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Abstract

The classQMA (k), introduced by Kobayashi et al., con-
sists of all languages that can be verified usingk unen-
tangled quantum proofs. Many of the simplest questions
about this class have remained embarrassingly open: for
example, can we give any evidence thatk quantum proofs
are more powerful than one? Can we show any upper
bound onQMA (k), besides the trivialNEXP? Does
QMA (k) = QMA (2) for k ≥ 2? CanQMA (k) proto-
cols be amplified to exponentially small error?

In this paper, we make progress on all of the above ques-
tions.

• We give a protocol by which a verifier can be convinced
that a 3SAT formula of sizen is satisfiable, with con-
stant soundness, giveñO (

√
n) unentangled quantum

witnesses withO (logn) qubits each. Our protocol
relies on Dinur’s version of the PCP Theorem and is
inherently non-relativizing.

• We show that assuming the famous Additivity Conjec-
ture from quantum information theory, anyQMA (2)
protocol can be amplified to exponentially small error,
andQMA (k) = QMA (2) for all k ≥ 2.

• We give evidence thatQMA (2) ⊆ PSPACE, by show-
ing that this would follow from “strong amplification”
of QMA (2) protocols.

• We prove the nonexistence of “perfect disentanglers”
for simulating multiple Merlins with one.

1 Introduction

Quantum entanglement is often described as a compli-
cated, hard-to-understand resource. But ironically, many
questions in quantum computing are easiest to answer as-
suming unlimited entanglement, and become much more
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difficult if entanglement isnot allowed! One way to un-
derstand this is that Hilbert space—the space ofall quan-
tum states—has extremely useful linear-algebraic proper-
ties, and when we restrict to the set of separable states we
lose many of those properties. So for example, finding
a quantum state that maximizes the probability of a given
measurement outcome is just a principal eigenvector prob-
lem, but finding a separable state that does the same isNP-
hard [6].

These observations naturally give rise to a general ques-
tion at the intersection of computational complexity and en-
tanglement theory. Namely: supposing we hadk quantum
proofs, could we use the promise that the proofs were unen-
tangled to verify mathematical statements beyond what we
could verify otherwise?

1.1 Background and Related Work

The classQMA, or Quantum Merlin-Arthur, consists of
all languages that admit a proof protocol in which Merlin
sends Arthur a polynomial-size quantum state|ψ〉, and then
Arthur decides whether to accept or reject in quantum poly-
nomial time. This class was introduced by Kitaev [11] and
Watrous [20] as a quantum analogue ofNP. By now we
know a reasonable amount aboutQMA: for example, it
allows amplification of success probabilities [15], is con-
tained inPP [15], and has natural complete promise prob-
lems [11]. (See Aharonov and Naveh [3] for a survey.)

In 2003, Kobayashi, Matsumoto, and Yamakami [12]
defined a generalization ofQMA calledQMA (k). Here
there arek Merlins, who send Arthurk quantum proofs
|ψ1〉 , . . . , |ψk〉 respectively that are guaranteed to be unen-
tangled with each other. (ThusQMA (1) = QMA.) Notice
that in the classical case, this generalization is completely
uninteresting: we haveMA (k) = MA for all k, since we
can always simulatekMerlins by a single Merlin who sends
Arthur a concatenation of thek proofs. In the quantum
case, however, a single Merlin could cheat byentangling
thek proofs, and we know of no general way to detect such
entanglement.

When we try to understandQMA (k), we encounter at
least four basic questions. First, do multiple quantum



proofs ever actually help? That is, can we find some
sort of evidence thatQMA (k) 6= QMA (1) for somek?
Second, can we show any nontrivial upper bound on the
power of multiple quantum proofs? (The trivial upper
bound isQMA (k) ⊆ NEXP, which follows by just guess-
ing exponential-size classical descriptions of thek quantum
proofs.) Third, canQMA (k) protocols be amplified to ex-
ponentially small error? Fourth, are two Merlins the most
we ever need? That is, doesQMA (k) = QMA (2) for all
k ≥ 2?

We know of three previous results that are relevant to the
above questions.

First, in their original paper onQMA (k), Kobayashi et
al. [12] proved that a positive answer to the third question
implies a positive answer to the fourth. That is, ifQMA (k)
protocols can be amplified, thenQMA (k) = QMA (2) for
all k ≥ 2.

Second, Liu, Christandl, and Verstraete [14] gave a nat-
ural problem from quantum chemistry, calledpure stateN -
representability, which is inQMA (2) but is not known to
be inQMA.

Third, Blier and Tapp [6] recently (and independently
of us) gave an interestingQMA (2) protocol for anNP-
complete problem, namely3-COLORING. In this protocol,
Arthur verifies that ann-vertex graphG is 3-colorable, us-
ing two unentangled witnesses with onlyO (logn) qubits
each. There is a crucial caveat, though: ifG is not 3-
colorable, then Arthur can only detect this with probability
Ω

(
1/n6

)
rather than constant probability.1

1.2 Our Results

In this paper, we present new results about all four prob-
lems listed previously. Our main results are as follows:

Proving 3SAT With Õ (
√
n) Qubits. In Section 3,

we give a protocol by which Arthur can verify that a
3SAT instance of sizen has a satisfying assignment, using
O (

√
npolylogn) unentangled witnesses withO (logn)

qubits each. Of course, this is a larger number of qubits
than in the protocol of Blier and Tapp [6], but the point is
that Arthur can detect cheating withconstantprobability.
Our protocol relies on the PCP Theorem, and in particular,
on the existence of PCP’s of sizeO (n polylogn), which
was recently shown by Dinur [9].

Additivity Implies Amplification. In Section 4, we re-
duce several open problems aboutQMA (k) to the famous
Additivity Conjecturein quantum information theory. In
particular, we show that the Additivity Conjecture implies
that anyQMA (k) protocol can be amplified to exponen-
tially small error, and that the “QMA (k) hierarchy” col-

1Indeed, if the soundness gap were constant rather than1/poly (n),
then Blier and Tapp’s protocol could presumably be “scaled up by an ex-
ponential” to showQMA (2) = NEXP!

lapses toQMA (2). Assuming the Additivity Conjecture,
we also show that letting the Merlins have a limited amount
of entanglement does not change the power ofQMA (2),
and neither does forcing their witnesses to be identical.

Evidence That QMA (k) ⊆ PSPACE. In Section 5,
we give the first evidence for an upper bound onQMA (k)
better than the trivialNEXP. In particular, we show
that QMA (k) ⊆ PSPACE, assuming what we call the
Strong Amplification Conjecture: that it is possible to am-
plify QMA (k) protocols in such a way that one of the Mer-
lin’s Hilbert space dimensions remains smaller than the in-
verse of the error bound.

Nonexistence of Perfect Disentanglers.In Section 6,
we rule out one possible approach to showingQMA (2) =
QMA, by giving an extremely simple result that neverthe-
less seems new and might be of interest. Namely, given
finite-dimensional Hilbert spacesH,K, there is no quan-
tum operation mapping the set of all states inH to the set
of all separable states inK ⊗K.

In the remainder of this introduction, we give some intu-
ition behind each of these results.

1.3 Proving 3SAT With Õ (
√
n) Qubits

Let ϕ be a 3SAT instance withn variables. Then how
long a proof does Merlin need to send Arthur, to convince
him thatϕ is satisfiable? (As usual, Merlin is an omniscient
prover and Arthur is a skepticalBPP verifier.)

Intuitively, it seems the answer should be aboutn bits.
Certainly, if sublinear-size proofs of satisfiability existed,
then 3SAT would be in solvable in2o(n) time, since Arthur
could just loop over all possible proofs until he found one
that worked. Even in the quantum case, one can make a
similar statement: ifquantumproofs of satisfiability with
o (n) qubits existed, then 3SAT would have a2o(n)-time
quantum algorithm.2

On the other hand, suppose Arthur is givenseveralquan-
tum proofs, which are guaranteed to be unentangled with
each other. Then the previous argument no longer seems
to work.3 And this at least raises the possibility that 3SAT

might have sublinear proofs in this setting.
We will show that this possibility is realized:

Theorem 1. Let ϕ be a satisfiable3SAT instance withn
variables andm ≥ n clauses. Then one can prove the
satisfiability ofϕ, with perfect completeness and constant

2For Arthur could first use the in-place amplification of Marriott and
Watrous [15] to make his error probability exponentially small (without
increasing the size of the quantum proof|ψ〉), and then use Grover search
to find |ψ〉 in 2o(n) time.

3A first reason is that it is unclear how to do in-place amplification of
QMA (k) protocols. A second reason is that, evenassumingamplifica-
tion, it is unclear how to search efficiently among unentangled witnesses.
In Section 5, we will show that the first reason is actually thecrucial one.



soundness, usingO (
√
m polylogm) unentangled quantum

proofs, each withO (logm) qubits.

In particular, ifm = O (n),4 then we get an almost-
quadratic improvement over the witness size needed in the
classical world (or that matter, in the quantum world with
one prover).

We now explain the intuition behind Theorem 1. The
first step in our protocol is to reduce 3SAT to a more
convenient problem called 2-OUT-OF-4-SAT, where every
clause has exactly four literals, and is satisfied if and only
if exactly two of the literals are. We also want our 2-OUT-
OF-4-SAT instance to be a PCP: that is, either it should
be satisfiable, or else at most a1 − ε fraction of clauses
should be satisfiable for some constantε > 0. Finally we
want the instance to bebalanced, meaning that every vari-
able occurs in at most a constant number of clauses. Fortu-
nately, we can get all of this via known classical reductions,
including the “tight” PCP Theorem of Dinur [9], which in-
crease the number of variables and clauses by at most an
O (polylogn) factor.

So suppose Arthur has applied these reductions, to ob-
tain a balanced 2-OUT-OF-4-SAT PCP instanceφ with n
variables. And now suppose Merlin sends Arthur alogn-
qubit quantum state of the form

|ψ〉 =
1√
n

n∑

i=1

(−1)
xi |i〉 ,

wherex1, . . . , xn ∈ {0, 1}n is the claimed satisfying as-
signment forφ. (We call a state having the above form
a proper state.) Then we show that Arthur can check the
veracity ofx1, . . . , xn with perfect completeness and con-
stant soundness. To do so, Arthur simply measures|ψ〉 in
a basis corresponding to the clauses ofφ. With constant
probability, he will get an outcome of the form

(−1)
xi |i〉 + (−1)

xj |j〉 + (−1)
xk |k〉 + (−1)

xℓ |ℓ〉

where(i, j, k, ℓ) is a randomly chosen clause ofφ. As-
suming this occurs, Arthur can perform a measurement that
accepts with certainty ifxi + xj + xk + xℓ = 2 and rejects
with constant probability otherwise.

Thus, if only Arthur could somehow assume|ψ〉 was
proper, we would have alogn-qubit witness for 3SAT! The
problem, of course, is that Arthur has no way of know-
ing whether Merlin has cheated and given him an improper
state. For example, what if Merlin concentrates the ampli-
tude of|ψ〉 on some small subset of basis states, and simply
omits the other basis states?

Our key technical contribution is to show that, if Arthur
gets not one butO(

√
n) copies of|ψ〉, then he can check

4Note that settingm = O (n) is fairly common in the study of 3SAT,
and indeed, the “hardest” random 3SAT instances are believed to occur
aroundm ≈ 4.25n.

with constant soundness whether|ψ〉 is proper or far from
any proper state. Indeed, even if Arthur is givenK =
O(

√
n) states|ϕ1〉 , . . . , |ϕK〉 which are not necessarily

identical, so long as the states are not entangled with each
other Arthur can check with constant soundness whether
most of them are close to some proper state|ψ〉. This
then yields a protocol for 3SAT with constant soundness and
O(

√
n) unentangled proofs of sizeO (logn)—for Arthur

can just choose randomly whether to perform the satisfia-
bility test described above, or to check whether most of the
|ϕk〉’s are close to some proper state|ψ〉.

To check that most of the states are at least close toeach
other, Arthur simply has to perform a “swap test” between
(say)|ϕ1〉 and a random other state|ϕk〉. So the problem is
reduced to the following: assuming most of the|ϕk〉’s are
close to|ϕ1〉, how can Arthur decide whether|ϕ1〉 is proper
or far from any proper state?

In our protocol, Arthur does this by first choosing a
matchingM on the set{1, . . . , n} uniformly at random.
He then measures each state|ϕk〉 in an orthonormal basis
that contains the vectors|i〉 + |j〉 and |i〉 − |j〉 for every
edge(i, j) ∈ M.

Let us think about what happens when Arthur does this.
Since he is performingO(

√
n) measurements on almost-

identical states, and since each measurement hasn possible
outcomes, by using a suitable generalization of the Birth-
day Paradox, one can prove that withΩ (1) probability,
Arthur will find a collision: that is, two outcomes of the
form |i〉 ± |j〉, for the same edge(i, j) ∈ M. So suppose
this happens. Then if the|ϕk〉’s are all equal to a proper
state|ψ〉 =

∑n
i=1 (−1)

xi |i〉, the two outcomes will clearly
“agree”: that is, they will either both be|i〉+|j〉 (if xi = xj)
or both be|i〉 − |j〉 (if xi 6= xj). On the other hand, sup-
pose the|ϕk〉’s are far from any proper state. In that case,
we show that the outcomes will “disagree” (that is, one will
be|i〉+ |j〉 and the other will be|i〉 − |j〉) with Ω (1) prob-
ability.

To understand why, consider that there are two ways for
a state|ϕ〉 =

∑n
i=1 αi |i〉 to be far from proper. First,

the probability distribution
(
|α1|2 , . . . , |αn|2

)
, which cor-

responds to measuring|ϕ〉 in the standard basis, could be
far from the uniform distribution. Second, theαi’s could
be roughly equal in magnitude, but they could have com-
plex phases that cause|ϕ〉 to be far from any state involving
positive and negative real amplitudes only. In either case,
though, if Arthur measures according to a random matching
M, then with high probability he will obtain an outcome
αi |i〉+αj |j〉 that is not close to either|i〉+ |j〉 or |i〉− |j〉.

As one would imagine, making all of these claims quan-
titative and proving them requires a good deal of work.

The reason we need the assumption of unentanglement is
that without it, cheating Merlins might correlate their states
in such a way that a swap test between any two states passes



with certainty, and yet no collisions are ever observed. As
we point out in Section 3.5, it seems unlikely that the as-
sumption of unentanglement can be removed, since this

would lead to a2
eO(

√
n)-time classical algorithm for 3SAT.

On the other hand, we believe it should be possible to im-
prove our protocol to one involving onlytwo unentangled
proofs. This is a problem we leave to future work.

1.4 Additivity Implies Amplification

In the one-prover case, it is easy to amplify aQMA pro-
tocol with constant error to a protocol with exponentially
small error. Merlin simply sends Arthurm = poly (n)
copies of his proof; then Arthur checks each of the copies
and outputs the majority answer. To show that this works,
the key observation is thatMerlin cannot gain anything by
entangling them proofs. Indeed, because of the convex-
ity of Arthur’s acceptance probability, Merlin might as well
send Arthur an unentangled state|ψ〉⊗m, in which case the
completeness and soundness errors will decrease exponen-
tially with m by the usual Chernoff bound.

Now suppose we try the same argument forQMA (2). If
we ask each Merlin to sendm copies of his state, each Mer-
lin might cheat by instead sending an entangled state onm
registers. And in that case, as soon as Arthur checks the
first copy (consisting of one register from MerlinA and one
from MerlinB), his doing so might create entanglement in
the remaining copies where there was none before!This is
because of a counterintuitive phenomenon calledentangle-
ment swapping[21], by which two quantum systems that
have never interacted in the past can nevertheless become
entangled, provided those systems are entangled withother
systems on which an entangling measurement is performed.

Let us give a small illustration of this phenomenon. Sup-
pose that each “proof” is a single qubit, and that Arthur asks
for two proofs from each Merlin (thus,4 qubits in total).
Then if MerlinA is dishonest, he might send Arthur the en-
tangled state|ψA〉 = |00〉 + |11〉, and likewise MerlinB
might send Arthur|ψB〉 = |00〉+ |11〉 (omitting normaliza-
tion). Now suppose Arthur measures the qubits|ψA〉(1) and
|ψB〉(1) in the “Bell basis,” consisting of the four entangled
states|00〉+ |11〉, |00〉− |11〉, |01〉+ |10〉, and|01〉− |10〉.
Then conditioned on the outcome of this measurement, it is
not hard to see that the joint state of|ψA〉(2) and |ψB〉(2)
will also be entangled.5

Of course, as soon as the remainingm−1 copies become
entangled, we lose our soundness guarantee and the proof of
amplification fails.

5Indeed, this example can be seen as a special case ofquantum telepor-
tation [4]: Arthur uses the entanglement between MerlinA ’s left and right
registers, as well as between MerlinB ’s left and right registers, to teleport
an entangled state into the two right registers by acting only on the two left
registers.

Nevertheless, there is a natural amplification procedure
that seems like itought to be robust against such “patho-
logical” behavior. Suppose Arthur chooses the number
of copiesm to be very large, sayn10 (much larger than
the number of copies he is actually going to check), and
suppose that each copy hedoescheck is chosen uniformly
at random. Then whatever entanglement Arthur produces
during the checking process ought be “spread out” among
the copies, so that with high probability, every copy that
Arthur actually encounters is close to separable.

It follows, from the “finite quantum de Finetti theorem”
of König and Renner [13], that if the number of copies were
large enough then the above argument would work. Unfor-
tunately, the number of copies needs to be exponential inn
for that theorem to apply.

We will show that the argument works withpoly (n)
copies, provided one can formalize terms like “spread out”
and “close to separable” using a suitable measure of entan-
glement. The only problem, then, is that a measure of en-
tanglement with the properties we need is not yet known to
exist! Informally, we need an entanglement measureE that

(i) is superadditive(meaning it “spreads itself out” among
registers), and

(ii) is faithful (meaning ifE (ρ) is polynomially small then
ρ is polynomially close to a separable state in trace
distance).

Among existing entanglement measures, there is one—
the entanglement of formationEF , introduced by Bennett
et al. [5]—that is known to satisfy (ii), and is conjectured
to satisfy (i).6 This conjecture is known to be equivalent to
the Additivity Conjecture from quantum information theory
[18].

Our first result says that, if the Additivity Conjecture
holds, then anyQMA (2) protocol can be amplified to ex-
ponentially small error. We also prove that anyQMA (k)
protocol with constant soundness can be simulated by a
QMA (2) protocol with Ω (1/k) soundness. Combining
these two results, we find that if the Additivity Conjecture
holds, thenQMA (k) = QMA (2) for all k ≥ 2.

Two other interesting consequences we get are the fol-
lowing. First, assuming the Additivity Conjecture, two
Merlins who shareh (n) ebits of entanglement can simu-
late two unentangled Merlins, for every fixed polynomialh.
In other words, a bounded amount of entanglement gives
the Merlins no additional power to cheat. Second, again
assuming the Additivity Conjecture,k Merlins who all send
copies of the same witness yield the same computational
power ask Merlins who can send different witnesses.

6There is also another measure—thesquashed entanglementEsq , in-
troduced by Christandl and Winter [8]—that is known to satisfy (i), but
unfortunately can be shownnot to satisfy (ii).



1.5 Evidence That QMA(k) ⊆ PSPACE

It is well-known thatQMA ⊆ PP [15]. On the other
hand, the only known upper bound forQMA (2) is the triv-
ial NEXP, and improving this (even toQMA (2) ⊆ EXP)
has been an open problem for several years. In this pa-
per we show thatQMA (2) ⊆ PSPACE, assuming what we
call the Strong Amplification Conjecture: that is possible to
amplify anyQMA (k) protocol, in such a way that one of
the Merlin’s Hilbert space dimensions remains small com-
pared to the inverse of the error bound. Note that, since
strong amplificationalso impliesQMA (k) = QMA (2) for
all k ≥ 2, we then getQMA (k) ⊆ PSPACE as well.

Our proof is based on an idea called “de-Merlinization,”
which was previously used by Aaronson [1] to show
QMA/qpoly ⊆ PSPACE/poly. We show that if strong am-
plification holds, then Arthur can “partially de-Merlinize”
anyQMA (2) protocol—that is, remove one of the Merlins
from the picture—at the cost of an exponential increase in
running time. We then haveQMA (2) ⊆ QMAPSPACE ,
whereQMAPSPACE is the version ofQMA where Arthur
runs in quantum polynomialspaceinstead of quantum poly-
nomial time. But it follows from results of Watrous [19]
thatQMAPSPACE = BQPSPACE = PSPACE.

1.6 Nonexistence of Perfect Disentanglers

While we now have a few examples where multiple
quantum proofs seem to help—such as the 3SAT protocol
of this paper, and the pure stateN -representability problem
[14]—we still have no “complexity-theoretic” evidence that
QMA (2) 6= QMA. Indeed, even proving an oracle separa-
tion betweenQMA (2) andQMA seems extremely difficult.

Thus, let us consider the other direction and try to prove
these classes are the same. Potentially the first approach
would be to equip Arthur with adisentangler: that is, a
quantum operation that would convert Merlin’s (possibly-
entangled) witness into a separable witness, and thereby let
Arthur simulate aQMA (2) protocol inQMA. In this paper
we take a first step in the study of disentanglers, by proving
that in finite-dimensional Hilbert spaces, there is no opera-
tion that produces all and only the separable states as output.

Note that, if we are willing to settle for there being an
output close to every separable state, then a disentangler
does exist: for example, take as input a classical descrip-
tion of the separable stateσ to be prepared, measure that
description in the computational basis, and then prepareσ.7

The key problem is that the input Hilbert space needs to be
exponentially larger than the output Hilbert space. Wa-
trous (personal communication) has conjectured that this

7This argument also shows that our result fails if the input Hilbert space
is infinite-dimensional—for then one could give an infinitely-precise de-
scription ofσ.

exponentiality is an unavoidable feature of any approximate
disentangler; proving or disproving this remains one of the
central open problems aboutQMA (2).

2 Preliminaries

In this section, we first define the complexity class
QMA (k, a, b), or Quantum Merlin-Arthur withk unentan-
gled witnesses and error boundsa, b, and state some basic
facts and conjectures about this class. We then survey some
concepts from quantum information theory we will need,
including trace distance and the swap test.

2.1 Multiple-Prover QMA

Definition 2. A languageL is in QMA (k, a, b) if there ex-
ists a polynomial-time quantum algorithmQ such that for
all inputsx ∈ {0, 1}n:

(i) If x ∈ L then there exist witnesses|ψ1〉 , . . . , |ψk〉, with
poly (n) qubits each, such thatQ accepts with proba-
bility at leastb given|x〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψk〉.

(ii) If x /∈ L thenQ accepts with probability at mosta
given|x〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψk〉, for all |ψ1〉 , . . . , |ψk〉.

As a convention, we also defineQMA (k) :=
QMA (k, 1/3, 2/3), andQMA := QMA (1).8

The above definition makes sense for all integersk
from 1 up to poly (n), and nonnegative real functions
2− poly(n) ≤ a (n) < b (n) ≤ 1 − 2− poly(n).

In the one-prover case, we know that
QMA (1, 1/3, 2/3) = QMA

(
1, 2−p(n), 1 − 2−p(n)

)

for all polynomialsp (see [15] for example). This is what
justifies the conventionQMA (1) := QMA (1, 1/3, 2/3).
By contrast, we do not yet know whether the convention
QMA (k) := QMA (k, 1/3, 2/3) is justified for k ≥ 2.
That it is justified is the content of the following conjecture:

Conjecture 3 (Amplification). For all k, all a < b
with b − a = Ω (1/ poly (n)), and all polynomialsp,
QMA (k, a, b) = QMA

(
k, 2−p(n), 1 − 2−p(n)

)
.

One is tempted to make an even stronger conjecture: that
the entire hierarchy ofQMA (k, a, b)’s we have defined col-
lapses to just two complexity classes, namelyQMA and
QMA (2).

Conjecture 4 (Collapse). For all k ≥ 2, all a < b
with b − a = Ω (1/ poly (n)), and all polynomialsp,
QMA (k, a, b) = QMA

(
2, 2−p(n), 1 − 2−p(n)

)
.

8For purposes of definition, we assume we have fixed a specific ma-
chine model (e.g., a universal set of quantum gates)—thoughif the Ampli-
fication Conjecture to be discussed shortly holds, then thischoice will turn
out not to matter.



The main progress so far on these conjectures has been
due to Kobayashi et al. [12], who showed that the Amplifi-
cation and Collapse Conjectures are actually equivalent:

Theorem 5([12]). Conjecture 3 implies Conjecture 4.

Let us observe that one can make thecompletenesserror
(though not the soundness error) exponentially small, using
a simple argument based on Markov’s inequality. We will
need this observation in Section 4.

Lemma 6.
QMA (k, a, b) ⊆ QMA

(
k, 1 − (b− a) , 1 − 2−p(n)

)
for all

k, all a < b < 1, and all polynomialsp.

Proof. We use the following protocol. Each Merlin pro-
videsm = C · p(n)

(b−a)2
registers for some constantC. Then

Arthur runs his verification procedurem times in parallel,
once with eachk-tuple of registers, and accepts if and only
if at least ad fraction of invocations accept, for somed
slightly less thanb.

To show completeness, we use a Chernoff bound. As-
suming the Merlins are honest, each one simply providesm
copies of his witness. Then on each invocation, Arthur ac-
cepts with independent probability at leastb. So assuming
we chose a sufficiently large constantC, the probability that
Arthur accepts less thandm times is at most2−p(n).

To show soundness, we use Markov’s inequality. The
expected number of accepting invocations is at mostam
(by linearity, this is true even if the registers are entangled).
Hence the probability that this number exceedsdm is at
most a/d, which we can ensure is less than1 − (b− a)
by choosingd sufficiently close tob (and using the fact that
b < 1).

2.2 Quantum Information

We now review some quantum information concepts that
we will need. For more details see Nielsen and Chuang
[16].

Given two mixed statesρ and σ, their trace distance
is ‖ρ− σ‖tr := 1

2

∑n
i=1 |λi|, where(λ1, . . . , λn) are the

eigenvalues ofρ − σ. We will sometimes sayσ is ε-close
to ρ if ‖ρ− σ‖tr ≤ ε, andε-far otherwise. The importance
of trace distance comes from the following fact:

Proposition 7. Supposeσ is ε-close toρ. Then any mea-
surement that acceptsρ with probabilityp, acceptsσ with
probability at mostp+ ε.

Given a pure state|ψ〉 and a mixed stateρ, theirsquared
fidelity 〈ψ|ρ|ψ〉 is the probability of obtaining|ψ〉 as the
result of a projective measurement onρ. Squared fidelity
behaves nicely under tensor products:

Proposition 8. Given a k-partite stateρA1A2···Ak , sup-
pose there are pure states|ψ1〉 , . . . , |ψk〉 such that〈
ψi|ρAi |ψi

〉
≥ 1−εi for all i. Let|Ψ〉 := |ψ1〉⊗· · ·⊗|ψk〉

andε := ε1 + · · · + εk. Then
〈
Ψ|ρA1A2···Ak |Ψ

〉
≥ 1 − ε.

Trace distance and squared fidelity are related to each
other as follows:

Proposition 9. 〈ψ|ρ|ψ〉+‖ρ− |ψ〉 〈ψ|‖2
tr ≤ 1 for all ρ and

|ψ〉.
Given a product stateρ ⊗ σ, theswap testis a quantum

operation that measures the overlap betweenρ andσ. The
test accepts with probability1+tr(ρσ)

2 and rejects otherwise.
The swap test can also reveal information about the purity
of a state, as follows:

Proposition 10. Suppose〈ψ|ρ|ψ〉 < 1−ε for all pure states
|ψ〉. Then a swap test betweenρ and any other state rejects
with probability greater thanε/2.

3 Proving 3SAT With Õ (
√

n) Qubits

We now present our protocol for proving the satisfiabil-
ity of a 3SAT instance, using̃O (

√
n) unentangled quantum

proofs withO (logn) qubits each. For ease of presentation,
the protocol will be broken into four steps: first, classicalre-
ductions from the 3SAT problem to a differentNP-complete
problem that we will actually use; second, a protocol for
the special case where the witness is “proper”; third, a pro-
tocol for the case where the Merlins send ArthurÕ(

√
n)

witnesses, which are not necessarily proper but which are
guaranteed to be identical; and fourth, a protocol for the
general case. We end in Section 3.5 with some general
observations about our protocol and the prospects for im-
proving it further.

3.1 Classical Reductions

It will be convenient to work not with 3SAT but with
a related problem called 2-OUT-OF-4-SAT, in which ev-
ery clause has exactly four literals, and is satisfied if and
only if exactly two of the literals are. We will also need
our 2-OUT-OF-4-SAT instance to be a PCP, and to have
every variable appear in at mostO (1) clauses. The follow-
ing lemma shows how to get everything we want with only
a polylogarithmic blowup in the number of variables and
clauses.

Lemma 11. There exists a polynomial-time Karp reduction
that maps a3SAT instanceϕ to a 2-OUT-OF-4-SAT in-
stanceφ, and that has the following properties:

(i) If ϕ has n variables andm ≥ n clauses, thenφ
hasO (m polylogm) variables andO (m polylogm)
clauses.



(ii) Every variable ofφ occurs in at mostc clauses, for
some constantc.

(iii) The reduction is a PCP (meaning that satisfiable in-
stances map to satisfiable instances, while unsatisfi-
able instances map to instances that areε-far from sat-
isfiable for some constantε > 0).

Proof. Given a 3SAT instanceϕ, we first amplify its sound-
ness gap to a constant using the celebrated method of Dinur
[9]. Next we use a reduction due to Papadimitriou and Yan-
nakakis [17], which makes every variable occur in exactly
29 clauses, while weakening the soundness gap by only a
constant factor. Finally we use a gadget due to Khanna et
al. [10], which converts from 3SAT to 2-OUT-OF-4-SAT,
while decreasing the soundness gap and increasing the num-
ber of clauses per variable by at most constant factors. Note
that the reduction of Dinur [9] incurs only a polylogarith-
mic blowup in the number of variables and clauses, while
the other two reductions incur a constant blowup.

3.2 The Proper State Case

Suppose Arthur has applied Lemma 11, to obtain
a balanced 2-OUT-OF-4-SAT instanceφ with N =
O (m polylogm) variables, M = O (m polylogm)
clauses, and a constant soundness gapε > 0. And now
suppose Merlin sends Arthur alogN -qubit state of the form

|ψ〉 =
1√
N

N∑

i=1

(−1)
xi |i〉 ,

wherex1, . . . , xN ∈ {0, 1}N is a claimed satisfying assign-
ment forφ. Call a state having the above form (for some
Booleanxi’s) aproperstate. Then we claim the following:

Lemma 12. Assuming|ψ〉 is proper, Arthur can check
whetherφ is satisfiable with perfect completeness and con-
stant soundness.

Proof. To perform the check, Arthur uses the followingSat-
isfiability Test. First he partitions the clauses ofφ into
a constant number of blocksB1, . . . , Bs, such that within
each block, no two clauses share a variable. Such a parti-
tion clearly exists by the assumption thatφ is balanced, and
furthermore can be found efficiently (e.g., using a greedy
algorithm). Next he chooses one of the blocksBr uni-
formly at random, and measures|ψ〉 in an orthonormal ba-
sis with one projector for each clause inBr. Because a
single block in the partition of clauses does not necessarily
cover all the variables, it is possible that the measurement
result will not correspond to any clause inBr, in which case
Arthur accepts. However, suppose that the measurement

yields the following reduced state, for some random clause
Cijkℓ := (i, j, k, ℓ) in Br:

|ψijkl〉 := (−1)xi |i〉+(−1)xj |j〉+(−1)xk |k〉+(−1)xℓ |ℓ〉 .

Notice that, of the16 possible assignments to the variables
(xi, xj , xk, xℓ), six of them satisfyCijkℓ, and those six lead
to three states|ψijkℓ〉 that are orthogonal to one another (as
well as the negations of those states, which are essentially
the same). It follows that Arthur can perform a projective
measurement on|ψijkℓ〉, which accepts with probability1
if Cijkℓ is satisfied, and rejects with constant probability if
Cijkℓ is unsatisfied.

Furthermore, because the number of blocksBr is a con-
stant, each of theM clauses ofφ is checked in this test with
probabilityΩ (1/M). And we know that, ifx1, . . . , xN is
nota satisfying assignment forφ, then a constant fraction of
the clauses will be unsatisfied. Putting everything together,
we find that ifφ is satisfiable, then the Satisfiability Test ac-
cepts|ψ〉 with probability1; while if φ is unsatisfiable, then
it rejects with constant probability.

3.3 The Symmetric Case

Thus, the problem we need to solve is “merely” how to
force Merlin to send a proper state. For example, how can
Arthur prevent a cheating Merlin from concentrating the
amplitude of|ψ〉 on some subset of basis states for which
the Satisfiability Test accepts, and omitting the other basis
states?

To solve this problem, Arthur is going to need more Mer-
lins. In particular, let us suppose there areK = Θ(

√
N)

unentangled Merlins, who send ArthurlogN -qubit states
|ϕ1〉 , . . . , |ϕK〉 respectively. By convexity, we can assume
without loss of generality that these states are pure. For
the time being, we also assume that the states are identical;
that is, |ϕi〉 = |ϕ〉 for all i ∈ [K]. Given these states,
Arthur performs one of the following two tests, each with
probability1/2:

Satisfiability Test: Arthur chooses any copy of|ϕ〉, and
performs the Satisfiability Test described in Section 3.2.

Uniformity Test: Arthur chooses a matchingM on [N ]
uniformly at random. He then measures each copy of|ϕ〉
in an orthonormal basis, which contains the vectors|i〉 +
|j〉 , |i〉−|j〉 for every edge(i, j) ∈ M. If for some(i, j) ∈
M, the two outcomes|i〉 + |j〉 and |i〉 − |j〉 both occur
among theK measurement outcomes, then Arthur rejects.
Otherwise he accepts.

It is clear that the above protocol has perfect complete-
ness. For ifφ is satisfiable, then the Merlins can just send
K copies of a proper state|ψ〉 corresponding to a satisfying
assignment forφ. In that case, both tests will accept with
probability1. Our goal is to prove the following:



Theorem 13. The protocol has constant soundness (again,
assuming the|ϕi〉’s are all identical).

To prove Theorem 13, we need to show that ifφ is un-
satisfiable, then one of the two tests rejects with constant
probability. There are two cases. First suppose|ϕ〉 is
ε-close in trace distance to some proper state|ψ〉. Then
provided we chooseε > 0 sufficiently small, Lemma 12,
combined with Proposition 7, already implies that the Sat-
isfiability Test rejects with constant probability. So our task
reduces to proving the following:

Claim 14. Suppose|ϕ〉 is ε-far in trace distance from any
proper state|ψ〉, for someε > 0. Then the Uniformity Test
rejects with some constant probabilityδ (ε) > 0.

In analyzing the Uniformity Test, we say that Arthur
finds a collisionif he obtains two measurement outcomes
of the form |i〉 ± |j〉 for the same(i, j) pair, and that he
finds a disagreementif one of the outcomes is|i〉 + |j〉 and
the other is|i〉 − |j〉. Of course, finding a disagreement is
what causes him to reject.

The first step, though, is to lower-bound the probabil-
ity that Arthur finds a collision. Let|ϕ〉 = α1 |1〉 +
· · · + αN |N〉. Then for every copy of|ϕ〉 and every
edge(i, j) ∈ M, Arthur measures an outcome of the form
|i〉 ± |j〉 with probability|αi|2 + |αj |2, and these outcomes
are independent from one copy to the next. We are in-
terested in the probability that, for some(i, j) pair, Arthur
measures|i〉 ± |j〉 more than once. But this is just the fa-
mous Birthday Paradox, withK = Θ(

√
N) “people” (the

copies of|ϕ〉) andN/2 “days” (the edges inM). The one
twist is that the distribution over birthdays need not be uni-
form. However, a result of Bloom and Knight [7] shows
that the Birthday Paradox occurs in the nonuniform case as
well.

Therefore Arthur finds a collision with constant proba-
bility. The hard part is to show that he finds adisagreement
with constant probability. Here, of course, we have to use
the fact that|ϕ〉 is ε-far from proper.

For now, let us restrict attention to two copies of|ϕ〉. For
each edge(i, j) ∈ M, define the “disagreement probabil-
ity”

pij =
|αi + αj |2 |αi − αj |2

2
(
|αi|2 + |αj |2

)2

to be the probability that, conditioned on measuring two
outcomes of the form|i〉 ± |j〉, one of the outcomes is
|i〉 + |j〉 and the other one is|i〉 − |j〉. Also, say an edge
(i, j) ∈ M is c-unbalanced with respect to|ϕ〉 if pij ≥ c,
and letSc ⊆ M be the set ofc-unbalanced edges. Say a
set of edgesS ⊆ M is d-large with respect to|ϕ〉 if

∑

(i,j)∈S

(
|αi|2 + |αj |2

)
≥ d.

The 3SAT Protocol

Given |ϕ1〉 , . . . , |ϕK〉, Arthur performs one of the fol-
lowing three tests, each with probability1/3.

Satisfiability Test: Arthur applies the Satisfiability Test,
described in Section 3.2, to|ϕ1〉.
Symmetry Test: Arthur chooses an indexk ∈
{2, . . . ,K} uniformly at random, performs a swap test
between|ϕ1〉 and |ϕk〉, and accepts if and only if the
swap test accepts.

Uniformity Test: Arthur chooses a matchingM on [N ]
uniformly at random. He then measures each|ϕk〉 in an
orthonormal basis, which contains the vectors

|i〉 + |j〉√
2

,
|i〉 − |j〉√

2

for every edge(i, j) ∈ M. If for some(i, j) ∈ M, the
two outcomes|i〉+|j〉√

2
and |i〉−|j〉√

2
both occur among the

K measurement outcomes, then Arthur rejects. Other-
wise he accepts.

Then the key fact is the following:

Theorem 15. Suppose|ϕ〉 is ε-far in trace distance from
any proper state. ThenSc is d-large with respect to|ϕ〉
with probability at least1/3 over the choice ofM, for some
constantsc andd depending onε.

The proof of Theorem 15 is deferred to the full version.
Assuming Theorem 15, we can complete the proof of

Claim 14, and hence of Theorem 13. The idea is this:
when Arthur performs the Uniformity Test, simply discard
all measurement outcomes that are not of the form|i〉 ± |j〉
for some(i, j) ∈ Sc. AssumingSc is d-large—which
it is with constant probability by Theorem 15—with over-
whelming probability that still leavesΘ(

√
N) “good” mea-

surement outcomes. Then by the Birthday Paradox, with
constant probability there will be a collision among these
good outcomes. And by the definition ofSc, any such col-
lision will also be a disagreement with constant probability,
thereby causing Arthur to reject.

3.4 The General Case

Of course, in general the states|ϕ1〉 , . . . , |ϕK〉 sent by
theK = Θ(

√
N) Merlins need not be identical. To deal

with this, we now give our final protocol (see box), which
removes the symmetry restriction.

It is clear that the protocol has perfect completeness, and
thus the problem is to show soundness: that is, ifφ is un-
satisfiable, then one of the three tests rejects with constant
probability. There are three cases.



The first case is that|ϕ1〉 is ε-close to some proper state
|ψ〉. Then as before, the Satisfiability Test will reject
with constant probability, provided we chooseε sufficiently
small.

The second case is that|〈ϕ1|ϕk〉| < 1− δ for at least aγ
fraction of indicesk ∈ {2, . . . ,K}. In that case it is clear
that the Symmetry Test will reject with probability at least
γδ/2.

The third case is that|〈ϕ1|ϕk〉| ≥ 1 − δ for more than a
1 − γ fraction of indicesk ∈ {2, . . . ,K}, but nevertheless
|ϕ1〉 is ε-far from any proper state. In this case we need to
generalize the results of the previous section, to show that
the Uniformity Test will still reject with constant probability
(dependent onε, δ, andγ).

The details of this generalization are deferred to the full
version. Here, we will just mention one key ingredient,
which is to generalize the Birthday Paradox further, to the
case where the birthday distributions are not only nonuni-
form but can also differ from each other by small amounts.
In particular we want the following:

Theorem 16. Let X1, . . . , XK be independent random
variables over[N ], and letDi be the distribution overXi.
SupposeK ≥ 6

√
N and ‖Di −Dj‖ ≤ 1/10 for all i, j.

Then

Pr [∃i, j : Xi = Xj ] ≥
1

2
.

In the full version, we present a proof of Theorem 16
based on the second moment method. (Indeed, our proof
works even if theXi’s are only4-wise independent.)

The bottom line is that we get a protocol with perfect
completeness, constant soundness, andÕ(

√
m) unentan-

gled witnesses withO (logm) qubits each.
As a final remark, we can amplify the soundness error to

1/p (m) for any desired polynomialp. To do so, we sim-
ply multiply the number of Merlins by a furtherpolylogm
factor, and repeat the whole protocolpolylogm times.

3.5 General Observations

We conclude this subsection by making four general ob-
servations about Theorem 1.

First, we strongly believe that our protocol can be
improved to one involving two provers, one of whom
sendsO (logm) qubits and the other of whom sends
O(

√
mpolylogm) qubits. Specifically, if all but one of the

witnesses in our protocol are entangled with one another,
in a way that breaks the protocol’s soundness, we believe
Arthur should be able to use the remaining witness to detect
this. This is a problem we leave to future work.

Second, our protocol made essential use of the PCP The-
orem, in the strong version proved by Dinur [9]. One
might wonder whether Theorem 1 could also be proved in a
“black-box” fashion, without exploiting anything about the

structure of 3SAT. The following simple theorem, proved
in the full version, shows that the answer is no—and that
indeed, in the black-box setting, there is essentially no sav-
ings at all over the classical witness size.

Theorem 17. Let f : {0, 1}n → {0, 1} be a black-box
function. Then anyQMAf (k) protocol to convince Arthur
that there exists anx such thatf (x) = 1, with soundness
gapΩ (1/ poly (n)), must involven−O (logn) qubits sent
by the Merlins.

Third, notice that our protocol does not let Arthurfind
a satisfying assignment forϕ; it only convinces him that
such an assignment exists. If there were a way to mod-
ify our protocol to let Arthur recover an assignment, this
would have a spectacular consequence for quantum algo-
rithms. Namely, by running Arthur’s verification procedure
with the Õ (

√
m)-qubit maximally mixed state in place of

the witnesses, we could find a satisfying assignment forϕ

with probability2−
eO(

√
m), with no help from any Merlins.

But this would yield a2
eO(

√
m)-time quantum algorithm for

3SAT—and in particular, a2
eO(

√
n)-time algorithm in the

“critical regime”m = O(n)!
Fourth, one of course wonders whether ourÕ (

√
m)-

qubit protocol is optimal. In Section 5, we will give evi-
dence thatsomepolynomial dependence onm is necessary.
In particular, it will follow from our results there that, as-
suming the Strong Amplification Conjecture, there are no
unentangled witnesses of sizeno(1) for any NP-complete
problem, which can be verified by anno(1)-time quantum
algorithm, unlessNP ⊆ DTIME(2no(1)

).

4 Additivity Implies Amplification

In this section we show how to amplify anyQMA (k)
protocol to exponentially small error, and to simulatek
provers with two, assuming the Additivity Conjecture.

4.1 Entanglement of Formation

The analysis of our amplification protocol will involve
showing that Arthur cannot create “too much” entanglement
during his verification procedure. To make this precise,
we need some way to measure the entanglement of mixed
states. Fortunately, this is one of the most studied topics
in quantum information theory. One particular entangle-
ment measure—theentanglement of formationEF defined
by Bennett et al. [5]—will be particularly useful for us.

Definition 18. Given a bipartite stateρAB, the en-
tanglement of formationEF (ρAB) is the minimum
of

∑
i piE (|ψi〉) over all decompositionsρAB =∑

i pi |ψi〉 〈ψi|, whereE (|ψi〉) is the entanglement entropy



of |ψi〉 (see Nielsen and Chuang [16] for a more detailed
definition).

Intuitively,EF measures the minimum number of entan-
gled pairs 1√

2
(|00〉 + |11〉) that are needed to prepareρAB.

Almost by definition,EF satisfiesconvexity: for all ρAB

andσAB ,

EF

(
αρAB + βσAB

)
≤ αEF

(
ρAB

)
+ βEF

(
σAB

)
.

It is also easy to see thatEF

(
ρAB

)
= 0 if and only if ρAB

is separable. In this paper, we will need two further prop-
erties ofEF . The first property is what we called “faithful-
ness” in Section 1.4.

Lemma 19. SupposeEF (ρAB) ≤ ε. Then there exists a
separable state that is

√
2ε-close toρAB in trace distance.

The second property is thatEF cannot increase by much
by acting on few qubits.

Lemma 20. SupposeσAB is obtained fromρAB by acting
on at mostn qubits from each register. ThenEF

(
σAB

)
≤

EF

(
ρAB

)
+ 2n.

Proof. Let τAB beρAB tensored with2n EPR pairs. Then
clearlyEF

(
τAB

)
≤ EF

(
ρAB

)
+ 2n. Furthermore, it is

not hard to see thatσAB can be obtained fromτAB using
local operations and classical communication, as follows.
First teleportn qubits from theA register to theB register
(usingn EPR pairs), then apply the requisite superoperator,
then teleportn qubits from theB register back to theA
register (using anothern EPR pairs). HenceEF

(
σAB

)
≤

EF

(
τAB

)
, and the lemma follows.

Given an entanglement measureE, we callE superad-
ditive if for any stateρAA′,BB′

on four registers,

E(ρAA′,BB′

) ≥ E
(
ρAB

)
+ E(ρA′B′

).

As mentioned earlier, the analysis of ourQMA (k) amplifi-
cation protocol will rely on the following central conjecture
from quantum information theory:

Conjecture 21 (Additivity Conjecture). EF is superaddi-
tive.

Shor [18] showed that Conjecture 21 is equivalent to
several other additivity conjectures in quantum information
theory, including the additivity of the Holevo capacity for
quantum channels.

4.2 The Two-Prover Case

We now show that the Additivity Conjecture implies the
QMA (2) Amplification Conjecture.

Theorem 22. Assume the Additivity Conjecture. Then
QMA (2, a, b) = QMA

(
2, 2−p(n), 1 − 2−p(n)

)
for all b −

a = Ω (1/ poly (n)) and all polynomialsp.

Proof. LetL be a language inQMA (2, a, b); then we need
to showL ∈ QMA

(
2, 2−p(n), 1 − 2−p(n)

)
. Let Q be

Arthur’s verification algorithm in the originalQMA (2, a, b)
protocol, and let the original Merlins’ messages haver (n)
qubits each for some polynomialr. Also, let T (n) be a
number of repetitions ofQ that suffices to amplify it to er-
ror probability2−p(n), assuming no entanglement among
MerlinA’s or MerlinB ’s registers. By a standard Chernoff
bound, we can takeT (n) := C · p (n) / (b− a)2 for some
constantC.

Our amplified protocol is the following.

(1) Arthur asks MerlinA and MerlinB to supply q (n)
copies each of their respective witnesses, where
q (n) := 128T (n) r (n) / (b− a)2. Denote by
ρA1A2···Aq(n) and ρB1B2···Bq(n) the q (n) r (n)-qubit
states that Arthur actually receives.

(2) For allt := 1 toT (n), Arthur chooses registersAj and
Bk uniformly and independently from among those
not already chosen, and runsQ on the stateρAjBk .

(3) Arthur accepts if at leasta+b
2 T (n) of theT (n) invo-

cations ofQ accepted, and rejects otherwise.

We need to show two things about this protocol, com-
pleteness and soundness.

Completeness:If the Merlins are honest, they can sim-
ply send |ψA〉⊗q(n) and |ψB〉⊗q(n) respectively, where
|ψA〉 ⊗ |ψB〉 is a witness thatQ accepts with probability
at leastb. Then by assumption, Arthur will accept with
probability at least1 − 2−p(n).

Soundness:As usual, this is the interesting part. Our
central claim is the following:

At every one of theT (n) iterations, Arthur can
be considered to be runningQ on a bipartite state
ρAB that is ε-close to a separable state, whereε :=√

8T (n) r (n) /q (n).
Let us first see why soundness follows from the above

claim. Supposex /∈ L. ThenQ accepts every separable
state with probability at mosta. By Proposition 7, then,
Q also accepts every state that isε-close to separable with
probability at mosta+ ε. But

ε =

√
8T (n) r (n)

q (n)
≤ b− a

4
.

So every invocation ofQ accepts with probability at most
a+ b−a

4 . Therefore, provided we choose a sufficiently large
constantC when definingT (n), Arthur will accept with
probability at most2−p(n) by a Chernoff bound.



We now prove the claim. By Lemma 20, the en-
tanglement of formation between MerlinA’s registers and
MerlinB ’s registers can be at most2r (n) after the first iter-
ation, at most4r (n) after the second iteration, and so on.
Hence

EF

(
ρA1A2···Aq(n),B1B2···Bq(n)

)
≤ 2T (n) r (n)

throughout. Also, letSA andSB be the sets ofA-registers
andB-registers respectively that Arthur has not yet chosen.
Then|SA| = |SB| = q (n) − T (n). Assuming the Addi-
tivity Conjecture, we therefore have

∑

Aj∈SA,Bk∈SB

EF

(
ρAjBk

)

≤ (q (n) − T (n))EF

(
ρA1A2···Aq(n),B1B2···Bq(n)

)

≤ 2T (n) r (n) (q (n) − T (n)) .

So if we define

σ :=
1

|SA| |SB|
∑

Aj∈SA,Bk∈SB

ρAjBk ,

then the convexity ofEF implies that

EF (σ) ≤ 1

|SA| |SB|
∑

Aj∈SA,Bk∈SB

EF

(
ρAjBk

)

≤ 2T (n) r (n)

q (n) − T (n)

≤ 4T (n) r (n)

q (n)
,

using the fact thatT (n) ≤ q (n) /2. By Lemma 19, this
means thatσ is

√
8T (n) r (n) /q (n)-close to a separable

state, as claimed.

4.3 The k-Prover Case

Recall that Kobayashi et al. [12] showed that amplifica-
tion of QMA (k) protocols impliesQMA (k) = QMA (2)
for all k ≥ 2. Now that we have shown that “additivity
implies amplification,” one might think it would follow that
additivity implies collapse ofQMA (k) to QMA (2). Un-
fortunately, the result of Kobayashi et al. requires amplifica-
tion for all QMA (k), while we have only shown that addi-
tivity implies amplification forQMA (2). In this section we
solve the problem by strengthening Kobayashi et al.’s result.
In particular, we will show thatanyQMA (k) protocol with
constant soundness can be simulated by aQMA (2) proto-
col with soundnessΩ (1/k). Combined with Theorem 22,
this will then imply thatQMA (k) = QMA (2) for all k ≥ 2
assuming the Additivity Conjecture.

Theorem 23.
QMA (k, a, b) ⊆ QMA

(
2, 1 − (b−a)2

8k , 1 − 2−n
)

.

Proof. We will show that for all k and all δ =
Ω (1/ poly (n)),

QMA
(
k, 1 − δ, 1 − 2−n

)
⊆ QMA

(
2, 1 − δ2

8k
, 1 − 2−n

)
.

This will suffice to prove the theorem, since Lemma 6 im-
plies that for allk and alla, b, we haveQMA (k, a, b) ⊆
QMA (k, 1 − (b− a) , 1 − 2−n).

Our protocol is as follows. MerlinA and MerlinB
sendk-partite statesρA1A2···Ak andρB1B2···Bk respectively.
Given these states, Arthur performs one of the following
two tests, each with probability1/2:

(1) Choosei ∈ [k] uniformly at random, perform a swap
test betweenρAi andρBi , and accept if and only if the
swap test accepts.

(2) Simulate theQMA (k, 1 − δ, 1 − 2−n) protocol, using
ρA1A2···Ak in place of thek witness registers.

We first show completeness of the above protocol. If the
Merlins are honest, they can both simply sendk unentan-
gled accepting witnesses for theQMA (k) protocol being
simulated. In that case step (1) accepts with probability1,
while step (2) accepts with probability at least1 − 2−n.

We now show soundness. Suppose any set of unentan-
gled witnesses causes theQMA (k) protocol to reject with
probability at leastδ. Then we need to show that any pair
of witnessesρA1A2···Ak andρB1B2···Bk causes theQMA (2)

protocol to reject with probability at leastδ2

8k . We consider
two cases.

First supposeρA1A2···Ak is ε-close in trace distance to
some separable pure state|Ψ〉. Then by Proposition 7, step
(2) rejects with probability at leastδ − ε.

Next supposeρA1A2···Ak is ε-far in trace distance from
any separable pure state. Then by Proposition 9, we have〈
Ψ|ρA1A2···Ak |Ψ

〉
< 1 − ε2 for all separable pure states

|Ψ〉. So taking the contrapositive of Proposition 8, for all
pure states|ψ1〉 , . . . , |ψk〉 we have

k∑

i=1

(
1 −

〈
ψi|ρAi |ψi

〉)
> ε2.

Hence step (1) rejects with probability greater thanε2

2k by
Proposition 10.

Settingε = δ/2, we thus find that the protocol rejects
with probability at leastδ

2

8k .

Combining Theorem 23 with Theorem 22 now yields the
following:

Corollary 24. The Additivity Conjecture implies the Col-
lapse Conjecture, thatQMA (k) = QMA (2) for all k ≥ 2.



4.4 Limited Entanglement

Let us mention another interesting result that can be ob-
tained by the same techniques as in Theorem 22. De-
fine the complexity classQMA (2;h) to be the same as
QMA (2), except that now, instead of being completely un-
entangled, the two Merlins are allowed to shareh EPR pairs
1√
2

(|00〉 + |11〉). Assuming the Additivity Conjecture, we
show that limited entanglement gives the Merlins no more
power to cheat than no entanglement at all:

Theorem 25. The Additivity Conjecture implies
QMA (2) ⊆ QMA (2;h (n)) for every fixed polynomialh.

Proof Sketch.To simulate a QMA (2) protocol in
QMA (2;h (n)), we use the amplified protocol ex-
actly as in Theorem 22, except that instead of asking the
Merlins for O (T (n) r (n)) witnesses each, Arthur asks
them for O (T (n) r (n) + h (n)) witnesses. The only
observation we need to make is that the proof of Theorem
22 still goes through if, in addition to the entanglement that
Arthur creates in the course of his verification, there isalso
some fixed amount of entanglement to start.

It is an interesting question whether the converse holds:
that is, whetherQMA (2;h (n)) ⊆ QMA (2).

4.5 Symmetric QMA (k)

Define the complexity classSymQMA (k, a, b) the same
way asQMA (k, a, b), except that now we are promised that
thek witnesses are all identical (in both the completeness
and soundness cases). We saw in Section 3.3 that sym-
metricQMA (k) protocols are sometimes easier to analyze
than non-symmetric ones. However, in the full version
we show that assuming the Additivity Conjecture,QMA (k)
andSymQMA (k) are actually equivalent.

The first step is to show they are (unconditionally) equiv-
alent up to a loss in error bounds.

Lemma 26. QMA (k, a, b) ⊆ SymQMA (k, a, b) ⊆
QMA

(
k, 1 − (b−a)2

8k , 1 − 2−n
)

.

Combining Lemma 26 with Theorem 23, we immedi-
ately get the following.

Theorem 27. The Additivity Conjecture implies
SymQMA (k) = QMA (k) = QMA (2) for all k ≥ 2.

5 Evidence ThatQMA (k) ⊆ PSPACE

It is obvious thatQMA (k) ⊆ NEXP: simply guess
exponentially-long classical descriptions of thek quantum
proofs. Yet this trivial upper bound is still the best we

know. In this section, we will show the nontrivial upper
boundQMA (k) ⊆ PSPACE, assuming the following con-
jecture.

Conjecture 28 (Strong Amplification). Every language in
QMA (2) admits a protocol with completeness1− 2−n and
soundness2−2s(n), wheres (n) is the number of qubits sent
by MerlinB.

Let us say a few words about why Conjecture 28 might
be true. In studying probabilistic complexity classes, one
typically assumes amplification theorems will hold unless
there is some clear obstruction to them. In the case of
QMA (2) amplification where both of the witnesses remain
small, there really is such an obstruction: namely, it will fol-
low from results in this section that such in-place amplifica-
tion would implyNP ⊆ DTIME(npolylog n). On the other
hand, we know of no similar obstruction in the case where
one witness remains small, but the other could grow by a
polynomial factor depending on the desired error bound.

We now turn to proving that Conjecture 28 implies
QMA (k) ⊆ PSPACE for all k. We know from Kobayashi
et al. [12] that even the ordinary amplification conjecture
implies QMA (k) = QMA (2) for all k ≥ 2. There-
fore, our task reduces to showing that Conjecture 28 implies
QMA (2) ⊆ PSPACE.

We will need the following lemma of Aaronson [1].

Lemma 29 ([1]). Let M be a2-outcome POVM on a bi-
partite Hilbert spaceHA ⊗HB. Also, let{|1〉 , . . . , |d〉} be
any orthonormal basis forHB , and for all j ∈ {1, . . . , d}
let Mj be the POVM onHA induced by applyingM to
HA ⊗ |j〉. Suppose that there exists a product stateρ ⊗ σ
in HA ⊗ HB such thatM yields outcome1 with proba-
bility at leastp > 0 when applied toρ ⊗ σ. Then, if we
applyMj1 , . . .MjT

in sequence toρ, wherej1, . . . jT are
drawn uniformly and independently from{1, . . . , d}, and
T ≥ d/p2, the probability that at least one of these mea-

surements yields outcome1 is at least
(
p−

√
d/T

)2

.

LetQMAPSPACE be the same asQMA, except that Arthur
can run in quantum polynomial space.

Lemma 30. Conjecture 28 implies QMA (2) ⊆
QMAPSPACE.

Proof. Let L be a language inQMA (2). By Conjecture
28, there is a protocol forL in which the completeness and
soundness bounds are1 − 2−n and2−ns(n), respectively,
and MerlinB ’s message is overs(n) qubits. LetM be the
two-outcome POVM induced by Arthur’s verification pro-
cedure. As in Lemma 29, Arthur can receive just the mes-
sage of MerlinA, guess a classical basis state in place of
MerlinB ’s message, applyM , repeat this processT times,
and finally take the OR of the outcomes as his answer.



More precisely, we setd := 2s(n) andT := 22s(n)−2.
Then if x ∈ L, Arthur accepts with probability at least
(1 − 2−n −

√
d/T )2 > 2/3 by Lemma 29. Ifx /∈ L,

on the other hand, then in each step Arthur’s probability of
acceptance is at most2−2s(n). So by the union bound, his
total probability of acceptance after taking the OR is at most
T 2−2s(n) < 1/3.

Lemma 31. QMAPSPACE = PSPACE.

Proof Sketch.Let L be a language inQMAPSPACE. Then
L has a protocol in which Arthur receives a witness with
p (n) qubits (for some polynomialp), and then decides
whether to accept or reject it in quantum polynomial space.
Hence there exists a positive Hermitian matrixA, of size
2p(n) × 2p(n), such that ifx ∈ L then the largest eigen-
value ofA is at least2/3, while if x /∈ L then the largest
eigenvalue is at most1/3. Furthermore,A is equal to the
product of exponentially many efficiently-computable ma-
trices. So computingTr(A2p(n)) is just an exponential-size
linear algebra problem, which can be solved inPSPACE.
On the other handTr(A2p(n)) depends on the largest eigen-
value ofA, and is greater than(2/3)2p(n) if x ∈ L, and
less than2p(n)/32p(n) if x /∈ L. Hence we can de-
cideL in PSPACE, andQMAPSPACE ⊆ PSPACE. Since
PSPACE ⊆ QMAPSPACE is obvious we are done.

Combining Lemma 30 with Lemma 31 now yields the
main result.

Theorem 32. Conjecture 28 impliesQMA (2) ⊆ PSPACE.

Or if we “scale down by an exponential,” Conjecture 28
implies that

QMAlog (2) ⊆ DSPACE(polylog n) ⊆ DTIME(npolylog n)

where QMAlog (2) is the same asQMA (2) except that
the witnesses have sizeO (logn) and are verified in time
polylogn. Assuming Conjecture 28, this means in partic-
ular that the3-COLORING protocol of Blier and Tapp [6]
cannot be amplified to constant soundness, unlessNP ⊆
DTIME(npolylog n).

Theorem 32 can also be seen as giving a
quasipolynomial-time approximation algorithm for an
NP-hard optimization problem: namely, the problem of
finding the separable state|ψA〉 |ψB〉 that maximizes the
expectation value of a given observable.9 (Of course,
such an algorithm would require a strong amplification
procedure as a subroutine.) We now state the connection
more precisely.

9We know that this problem isNP-hard (and indeed, hard to approxi-
mate to within aΩ

`

1/N6
´

additive term) by the result of Blier and Tapp
[6].

Theorem 33. Let M be a measurement on a bipartite
Hilbert spaceHA ⊗ HB, and letp (M) be the maximum,
over all separable states|ψA〉 |ψB〉, of the probability that
M accepts|ψA〉 |ψB〉. Also, letN = (dimHA) (dimHB)
and ε > 0. Then assuming Conjecture 28, there exists
a deterministic algorithm that takesM as input, approxi-
matesp (M) to within additive errorε, and runs in time
Npolylog N/ poly(ε).

6 Nonexistence of Perfect Disentanglers

Definition 34. Let H and K be two finite-dimensional
Hilbert spaces. Then given a superoperatorΦ : H →
K⊗K, we sayΦ is an(ε, δ)-disentangler if

(i) Φ(ρ) is ε-close to a separable state for everyρ, and

(ii) for every separable stateσ, there exists aρ such that
Φ (ρ) is δ-close toσ.

As pointed out in Section 1.6, if for sufficiently
small constantsε, δ there exists an(ε, δ)-disentangler with
log dimH = O (poly (log dimK))—and if, moreover, that
disentangler can be implemented in quantum polynomial
time—thenQMA (2) = QMA.

Watrous (personal communication) has proposed the fol-
lowing fundamental conjecture.

Conjecture 35 (Watrous). For all constantsε, δ < 1, any
(ε, δ)-disentangler requiresdimH = 2Ω(dimK).

A proof of Conjecture 35 would be an important piece
of formal evidence thatQMA (2) 6= QMA, and might even
lead to a “quantum oracle separation” (as defined by Aaron-
son and Kuperberg [2]) between the two classes.

In the full version we show that, at least in the caseε =
δ = 0, no disentangler exists inanyfinite dimension. This
result would be false if we let eitherε or δ be nonzero.

Theorem 36. Let Φ : H → K ⊗ K be any superoperator
whose image is the set of separable states. ThendimK ≥ 2
impliesdimH = ∞.

7 Open Problems

7.1 The Power of Multiple Merlins

The power ofQMA (2) and related classes is still poorly
understood. Can we find a “classical” problem (for exam-
ple, a group-theoretic problem like those of Watrous [20])
that is inQMA (2) but not obviously inQMA? Can we find
a naturalQMA (k)-complete promise problem?

Regarding our 3SAT protocol, can we reduce the num-
ber of provers to two? Can we reduce the number of qubits



below Õ (
√
n), or alternatively, give evidence against this

possibility? For example, can we show thatΩ (
√
n) wit-

nesses are information-theoretically required for the Uni-
formity Test? Finally, can we show unconditionally that
QMA (2) ⊆ EXP?

A long-shot possibility would be to give a quantum al-
gorithm tofind the unentangled witnesses in the 3SAT pro-
tocol, in as much time as it would take were the witnesses
entangled. This would yield a2

eO(
√

n)-time quantum algo-
rithm for 3SAT.

7.2 Amplification and Other Complexity
Issues

In definingQMA (k), does it matter if the amplitudes are
reals or complex numbers? ForBQP andQMA, it is not
hard to show that this distinction is irrelevant. Interest-
ingly, though, the usual equivalence proofs break down for
QMA (k).

Can we show directly (i.e., without proving the full Ad-
ditivity Conjecture) thatQMA (k) = QMA (2), or that
QMA (2) protocols can be amplified?

Can we prove Conjecture 35: that there is no(ε, δ)-
disentangler withpoly (n) qubits andε, δ > 0? Can we
at least rule out such a disentangler when eitherε > 0 or
δ > 0? Related to that, can we give a quantum oracle
U (as defined by Aaronson and Kuperberg [2]) such that
QMAU 6= QMAU (2)? Can we at least show that Conjec-
ture 35 would imply the existence of such an oracle?

7.3 QMA (k) With Unentangled Measure-
ments

Recall that our 3SAT protocol involved three tests: Satis-
fiability, Symmetry, and Uniformity. Suppose we are will-
ing to settle for completeness1 − ε rather than1, and sup-
pose we modify the Uniformity Test so that Arthur rejects
on not seeing enough collisions. Then can the Symmetry
Test be omitted? If so, then the resulting protocol would
have the extremely interesting property of making no entan-
gled measurements, yet nevertheless depending crucially on
the absence of entanglement among the witnesses.

More generally, defineBellQMA (k) to be the sub-
class ofQMA (k) in which Arthur is restricted to mak-
ing a separate measurement on each witness|ϕi〉, with
no entanglement between the measurements. (The name
arises because Arthur is essentially restricted to perform-
ing a “Bell experiment.”) What is the power of this class?
DoesBellQMA (k) = QMA (k)? DoesBellQMA (k) =
BellQMA (2) for all k ≥ 2? Note that it is trivial to show
amplification for BellQMA (k). This is because, with-
out entangling measurements, the entanglement-swapping
problem described in Section 1.4 can never arise.
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