merlinization Theorem,” al-
lows us to lower-boundQMAL (f) in terms of the ordi-
nary quantum communication complexi®y (f). In this
section we state the theorem and derive its implications for
random access coding (in Section 3.1), one-way communi-
cation complexity (in Section 3.2), and complexity theory
(in Section 3.3). The theorem itself will be proved in Sec-
tion 4.



Theorem 3 (De-Merlinization Theorem) For all Boolean
functionsf (partial or total) and allw > 2,

Q' (f) =0 (QMA}, (f) - wlog?w) .

Furthermore, given an algorithm for th@MA} protocol,
Bob can efficiently generate an algorithm for t@e pro-
tocol. If the former useg§’ gates andS qubits of mem-
ory, then the latter useS - S°(%) gates andD (5% log® S)
gubits of memory.

3.1. Application I: Random Access Coding

Following Ambainis et al. [4], let us define thandom
access codindgor RAC) problem as follows.
an N-bit string X = x;...xy and Bob has an index e
{1,...,N}. The players’ goal is for Bob to lear.

In our setting, Bob receives not only anbit message
from Alice, but also av-bit message from Merlin. If; =

Alice has

with constant probability, by cross-checking thié bit of
g (Y) against the:'" bit of Y as sent by Alice.m

Using a straightforward amplification trick, we can show
that the protocol of Theorem 4 is essentially optimal.

Theorem 5 If there exists a randomizéd, w) protocol for
RAC, theru (w 4+ 1) = Q(N) anda = Q (log N).

Proof. We first show that: (w + 1) = Q (N). First Alice
amplifies her message to Bob by sendifig= O (w + 1)
independent copies of it. For any fixed message of Mer-
lin, this reduces Bob’s error probability to at most (say)
2-2(w+1) 50 now Bob can ignore Merlin, and loop over all
2 messages € {0,1}" that Merlincould have sent, ac-
cepting if and only if there exists athat would cause him
to accept. This yields an ordinary protocol for the RAC
problem in which Alice sendsi¥ bits to Bob. But Ambai-
nis et al. [4] showed that any such protocol requingsV)
bits; hencer (w + 1) = Q (N).

That Alice needs to serfd (log V) bits follows by a sim-

1, then there should exist a message from Merlin that causeple counting argument: |e€Dx be Alice’s message distri-

Bob to accept with probability at lea3f 3; while if z; = 0,

bution given an inputX. ThenDx and Dy must have

then no message from Merlin should cause Bob to acceptconstant variation distance for al = Y, if Bob is to dis-

with probability greater thath/3. We are interested in the

minimuma, w for which Alice and Bob can succeed.

tinguishX from Y with constant biasm
Together, Theorems 4 and 5 provide the complete story

For completeness, before stating our results for the quanfor the classical case, up to a constant factor. In the quan-
tum case, let us first pin down the classical case—that is,tum case, the situation is no longer so simple, but we can
the case in which Alice and Merlin both send classical mes- give a bound that is tight up to a polylog factor.

sages, and Alice’s message can be randomized. Obviously.

if Merlin sends0 bits, then Alice needs to sertl(V) bits;

this is just the ordinarR AC problem studied by Ambainis

et al. [4]. At the other extreme, if Merlin sends thébit
messagéX, then it suffices for Alice to send an (log IV )-

Theorem 6 If there exists a quanturfu,w) protocol for

RAC, then
N
log® N

bit fingerprint of X'. For intermediate message lengths, we proof, If w = 0 or w = 1 then clearlya = Q (), so

can interpolate between these two extremes.

Theorem 4 For all a,w such thataw > N, there exists
a randomizeda + O (log N) ,w) protocol for RAC—that
is, a protocol in which Alice sends+ O (log N) bits and
Merlin sendsw bits.

Proof. The protocol is as follows: first Alice divides her

string X = x1 ...z into a substringsyy, ..., Y,, each at
mostw bits long. She then maps eath to an encoded
substringY! = g (Y;), whereg : {0,1}" — {0,1}"V isa
constant-rate error-correcting code satisfyifig= O (w).
Next she chooses € {1,...,W} uniformly at random.
Finally, she sends Bob (which require<0 (log V) bits of
communication), together with thig” bit of Yj’ for every

je{l,...,a}.

Now if Merlin is honest, then he sends Bob the substring
Y; € {0,1}" of X containing ther; that Bob is interested

in. This allows Bob to learrz;;. Furthermore, if Merlin

cheats by sending soné # Y}, then Bob can detect this

assumev > 2. By Theorem 3,

Q' (RAC) = O (QMAL (RAC) - wlog? w)
=0 (aw~1og2N) .

But Nayak [11] showed tha®' (RAC) = Q(N), and
hencenw = Q (N/log” N). m

Clearly Theorem 6 can be improved whenis very
small or very large. For whew = 0, we haver = Q2 (N);
while for anyw, a simple counting argument (as in the clas-
sical case) yielda = Q) (log N). We believe that Theorem
6 can be improved for intermediateas well, since we do
not know of any quantum protocol that beats the classical
protocol of Theorem 4.

3.2. Application II: One-Way Communica-
tion

Theorem 3 yields lower bounds on QMA communica-
tion complexity, not only for the random access coding



problem, but for other problems as well. For Aaronson [1] proof of Savitch’s theorem th&tPSPACE = PSPACE. An

showed the following general relationship betwéie]n(f) obvious difficulty is that the numbers of paths coulddo®i-
andQ; (f): bly exponential, and therefore take exponentially many bits
to store. But we can deal with that by computing each bit
Theorem 7 ([1]) For all Boolean functiong : {0, 1}N X of the numbers separately. Here we use the fact that there
{0,13" = {0, 1} (partial or total), existNC' circuits for addition, and hence addition®f-bit
integers is “locally” inPSPACE.
D' (f) =0 (M Q3 (f)log Q5 (f)) - If each path is weighted by a complex amplitude, then it

o ) , is easy to see that the same idea lets us sum the amplitudes
Combining Theorem 7 with Theorem 3, we obtain the o, paths. We can thereby simul&QPSPACE and
following relationship betweeD' (f) and QMAL (f). PostBQPSPACE in PSPACE as well. m
Forall f : {0,1}" x {0,1}" — {0,1} (partial or total) In  particular, Lemma 10 implies that
and allw > 2, PostBQPSPACE/poly = PSPACE/poly.  (For note
. that unlike randomized and quantum advice, determin-
D' (f) = O (M- wlog’w- QMA,, (f)log QMA,, (). istic advice commutes with itandard complexity class

. . . inclusions.)
3.3. Application III: Upper-Bounding Putting it all together, we obtain:

QMA /gpoly
Theorem 11 QMA /qpoly C PSPACE/poly.
We now explain why the containme@MA/qpoly C
PSPACE/poly follows from the De-Merlinization Theo-
rem. The first step is to observe a weaker result that follows
from that theorem:

As a final remark, leQAM be the quantum analogue of
AM, in which Arthur sends a public random string to Mer-
lin, and then Merlin responds with a quantum state. Marriott
and Watrous [10] observed thQAM = BP-QMA. So

Lemma 8 QMA/gpoly C BQPSPACE/gpoly. QAM /gpoly = BP-QMA /qpoly = QMA /gpoly,

Proof. - Given a language, € QMA/qpoly, let L, :  since we can hardwire the random string into the quantum
{0,1}" — {0,1} be the Boolean function defined by agvice. HenceQAM/qpoly C PSPACE/poly as well.

Ly (z) =1if z € LandL, (z) = 0 otherwise. Thenifwe  Thjs offers an interesting contrast with the result of Ra# [1
interpret Alice’s input as the truth table f,, Bob's input  thatQIP (2) /qpoly = ALL.

asz, andS as the number of qubits used by RMA /qpoly
machine, the lemma follows immediately from Theorem 3.
]

4. Proof of The De-Merlinization Theorem

Naively, Lemma 8 might seem obvious, since it is well-
known thatQMA C PSPACE. But remember that even if
C C D, it need not follow that’ /qpoly C D/qgpoly.

The next step is to replace the quantum advice by classi-
cal advice.

We now proceed to the proof of Theorem 3. In Sec-
tion 4.1 we prove several lemmas about damage to quantum
states, and in particular, the effect of the damage caused
by earlier measurements of a state on the outcomes of later
measurements. Section 4.2 then gives our procedure for
Lemma 9 BQPSPACE /qpoly C PostBQPSPACE /poly. amplifying Bob's error probability, after explaining whiye

more obvious procedures fail. Finally, Section 4.3 puts to-
Proof. Follows from the same argument used by Aaronson gether the pieces.
[1] to show thatBQP /qpoly C PostBQP /poly. All we
need to do is replace polynomial time by polynomial space. 4.1. Quantum Information Lemmas

]
Finally, we observe a simple generalization of Watrous’'s  In this section we prove several lemmas that will be
theorem [15] thaBQPSPACE = PSPACE. needed for the main result. The first lemma is a simple
variant of Lemma 2.2 from [1]; we include a proof for com-
Lemma 10 PostBQPSPACE = PSPACE. p|eteness_
Proof Sketch. Ladner [9] showed thaPPSPACE = Lemma 12 (Almost As Good As New Lemma)Suppose

PSPACE. Intuitively, given the computation graph of a a 2-outcome POVM measurement of a mixed spayéelds
PPSPACE machine, we want to decide REPACE whether outcomel with probabilitye. Then after the measurement,
the number of accepting paths exceeds the number of rejectand assuming outconteis observed, we obtain a new state
ing paths. To do so we use divide-and-conquer, as in thep, such that|p — pol|,, < V.



Proof. Let |¢) be a purification ofp. Then we can write Finally, we give a lemma that is key to our result. This
[¢) asv/1 — e |vo) + /€ |1), where|yy) is a purification  lemma, which we call the “quantum OR bound,” is a sort

of po and(yg|1)1) = 0. So the fidelity betweep andpy is of converse to the quantum union bound. It says that, for
all quantum circuits\ and advice statelg)), if there exists
F(p;po) = (¥[tho) = V1—e. a witness statép) such thatA acceptsy) o) with high
probability, then we can also caudeto accept with high
Therefore probability by repeatedly running on [+ |}, where|;) is
5 a random basis state of the witness register, and then tak-
lp = polle < /1= F(p,p0)” < Ve. ing the logical OR of the outcomes. One might worry that,
. as we runA with various|j)’s, the state of the advice reg-

ister might become corrupted to something far fram.
However, we show that if this happens, then it can only be
because one of the measurements has already accepted with
high probability.

The next lemma, which we call the “quantum union
bound,” abstracts one of the main ideas from [4].

Lemma 13 (Quantum Union Bound) Let p be a mixed
state, and le{A4, ..., Ar} be a set oR-outcome POVM | emma 14 (Quantum OR Bound) Let A be a2-outcome

measurements.  Suppose eaghyields outcome with POVM measurement on a bipartite Hilbert spdég © H .
probability at moste when applied tg. Then if we ap-  Also, let{|1),...,|N)} be any orthonormal basis fot,
plyAs, ..., Arinsequencetp, the probability thatatleast  gnd for allj € {1,...,N}, let A; be the POVM or 4
one of these measurements yields outcbimat most’’/c. induced by applying to H4 ® |j). Suppose there exists a

product stateo®o in H 4 ®H p such thatA yields outcomeé
with probability at least) > 0 when applied tp ®o. Then
if we applyA;,, ..., A;, insequence tp, wherejy, . . ., jr
are drawn uniformly and independently frofd, ..., N}
andT > N/n?, the probability that at least one of these

Proof. Follows from a hybrid argument, almost identi-
cal to Claim 4.1 of Ambainis et al. [4]. More explic-
itly, by the principle of deferred measurement, we can re-
place each measuremehy} by a unitaryU; that CNOT’s
the measurement outcome into an ancilla qubit. Aet 2
p®10---0)(0---0| be the initial state of the system pliis measurements yields outcomis at Ieast(n — /N/T) .

ancilla qubits. Then by the same idea as in Lemma 12, for .
1a quiits y s ! S| Proof. Let E; denote the event that one of the first

all t we have .
measurements o yields outcomel. Also, leta :=
2
|UtpoU; " = pol,, < Ve (n - \/N/T) . Then our goal is to show th&t [E;] > «
So lettin for somet, where the probability is over the choice of
9 J1,---,jr as well as the measurement outcomes. Suppose

Pr[E;] < o for all ¢; we will derive a contradiction.

Let p; be the state irH 4 after the firstt measurements,
by unitarity we also have averaged over all choices ¢f,...,j; and assuming,
does not occur. Suppos: — pl|,, > /o for somet.
Then interpreting the firstmeasurements as a single mea-
surement, and taking the contrapositive of Lemma 12, we
find thatPr [E;] > «, and we are done. So we can assume
without loss of generality thatp; — p||,, < v/« forall ¢.

pr:=Up---Up_ys1p0Urlyy -+ Uz,

lot+1 — pell, = UT"'UT_tpoUT_it...UT—l
+ tr —UT NN UT_tJ’_lpOU’;itJrl - Uj:l

tr
= HUT—tPOUT_it - pOHtr

< Ve, For all mixed states in H4 ® Hp, let Py (c) be the
) ) ) probability thatA yields outcomd when applied tg. By
and hencelpr — poll;, < 7'/ by the triangle inequality. e gefinition of trace distance, we have
Now let M be a measurement that returns the logical OR
of theT ancilla qubits, and IeD (p) be the distribution over Pr (") = Pr(s) = lls =<y,

the outcomes((and1) when M is applied top. Suppose

M yields outcomd with probabilityp when applied te.

Then sinceM yields outcomel with probability 0 when Py(pp®0)>Pr(p®0) —||pe@c—p@al,

applied topg, the variation distancé&D (pr) — D (po)|| is =Py (p®0) —|lpt — pll,

equal top. So by the definition of trace distance, '
>n—-va.

forall ¢,¢’. Therefore

p <llpr —polly, <TVe. Hence




where
1 N
=52 1l
Jj=1
is the maximally mixed state it z. It follows that for all

t,
EX [P (o 13) G)) > 520

Now notice that

Pr [Et|jEt71] = EX

P B S\
jie{1,....N} [Pa (pt—1 @ [je) (Gel)]

for all t. Furthermore, sincev;,_; = FE;, the events
TE;_1 A E, are disjoint. Therefore

Pr [ET] = XT: Pr [jEt_l A Et]

T
> Z (1—a)-  EX [Pr(p—1@|jt) (Je|)]

Jt€{1l,....N}

2
which is certainly greater tham = (77 — \/N/T) . Here

we are using the fact thdt > N/n? and hencer < 1. m

4.2. Amplification

Before proceeding further, we need to decrease Bob's
soundness error (thatis, the probability that he accepts a d
honest claim from Merlin). The simplest approach would P'°
be to have Alice and Merlin both sed@opies of their mes-

Lemma 15 Suppose Bob receives amqubit messagé))

from Alice and aw-qubit messagégp) from Merlin, where
w > 2. LetA = O (awlog”w) andW = O (wlogw).

Then by using! qubits from Alice andV qubits from Mer-
lin, Bob can amplify his soundness error 50" while

keeping his completeness ermf3.

Proof. We will actually use two layers of amplification. In
the “inner” layer, we replace Alice’s messagge) by the
al-qubit messagg))®*, wherel = O (logw). We also re-
place Merlin’s message) by thew/-qubit messagga>®é.

We then run Bob’s algorithmitimes in parallel and output
the majority answer. By a Chernoff bound, together with
the same observations used by Kitaev and Watrous [6] to
show amplification forQMA, this reduces both the com-
pleteness and the soundness errors 1o m for suit-
ablel = O (logw).

In the “outer” layer, we replace Alice’s message by
1), whereu = O (W). We then run the inner layer
u times, once for each copy @b>®e, but reusing the same
register for Merlin’s message each time. (Also, after each
invocation of the inner layer, we uncompute everything ex-
cept the final answer.) Finally, we output the majority an-
swer among these invocations.

Call Bob's original algorithmQ, and call the amplified
algorithm Q.. Then our first claim is that iQ accepts
all w-qubit messages from Merlin with probability at most
1/3, thenQ,. accepts all¥’-qubit messages with probability
at most5~", for suitableu = O (W). This follows from
a Chernoff bound—since even if we condition on the first
throught" invocations of the inner layer, the + 1)*" in-
vocation will still receive a “fresh” copy ofi)®*, and will
therefore accept with probability at mast< 1/3. The
state of Merlin’s message register before the- 1)** invo-
cation is irrelevant.

Our second claim is that, i@ accepts somép) with
bability at leas2/3, then Q. accepts1go>®/‘ with prob-
ability at least2/3. For recall that a single invocation of

. . 0. -
sages for somé, and then have Bob run his verification the inner layer rejectsp) " with probability at most. So

algorithm ¢ times in parallel and output the majority an-

by Lemma 13, even if we invoke the inner layertimes

swer. However, this approach fails, since the decrease inln sequence, the probability that one or more invocations

error probability is more than cancelled out by therease

reject is at most.\/e, which is less thari/3 for suitable

in Merlin’s message length (recall that we will have to loop “ = OW). =

over all possible classical messages from Merlin). So then

why not use the “in-place amplification” technique of Mar- 4.3. Main Result

riott and Watrous [10]? Because unfortunately, that tech-
nigue only works for Merlin's message; we do not know

We are now ready to prove Theorem 3: that for all

whether it can be generalized to handle Alice’s message agoolean functiong and allw > 2,

well.” Happily, there is a “custom” amplification procedure

with the properties we want:

“In any such generalization, certainly Alice will still hat@send mul-
tiple copies of her message. The question is whether Meilimiso have
to send multiple copies dfis message.

Q' (f) =0 (QMA, (f) - wlog’w) .

Furthermore, if Bob use§’ gates andS qubits in the
QMA! protocol, then he useg - S°©) gates and

w

O (S%log S) qubits in theQ' protocol.



Proof of Theorem 3. Let Q be Bob’s algorithm. Alsc
suppose Alice’s message hagqubits and Merlin’s messa
hasw qubits. The first step is to replagby the amplifie
algorithm@,. from Lemma 15, which takes af-qubit ad:
vice statg¥) from Alice and al¥/-qubit witness state fro
Merlin, whereA = O (awlog® w) andW = O (wlogw).
From now on, we us&. (|®)) as a shorthand fo@.. run
with witness|®), together with an advice register that o
inally contains Alice’s messad@) (but that might becon
corrupted as Bob uses it). Then Bob’s goal is to de
whether there exists |@) such thatQ,. (|®)) accepts witl
high probability.

To do so, Bob uses the following proceduv¢. Giver
Alice’'s message| V), this procedure run, (|z)) for
9 (2") computational basis statés) of the witness re¢
ister chosen uniformly at random.
logical OR of the measurement outcomes.

let |c) be a counter initialized t{p)
fort:=1t09 (2")

choosez € {0,1}" uniformly at random

run Q.. (|z)), and leth be Q..’s output

/I 1 for accept for reject

set|c) := |c+ b)

run ;! (|z)) to uncompute garbage
nextt
if ¢ = 0 then returnf (z,y) = 0;

otherwise returryf (x,y) =1

Let us first show that\ is correct. First suppose that
f(xz,y) = 0. By Lemma 15, we know tha@, (|®)) ac-
cepts with probability at most~" for all stateg®) of the
witness register.  So in particula@. (|z)) accepts with
probability at moss " for all basis stateg). By Lemma
13, it follows that whenM is finished, the counter will
have been incremented at least once (and heviciself
will have accepted) with probability at most

9(2") 1
<z
\/5W 9

Next suppose that (z,y) = 1. By assumption, there exists
a |®) such thatQ, (|®)) accepts with probability at least
2/3. So settingy = 2/3, N = 2V, andT = 9 (2V),
Lemma 14 implies that\1 will accept with probability at

least
2 2
N) (2 1\ 1
"NVT) T \3 9] ~ 9

It remains only to upper-boundt’s complexity. If
Bob’s original algorithm@ usedC' gates and' qubits, then
clearly the amplified algorithn@, usesO (C - wlog” w)

gates and (S - wlog” w) qubits. HenceM uses
@) (C ~wlog?w - 2W) =C .89

Finally it returns the

’ PP/rpoly = IP(2)/rpoly = ALL ‘

| PSPACE/poly = PSPACE/rpoly |

’ PP/poly = PostBQP/poly ‘

’ QMA/gpoly ‘
’ QMA/poly = QMA/rpoly ‘
’ QCMA/gpoly ‘
[ QcMA/poly = QCMAVrpoly |
BQP/gpoly

’ BQP/poly = BQP/rpoly ‘

Figure 1. Known containments among classi-
cal and quantum advice classes.

gates and (S? log® S) qubits, where we have used the fact
thatw < S. This completes the proom

5. Conclusions and Open Problems

Figure 1 shows the known relationships among deter-
ministic, randomized, and quantum advice classes, in light
of this paper’s results. We still know remarkably little
about quantum advice, compared to other computational re-
sources. But our results provide new evidence for a general
hypothesis: that if you're strong enough to squeeze an expo-
nential amount of advice out of a quantum state, then you're
also strong enough to squeeze an exponential amount of ad-
vice out of a probability distribution.

We end with some open problems.

e Can we find a counterexample to the quantum ad-
vice hypothesis? What abo@MA (2), or QMA (k)
for k > 2, or QS5?  Currently, we do not even
know whethetQMA (2) /rpoly = ALL; this seems re-
lated to the difficult open question of amplification for
QMA (2) (see Kobayashi et al. [8]).

e Is there a clas€ such thatC/rpoly # C/poly but
C/rpoly # ALL?

e Can we tighten the? (N/log® N) lower bound of
Theorem 6 to2 (N)? One approach would be to
tighten Lemma 15, by generalizing the in-pla@islA
amplification of Marriott and Watrous [10].

e Can we improve the containme®@MA/gpoly C
PSPACE/poly to QMA/gpoly C PP/poly? Alterna-



tively, can we construct an oracle (possibly a ‘quan-

tum oracle’ [3]) relative to whichQMA/gpoly ¢
PostBQP/poly? This would indicate that the upper
bound ofPSPACE/poly might be difficult to improve.
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7. Appendix: Other Complexity Results

The purpose of this appendix is to show that, in upper-
the computational difficulty really
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iality, Theorem 17 will show thaMA /rpoly = MA/poly

pointing out a gap in an earlier version of Section 3.3; and (and likewise thaQCMA /rpoly = QCMA /poly), Theorem
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20 will show thatQCMA /qpoly C PP/poly.

First, however, let us make a cautionary observation,
which illustrates why such upper bounds cannot be blithely
assumed. Recall thillAgxp is the exponential-time ana-
logue of MA.

Proposition 16 MAgxp /rpoly = ALL.

Proof. Given an arbitrary Boolean functiof: {0,1}" —
{0, 1}, an honest Merlin’s message will consist of the truth

S. Aaronson and G. Kuperberg. Quantum versus classicaltable of f, while the randomized advice will consist of an

O (n)-bit fingerprint of the truth tablem

We can also “scale down” Proposition 16 by an exponen-
tial, to obtainMA /poly C MA/rlog. More explicitly, in the
MA /rlog simulation, an honest Merlin’s message will con-
tain the advices to the MA/poly machine, while thelog
advice will consist of ar® (log n)-bit fingerprint of s.

We next show thalMA/rpoly = MA/poly. Combined
with the above observation, this result has the surprisimg i
plication that

MA /rlog = NP /poly = MA/poly = MA/rpoly.

In other words, for arMA machine,poly (n) bits of ran-
domized advice are no more powerful tHag (n) bits.

Theorem 17 MA/rpoly = MA/poly.

Proof. Let L be alanguage iMA /rpoly, and letA (z, r, )

be Arthur’s verification algorithm run on input, advice
stringr, and witness: € {0, 1}“’("), for some polynomial

w. (We assume without loss of generality that Arthur is
deterministic, since the randomized advice can provide his
coins.) Also, letD be the distribution from which is
drawn. Then for all: € L, there exists a such that

Pr [A(x,r, z) accepts>

2
reD =3



whereas for all: ¢ L and allz,

TPE)% [A(x,r, z) acceptb<

Wl

Let R = (r1,...,7pm)) be ap(n)-tuple of independent
samples fronD, for somep (n) = O (n+w(n)). Then
there exists a boosted verifigk, such that for alle € L,
there exists a such that

1
P * s Ll Z 1- arnowm(n)
RO [Ax (z, R, z) accepts IO
whereas for alk ¢ L and allz,
1
< _
R££<n> [As (z, R, z) accepth< e

R = (r1,...,7mp(n)) be ap (n)-tuple of independent sam-
ples fromD, for somep (n) = © (n+ w (n)). Then there
exists a boosted verifig®. such that for allz € L, there
exists aly) such that

Pr [Q. (xR, |p)) accepts> 1 -

ReDp(n) 2n25w(n) !
whereas for ali ¢ L and all|p),
Pr Q. (xR |¢)) accepts< ——
ReDI;(m # AT AP = gn93w(n)’

So by a simple counting argument, there exists a fixed ad-
vice stringR; such that for alk: € L, there exists &) such

that Arthur accepts with probability at leakt— 23w ("),
However, we still need to handle the cas¢ L. Since the

Quw(n) - P .
So by a simple counting argument, there exists a fixed ad-"umber of stategp) € H, with small pairwise inner

vice string R such that for allz € L, there exists a such
that Arthur accepts; whereas for allZ L and allz, Arthur
rejects.m

Indeed, using the same techniques we can show that

QCMA/rlog = QCMA/glog = QCMA /poly = QCMA /rpoly.

Next we want to show a somewhat harder result, that

QMA/rpoly = QMA/poly. To do so we will need the
following theorem of Marriott and Watrous.

Theorem 18 (Marriott and Watrous [10]) The error

probability in any QMA protocol can be made exponen-

tially small without increasing the size of Merlin’s quantu
witness.

We can now prove the analogue of Theorem 1fibtA.
Theorem 19 QMA/rpoly = QMA/poly.

Proof. Given a languagd. € QMA/rpoly, let D be the

distribution from which Arthur’s advice is drawn, and let

Q (z,r,|p)) be Arthur’s verification algorithm run on input

x, advice string:, and witnessy) € HS"™ . Then for all
x € L, there exists &p) such that

2
Pr[Q(wr |¢) accepts> 2,

whereas for alic ¢ L and all|p),

1
}ZYD [Q (l‘, Ty |<10>) aCCEpt}SS §

Here the probability is taken ové’s internal randomness
as well as-.

By Theorem 18, we can make the error probability ex-

ponentially small without increasing the size|gf. So let

11

product isdoubly exponential, a naive counting argument
no longer works. Instead, observe that there exists a fixed
advice stringR, such that for all: ¢ L and all computa-

tional basis statels) with = € {0, 1},

1

Pr [Q* (‘% Ry, |Z>) aCCEpt}SS 2”2“)(”) . 2n93w(n)

1
T 92w(n)’

Now suppose by contradiction that there existeasuch
that

1
Pr[Q. (z, Ro, |¢)) accepts> 3

Then

1 1
Pr [Q* (xv Ry, I) aCCep$> § . qu(n)’

where

1
I=rs >

26{071}14;(”)

|2) (2]

is the maximally mixed state ow (n) qubits. But this

implies that there exists a basis statesuch that

1 1
Pr [Q* (:c, R(); |Z>) aCCept$> g . W,
which yields the desired contradiction. Finally, by a union
bound, there exists a fixed advice striRghat combines the
properties ofRy andR;. =

7.1. Upper-Bounding QCMA /qgpoly

We now show thaQCMA /qpoly C PP/poly. Concep-
tually, the proof is similar to the proof th&MA /qpoly C
PSPACE/poly, but with three differences. First, since the
witnesses are now classical, they can be provided to the



simulating machine as part of the advice. Second, sincedifferent advice register each time. This yieldgopies of

the witnesses are provided, there is no longer any need tgp;. We then replac®. (z, pr, z) by the doubly-amplified

try exponentially many random witnesses. Indeed, this verifier Q’, (x,p?",z), which runsQ., (z, pr, z) once for

is what improves the upper bound frad@sPACE/poly to each of theJ advice registers, and returns the majority out-
PP /poly. And third, we can no longer exploit the fact that come. Let)\, be the probability tha©’, (=, p3”, z) ac-
BQPSPACE/qpoly = PSPACE/poly, in order to splitthe  cepts. Then by a Chernoff bound, and assuming the con-
proof neatly into a “de-Merlinization” part (which is new) stantinJ = O (w) is sufficiently large, we have reduced
and an “advice” part (which follows from earlier work of the problem to deciding whether

Aaronson [1]). Instead, we need to generalize the machin-

ery from [1] to theQCMA setting. (1) there exists a € {0,1}" suchthat\, > 1—272¥, or
Theorem 20 QCMA /qpoly C PP/poly. (2) N, <2 2vforall z.

Proof. Let L be a language iQCMA/gpoly, and let Now let 1

L(z) = 1if z € LandL (z) = 0 otherwise. Also, let Si=om YN

Q be a verifier forL, which takes a-qubit quantum advice 2 2€{0,1}*

state|y)) andw-bit classical withess for some polynomi-
alsa andw (for convenience, we omit the dependence on
n). Then the first step is to repla@by an amplified veri-
fier O., which takes am-qubit advice statél) := [¢)®",
whereA = af and? = O (loga). As a result,Q, has
completeness and soundness erigrs*.

Let Q. (z, p, z) be shorthand foQ.. run with inputz,

ThenS > 2=*~1in case (1), whereaS < 272 in case
(2). Soitsuffices to give &P /poly machine withe + 5.5

accepting paths, for some positive constanend/3. Our
machine will simply do the following:

e Choosez uniformly at random.

advicep, and witness.. Then givenz, our goal is to sim- e Simulate aPostBQP computation that accepts with
ulate Q. (x, |¥), z (x)), wherez (z) is an optimal witness probability proportional to\’.
for z. We will do so using &P/poly machineM. The
classical advice ta1 will consist of a “Darwinian training The reason this works is that the probability of the
set” (z1,21),...,(zr,27) for T = O (A), together with  postselection steps in the ‘for’ loop all succeeding is inde
L (z;) foreveryt € {1,...,T}. Here eachr; € {0,1}" pendent ok.
is an input and eack, € {0,1}" is its corresponding wit- It remains only to showM'’s correctness. Lep, be
ness. Given this adviceéy! runs the following procedure the probability that the first postselection steps in the
to computel (z). ‘for’ loop all succeed. We choose the “training inputs”
x1,..., o and witnesses, .. ., zr in such a way that
let p := I4 be the maximally mixed state ot qubits
fort:=1toT (@) pi+1 < 2piforallt € {0,..., T — 1}.
let |b) be a qubit initialized tg0) ) o )
run Q. (w+, p, ), and CNOT the output inttb) (b) z is a valid witness for, whengvetct € L_, meaning
run Q-1 (x4, p, ;) to uncompute garbage that Q. E{Tt’ |¥), z:) accepts with probability at least
measuréb), and postselect on observihg: L () 1-1/4%

nextt ; o i
¢) Thereis no larger training set that satisfies (a) and (b).

forall z € {0,1}", (©) g g @ ()

~ let ) be the probability tha@. (z, p, z) accepts Then it suffices to prove the following two claims:

if there exists & such that\, > 2/3, then accept

otherwise, ifA, < 1/3 for all z, then reject (i) T = O (A) for all training sets that satisfy (a) and (b).

Let us first see whyM can be simulated iPP/poly. (i) M correctly decides every input, if we train it on
The “for loop is just a postselected quantum computation, some(z1,21), ..., (zr, 2r) that satisfies (a), (b), and
and can clearly be simulated by the result of Aaronson [2] (©).
thatPostBQP = PP. The one nontrivial step is to decide o ) ) )
whether there exists a such that\. > 2/3, or whether For Claim (i), notice that we can write the maximally

A, < 1/3 for all z. We do this as follows. Lep, be mixed statel as a mixture oR* orthonormal vectors

the state of the advice register after the firppstselection 94
steps, conditioned on those steps succeeding. We first am- I— 1 Z ;) (]
plify by repeating the ‘for’ loop/ = O (w) times, using a 24 £ T

12



where |U,) := |VU) is the “true” advice state. We ar-
gue that the¥;) (¥;| component must survive &ll post-
selection steps with high probability. For i, ¢ L,
thenQ.. (z, | V), z;) accepts with probability at mosy A%,
while if 2; € L, thenQ, (z:, |¥), z;) rejects with probabil-
ity at most1/A* by assumption (b). So by Lemma 13,
the probability of outputting the wrong answer on any of
(x1,21),...,(z7,27), USing|¥) as the advice, is at most

T+/1/A* =T/A?. Hence

1 T
pT 2> oA 1- )
On the other handp;;1 < %pt for all ¢ by assumption
(a), and hencey < (2/3)". Combining we obtain

T=0(A).
For Claim (ii), suppose by way of contradiction that
M rejects somex € L. Then Q. (z, pr,z) ac-

cepts with probability less thag/3 for all z. But
this implies that if we trainedM on the enlarged set
(1,21) ..., (1, 27), (x, 2) for any z, then we would get
pri1 < %pT, thereby contradicting the maximality @f.
Likewise, supposé accepts some ¢ L. Then there ex-
ists a “false witnessZ such thatQ.. (x, pr, Z) accepts with
probability greater than/3. So if we trainedM on the
enlarged sefz1, 21) , ..., (7, 27), (2, %), we would again
getpri1 < %pT, contradicting the maximality of’. =

13



