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Abstract difficult if entanglement isot allowed! One way to un-

derstand this is that Hilbert space—the spacalbfjuan-

The clasQMA (k), introduced by Kobayashiet al., con- tum states—has extremely useful linear-algebraic proper-
sists of all languages that can be verified usihginen- ties, and when we restrict to the set of separable states we
tangled quantum proofs. Many of the simplest questionslose many of those properties. So for example, finding
about this class have remained embarrassingly open: fora quantum state that maximizes the probability of a given
example, can we give any evidence thajuantum proofs ~ measurement outcome is just a principal eigenvector prob-
are more powerful than one? Can we show any upper lem, but finding a separable state that does the saiB-is
bound onQMA (k), besides the triviaNEXP?  Does hard [6].

QMA (k) = QMA(2) for k > 2? CanQMA (k) proto- These observations naturally give rise to a general ques-

cols be amplified to exponentially small error? tion at the intersection of computational complexity and en
In this paper, we make progress on all of the above ques-tanglement theory. Namely: supposing we haguantum

tions. proofs, could we use the promise that the proofs were unen-

tangled to verify mathematical statements beyond what we
e We give a protocol by which a verifier can be convinced could verify otherwise?

that a 3SAT formula of sizen is satisfiable, with con-
stant soundness, giveén (1/n) unentangled quantum
witnesses withO (logn) qubits each. Our protocol

relies on Dinur’s version of the PCP Theorem and is . .
inherently non-relativizing. The clasQMA, or Quantum Merlin-Arthur, consists of

all languages that admit a proof protocol in which Merlin
¢ We show that assuming the famous Additivity Conjec- sends Arthur a polynomial-size quantum statg and then

1.1 Background and Related Work

ture from quantum information theory, ayMA (2) Arthur decides whether to accept or reject in quantum poly-
protocol can be amplified to exponentially small error, nomial time. This class was introduced by Kitaev [11] and
andQMA (k) = QMA (2) for all k > 2. Watrous [20] as a quantum analogueNff. By now we

know a reasonable amount abdQMA: for example, it
allows amplification of success probabilities [15], is con-
tained inPP [15], and has natural complete promise prob-
lems [11]. (See Aharonov and Naveh [3] for a survey.)

o We give evidence th&MA (2) C PSPACE, by show-
ing that this would follow from “strong amplification”
of QMA (2) protocols.

e We prove the nonexistence of “perfect disentanglers” N 2003, Kobayashi, Matsumoto, and Yamakami [12]
for simulating multiple Merlins with one. defined a generalization @MA called QMA (k). Here
there arek Merlins, who send Arthuk quantum proofs

[1), ..., |wk) respectively that are guaranteed to be unen-

tangled with each other. (Th@MA (1) = QMA.) Notice
that in the classical case, this generalization is comiglete
uninteresting: we hav®lA (k) = MA for all k, since we
can always simulate Merlins by a single Merlin who sends
Quantum entanglement is often described as a compli-arthur a concatenation of thie proofs.  In the quantum
cated, hard-to-understand resource. But ironically, manycase, however, a single Merlin could cheaténtangling

questions in quantum computing are easiest to answer asghe ; proofs, and we know of no general way to detect such
suming unlimited entanglement, and become much moregnanglement.

*To whom correspondence should be addressed. Email: aaron- VWhen we tr_y to und.erstan@l\/.IA (k), we eqcounter at
son@csail.mit.edu. least four basic questions. First, do multiple quantum
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proofs ever actually help? That is, can we find some
sort of evidence thaQMA (k) # QMA (1) for somek?

lapses toQMA (2). Assuming the Additivity Conjecture,
we also show that letting the Merlins have a limited amount

Second, can we show any nontrivial upper bound on theof entanglement does not change the poweQMA (2),

power of multiple quantum proofs? (The trivial upper
bound isQMA (k) € NEXP, which follows by just guess-
ing exponential-size classical descriptions of riuantum
proofs.) Third, cartQMA (k) protocols be amplified to ex-
ponentially small error? Fourth, are two Merlins the most
we ever need? That is, do&VA (k) = QMA (2) for all
k> 2?

and neither does forcing their withesses to be identical.
Evidence That QMA (k) C PSPACE. In Section 5,
we give the first evidence for an upper bound@MA (k)
better than the triviaNEXP. In particular, we show
that QMA (k) € PSPACE, assuming what we call the
Strong Amplification Conjecturehat it is possible to am-
plify QMA (k) protocols in such a way that one of the Mer-

We know of three previous results that are relevant to thelin’s Hilbert space dimensions remains smaller than the in-

above questions.

First, in their original paper oQMA (&), Kobayashi et
al. [12] proved that a positive answer to the third question
implies a positive answer to the fourth. That isQMA (k)
protocols can be amplified, th&dMA (k) = QMA (2) for
allk > 2.

Second, Liu, Christandl, and Verstraete [14] gave a nat-

ural problem from quantum chemistry, callpdre stateN -
representability which is inQMA (2) but is not known to
be inQMA.

Third, Blier and Tapp [6] recently (and independently
of us) gave an interestin@MA (2) protocol for anNP-
complete problem, nameBrCOLORING. In this protocol,
Arthur verifies that am-vertex graph is 3-colorable, us-
ing two unentangled witnesses with ory(logn) qubits
each. There is a crucial caveat, though:Gifis not 3-
colorable, then Arthur can only detect this with probapilit
Q (1/nS) rather than constant probability.

1.2 Our Results

In this paper, we present new results about all four prob-
lems listed previously. Our main results are as follows:

Proving 3SaT With O (4/n) Qubits. In Section 3,
we give a protocol by which Arthur can verify that a
3SAT instance of sizew has a satisfying assignment, using
O (y/npolylogn) unentangled witnesses wit® (logn)
gubits each. Of course, this is a larger number of qubits
than in the protocol of Blier and Tapp [6], but the point is
that Arthur can detect cheating witonstantprobability.
Our protocol relies on the PCP Theorem, and in particular,
on the existence of PCP’s of size(n polylogn), which
was recently shown by Dinur [9].

Additivity Implies Amplification. In Section 4, we re-
duce several open problems abQMA (k) to the famous
Additivity Conjecturein quantum information theory. In
particular, we show that the Additivity Conjecture implies
that anyQMA (k) protocol can be amplified to exponen-
tially small error, and that theQMA (k) hierarchy” col-

lindeed, if the soundness gap were constant rather tigroly (n),
then Blier and Tapp’s protocol could presumably be “scalpdy an ex-
ponential” to showQMA (2) = NEXP!

verse of the error bound.

Nonexistence of Perfect Disentanglers.In Section 6,
we rule out one possible approach to show@igA (2) =
QMA, by giving an extremely simple result that neverthe-
less seems new and might be of interest. Namely, given
finite-dimensional Hilbert spaceX, I, there is no quan-
tum operation mapping the set of all statesHrto the set
of all separable states i ® K.

In the remainder of this introduction, we give some intu-
ition behind each of these results.

1.3 Proving 3SAT With O (y/n) Qubits

Let ¢ be a 33T instance withn variables. Then how
long a proof does Merlin need to send Arthur, to convince
him thaty is satisfiable? (As usual, Merlin is an omniscient
prover and Arthur is a skeptic8PP verifier.)

Intuitively, it seems the answer should be abauiits.
Certainly, if sublinear-size proofs of satisfiability ebed,
then 3\T would be in solvable irz°(™) time, since Arthur
could just loop over all possible proofs until he found one
that worked. Even in the quantum case, one can make a
similar statement; iuantumproofs of satisfiability with
o(n) qubits existed, then 38 would have a2°(™-time
quantum algorithn.

On the other hand, suppose Arthur is gigeweralquan-
tum proofs, which are guaranteed to be unentangled with
each other. Then the previous argument no longer seems
to work3 And this at least raises the possibility that3S
might have sublinear proofs in this setting.

We will show that this possibility is realized:

Theorem 1. Let ¢ be a satisfiable8SAT instance withn
variables andm > n clauses. Then one can prove the
satisfiability ofy, with perfect completeness and constant

2For Arthur could first use the in-place amplification of Mattiand
Watrous [15] to make his error probability exponentially ahfwithout
increasing the size of the quantum prdgf), and then use Grover search
to find |¢) in 2°() time.

3A first reason is that it is unclear how to do in-place amplifiara of
QMA (k) protocols. A second reason is that, esssumingamplifica-
tion, it is unclear how to search efficiently among unentadghkitnesses.
In Section 5, we will show that the first reason is actually ¢hecial one.



soundness, using (,/m polylog m) unentangled quantum
proofs, each wittO (log m) qubits.

In particular, ifm = O (n),* then we get an almost-
guadratic improvement over the witness size needed in th
classical world (or that matter, in the quantum world with
one prover).

We now explain the intuition behind Theorem 1. The
first step in our protocol is to reduce BSto a more
convenient problem called 24@-OF-4-SAT, where every
clause has exactly four literals, and is satisfied if and only
if exactly two of the literals are. We also want our 240
OF-4-SAT instance to be a PCP: that is, either it should
be satisfiable, or else at mostla— ¢ fraction of clauses
should be satisfiable for some constant 0. Finally we
want the instance to bealanced meaning that every vari-

able occurs in at most a constant number of clauses. Fortu

nately, we can get all of this via known classical reductjons
including the “tight” PCP Theorem of Dinur [9], which in-

crease the number of variables and clauses by at most a

O (polylog n) factor.

So suppose Arthur has applied these reductions, to ob
tain a balanced 2-@r-OF-4-SAT PCP instance with n
variables. And now suppose Merlin sends Arthdogn-
gubit quantum state of the form

=3

wherexy,...,x, € {0,1}" is the claimed satisfying as-
signment forg. (We call a state having the above form
a proper state.) Then we show that Arthur can check the
veracity ofzq, ..., z, with perfect completeness and con-
stant soundness. To do so, Arthur simply meas{iesn

a basis corresponding to the clausespof With constant
probability, he will get an outcome of the form

(=)™ ) + (=)™ [5) + (1) [k) + (=)™ [€)

where (i, j, k, £) is a randomly chosen clause ¢f As-

¥) =

i>7

S

suming this occurs, Arthur can perform a measurement that

accepts with certainty if; + =; + zx + ¢, = 2 and rejects
with constant probability otherwise.

Thus, if only Arthur could somehow assume) was
proper, we would havelag n-qubit withess for 381! The
problem, of course, is that Arthur has no way of know-

e

n

with constant soundness whethél is proper or far from
any proper state. Indeed, even if Arthur is givBh =
O(y/n) states|y1),...,|epx) which are not necessarily
identical, so long as the states are not entangled with each
other Arthur can check with constant soundness whether
most of them are close to some proper staie This
then yields a protocol for 3& with constant soundness and
O(y/n) unentangled proofs of siz@ (log n)—for Arthur

can just choose randomly whether to perform the satisfia-
bility test described above, or to check whether most of the
|ok)’s are close to some proper state.

To check that most of the states are at least closath
other, Arthur simply has to perform a “swap test” between
(say)|¢1) and arandom other state;). So the problem is
reduced to the following: assuming most of thg.)'s are
close to|p1 ), how can Arthur decide whethgp, ) is proper

or far from any proper state?

In our protocol, Arthur does this by first choosing a
matching M on the set{1,...,n} uniformly at random.
He then measures each state) in an orthonormal basis
that contains the vectol$) + |7) and|i) — |j) for every

edge(i,j) € M.

Let us think about what happens when Arthur does this.
Since he is performing@(/n) measurements on almost-
identical states, and since each measurement passible
outcomes, by using a suitable generalization of the Birth-
day Paradox, one can prove that with(1) probability,
Arthur will find a collision: that is, two outcomes of the
form |i) £ |4), for the same edgg, j) € M. So suppose
this happens. Then if thip,)'s are all equal to a proper
stately)) = >, (—1)"" |i), the two outcomes will clearly
“agree™: that s, they will either both Hé) + ;) (if z; = z;)
or both beli) — |j) (if z; # x;). On the other hand, sup-
pose thgpy)'s are far from any proper state. In that case,
we show that the outcomes will “disagree” (that is, one will
beli) + |7) and the other will béi) — |7)) with Q2 (1) prob-
ability.

To understand why, consider that there are two ways for
state|y) >, ;i) to be far from proper. First,

the probability distributior<|a1|2 yeees |an|2), which cor-

responds to measuririgp) in the standard basis, could be
far from the uniform distribution. Second, the’s could

be roughly equal in magnitude, but they could have com-
plex phases that cauge) to be far from any state involving

a

ing whether Merlin has cheated and given him an improper positive and negative real amplitudes only. In either case,

state. For example, what if Merlin concentrates the ampli-

though, if Arthur measures according to a random matching

tude of|¢)) on some small subset of basis states, and simply M, then with high probability he will obtain an outcome

omits the other basis states?
Our key technical contribution is to show that, if Arthur
gets not one bu©(/n) copies of|y), then he can check

“Note that settingn = O (n) is fairly common in the study of 34,
and indeed, the “hardest” random BiSinstances are believed to occur
aroundm = 4.25n.

a; i) + a; |7) that is not close to eithef) + |5) or [i) — |5).

As one would imagine, making all of these claims quan-
titative and proving them requires a good deal of work.

The reason we need the assumption of unentanglementis
that without it, cheating Merlins might correlate theirteta
in such a way that a swap test between any two states passes



with certainty, and yet no collisions are ever observed. As Nevertheless, there is a natural amplification procedure
we point out in Section 3.5, it seems unlikely that the as- that seems like ibughtto be robust against such “patho-
sumption of unentanglement can be removed, since thislogical” behavior. Suppose Arthur chooses the number
would lead to 2°(V™)-time classical algorithm for 3&.  of copiesm to be very large, say'® (much larger than
On the other hand, we believe it should be possible to im- the number of copies he is actually going to check), and
prove our protocol to one involving onlyvo unentangled ~ suppose that each copy Heescheck is chosen uniformly

proofs. This is a problem we leave to future work. at random. Then whatever entanglement Arthur produces
during the checking process ought be “spread out” among
1.4 Additivity Implies Amplification the copies, so that with high probability, every copy that

Arthur actually encounters is close to separable.

It follows, from the “finite quantum de Finetti theorem”
of Konig and Renner [13], that if the number of copies were
large enough then the above argument would work. Unfor-
tunately, the number of copies needs to be exponential in
for that theorem to apply.

We will show that the argument works witholy (n)
copies, provided one can formalize terms like “spread out”
and “close to separable” using a suitable measure of entan-
glement. The only problem, then, is that a measure of en-
I@nglement with the properties we need is not yet known to
exist! Informally, we need an entanglement meaduthat

In the one-prover case, it is easy to amplif@®IA pro-
tocol with constant error to a protocol with exponentially
small error.  Merlin simply sends Arthun = poly (n)
copies of his proof; then Arthur checks each of the copies
and outputs the majority answer. To show that this works,
the key observation is théderlin cannot gain anything by
entangling them proofs Indeed, because of the convex-
ity of Arthur’s acceptance probability, Merlin might as wel
send Arthur an unentangled state “™", in which case the
completeness and soundness errors will decrease expone
tially with m by the usual Chernoff bound.

Now suppose we try the same argument@dfiA (2). If
we ask each Merlin to send copies of his state, each Mer-
lin might cheat by instead sending an entangled state.on
registers. And in that case, as soon as Arthur checks the(ii) is faithful (meaning ifE (p) is polynomially small then

(i) is superadditivémeaning it “spreads itself out” among
registers), and

first copy (consisting of one register from Merlirand one p is polynomially close to a separable state in trace
from Merling), his doing so might create entanglement in distance).

the remaining copies where there was none befdrals is

because of a counterintuitive phenomenon catiethngle- Among existing entanglement measures, there is one—

ment swapping21], by which two quantum systems that the entanglement of formatioR'r, introduced by Bennett

have never interacted in the past can nevertheless becomet al. [5]—that is known to satisfy (ii), and is conjectured

entangled, provided those systems are entangledatlitr to satisfy (i)® This conjecture is known to be equivalent to

systems on which an entangling measurementis performedthe Additivity Conjecture from quantum information theory
Let us give a small illustration of this phenomenon. Sup- [18].

pose that each “proof”is a single qubit, and that Arthur asks ~ Our first result says that, if the Additivity Conjecture

for two proofs from each Merlin (thusl qubits in total). holds, then anf@MA (2) protocol can be amplified to ex-
Then if Merling is dishonest, he might send Arthur the en- ponentially small error. We also prove that aQWA (k)
tangled statdy4) = [00) + |11), and likewise Merlin protocol with constant soundness can be simulated by a

might send Arthufyz) = |00) +|11) (omitting normaliza-  QMA (2) protocol with 2 (1/k) soundness. Combining
tion). Now suppose Arthur measures the qub;izi;$>(1) and these two results, we find that if the Additivity Conjecture
[¥5) 1) in the “Bell basis,” consisting of the four entangled  holds, therQMA (k) = QMA (2) for all & > 2.

stateg00) + |11}, [00) — [11),|01) + |10), and|01) — |10). 'I_'wo othe_r interesting consequences we get are the fol-
Then conditioned on the outcome of this measurement, itislowing.  First, assuming the Additivity Conjecture, two
not hard to see that the joint state |gf1) 5, and|¢s) ) Merlins who sharé: (n) ebits of entanglement can simu-

will also be entangled. Ilate t;/]vo unegtangk;d Mzrh(rj\s, for ever)]i fixed pollynomhall
Of course, as soon as the remaining-1 copies become n o:\/lerl_wor S ?jd"?un Ie amo?m cr)] eptagg em%nt gives
entangled, we lose our soundness guarantee and the proof&Pe erlins no additional power 1o cheat. >econd, again
amplification fails assuming the Additivity Conjecturé,Merlins who all send
copies of the same witness yield the same computational
5Indeed, this example can be seen as a special cagmnfum telepor- power ask Merlins who can send different witnesses.
tation [4]: Arthur uses the entanglement between Metfmleft and right
registers, as well as between Meglils left and right registers, to teleport 6There is also another measure—sutiashed entanglemefts,, in-

an entangled state into the two right registers by acting onithe two left troduced by Christandl and Winter [8]—that is known to dgti§), but
registers. unfortunately can be showrotto satisfy (ii).




1.5 Evidence That QMA(k) C PSPACE exponentiality is an unavoidable feature of any approxémat

disentangler; proving or disproving this remains one of the
It is well-known thatQMA C PP [15]. On the other  central open problems aboQMA (2).

hand, the only known upper bound fQMA (2) is the triv-

ial NEXP, and improving this (even tQMA (2) C EXP) 2  Preliminaries

has been an open problem for several years. In this pa-

per we show tha@MA (2) € PSPACE, assuming what we In this section, we first define the complexity class

call the Strong Amplification Conjecture: thatis possilde t - QMA (k, a, b), or Quantum Merlin-Arthur withs unentan-

amplify any QMA (k) protocol, in such a way that one of  gled witnesses and error bounds, and state some basic

the Merlin’s Hilbert space dimensions remains small com- fa¢ts and conjectures about this class. We then survey some

pared to the inverse of the error bound. Note that, sinceconcepts from quantum information theory we will need,

strong amplificatioralsoimplies QMA (k) = QMA (2) for including trace distance and the swap test.
all k£ > 2, we then geQMA (k) C PSPACE as well.

Our proof is based on an idea called “de-Merlinization,” 2.1 Multiple-Prover QMA
which was previously used by Aaronson [1] to show
QMA/qgpoly C PSPACE/poly. We show thatif strongam-  pefinition 2. A languageL is in QMA (k, a, b) if there ex-

plification holds, then Arthur can “partially de-Merlinize gt g polynomial-time quantum algorithé such that for
anyQMA (2) protocol—that is, remove one of the Merlins g, inputsz € {0,1}":

from the picture—at the cost of an exponential increase in

running time. We then hav@MA (2) € QMApspack, (i) If x € Lthenthere existwitnessgs,), ..., |¥x), with

where QMApspace is the version ofQMA where Arthur poly (n) qubits each, such th&) accepts with proba-

runs in quantum polynomiapacenstead of quantum poly- bility at leastb given|z) ® |11) ® - - - & |¢g).

nomial time. But it follows from results of Watrous [19] . . .

thatQMApspace — BQPSPACE = PSPACE. (i) If_ x ¢ L then@ accepts with probability at most
given|z) @ [11) @ - -- @ [y, forall [¢1) ..., [1he).

1.6 Nonexistence of Perfect Disentanglers As a convention, we also defin@MA (k) :=

QMA (k,1/3,2/3), andQMA := QMA (1).8

The above definition makes sense for all integkrs
from 1 up to poly (n), and nonnegative real functions
2PV < () < b(n) < 127 PO,

In  the one-prover case, we know that

While we now have a few examples where multiple
guantum proofs seem to help—such as the3grotocol
of this paper, and the pure staterepresentability problem
[14]—we still have no “complexity-theoretic” evidence tha
QMA (2) # QMA. Indeed, even proving an oracle separa- ol ol
tion bét\aveerQMA (2) andQMA seems extremely difficult. QMA(1’1/3’2/_3) = QMA(1,277), 1 —2 1,0( ’)
for all polynomialsp (see [15] for example). This is what

Thus, let us consider the other direction and try to prove .~ .. ;
. 9 ! rect Y10 Prove . iifies the conventio®@MA (1) := QMA(1,1/3,2/3).

these classes are the same. Potentially the first approacgl .
would be to equip Arthur with alisentangler that is, a y contrast, we do not yet know whether the convention

guantum operation that would convert Merlin’s (possibly- _Cl_2r|:4¢Ek) ::t'f'QdMAt(hk’ 1/3’,[2/:;’) f'?hju?tll?ed. for k Z f )
entangled) witness into a separable witness, and thereby le atitisjustiied1s the content ot the foflowing conjecture-
Arthur simulate &QMA (2) protocol inQMA. In this paper Conjecture 3 (Amplification). For all k, all a < b
we take a first step in the study of disentanglers, by provingwith » — ¢ = Q (1/poly (n)), and all polynomialsp,
that in finite-dimensional Hilbert spaces, there is no opera QMA (k,a,b) = QMA (/{, 2-p(n) 1 — pr(n))_

tion that produces all and only the separable states astoutpu

Note that, if we are willing to settle for there being an

outputcloseto every separable state, then a disentangler
does exist: for example, take as input a classical descrip-
tion of the separable stateto be prepared, measure that QMA (2).

description in the computational basis, and then prepdre Conjecture 4 (Collapse) For all k > 2, all a < b
The key problem is that the input Hilbert space needs to beyith , — ¢ = Q(1/poly (n)), and all polynomialsp,
exponentially larger than the output Hilbert space. Wa- QMA (k, a,b) = QMA (2,277(M 1 — 27p(M),

trous (personal communication) has conjectured that this

One is tempted to make an even stronger conjecture: that
the entire hierarchy dRMA (k, a, b)'s we have defined col-
lapses to just two complexity classes, nam@WA and

8For purposes of definition, we assume we have fixed a specific ma
"This argument also shows that our result fails if the inpuibétt space chine model (e.g., a universal set of quantum gates)—thdulg Ampli-

is infinite-dimensional—for then one could give an infinjtg@recise de- fication Conjecture to be discussed shortly holds, therctiéce will turn

scription ofo. out not to matter.




The main progress so far on these conjectures has beeRroposition 8. Given a k-partite statep?1424« sup-

due to Kobayashi et al. [12], who showed that the Amplifi-
cation and Collapse Conjectures are actually equivalent:

Theorem 5([12]). Conjecture 3 implies Conjecture 4.

Let us observe that one can make tloenpletenessrror
(though not the soundness error) exponentially small,gusin
a simple argument based on Markov's inequality. We will
need this observation in Section 4.

Lemma 6.
QMA (k,a,b) € QMA (k,1— (b—a),1 —277() for all
k,alla < b < 1, and all polynomials.

Proof. We use the following protocol. Each Merlin pro-
videsm = C - (;’f’;))z registers for some constafit Then
Arthur runs his verification procedure times in parallel,
once with eactk-tuple of registers, and accepts if and only
if at least ad fraction of invocations accept, for somk

slightly less tharb.

To show completeness, we use a Chernoff bound. As-

suming the Merlins are honest, each one simply provides
copies of his witness. Then on each invocation, Arthur ac-
cepts with independent probability at least So assuming
we chose a sufficiently large constantthe probability that
Arthur accepts less thafin times is at mos2—»(™),

To show soundness, we use Markov’s inequality. The
expected number of accepting invocations is at most
(by linearity, this is true even if the registers are entadyl
Hence the probability that this number exceels is at
mosta/d, which we can ensure is less than- (b —a)
by choosingi sufficiently close ta (and using the fact that
b<1). O

2.2 Quantum Information

We now review some quantum information concepts that
we will need. For more details see Nielsen and Chuang
[16].

Given two mixed statep and o, their trace distance
is |lp—oll, = &>, |\l where(A,...,\,) are the
eigenvalues op — 0. We will sometimes say is e-close
topif ||p — o, < e, ande-far otherwise. The importance
of trace distance comes from the following fact:

Proposition 7. Suppose is e-close top. Then any mea-
surement that accepgswith probability p, acceptss with
probability at mosp + ¢.

Given a pure statg)) and a mixed statg, theirsquared
fidelity (y|p|y) is the probability of obtainindy) as the
result of a projective measurement pn Squared fidelity
behaves nicely under tensor products:

pose there are pure stateg/)y),...,|¥r) such that
(hilpti|ii) = 1—eg; foralli. Let|¥) == |1h1)®@- - @ |thy)
ande := &1 + -+ &;. Then(W|pArd2Ae|F) > 1 — ¢,

Trace distance and squared fidelity are related to each
other as follows:

Proposition 9. (¢[p|) +[|p — ) (¥]||7. < 1forall pand
).

Given a product state ® o, theswap tesis a quantum
operation that measures the overlap betweands. The
test accepts with probabilit%f%’i”) and rejects otherwise.
The swap test can also reveal information about the purity
of a state, as follows:

Proposition 10. Supposé|p|v) < 1—e for all pure states
|). Then a swap test betwegiand any other state rejects
with probability greater tharz /2.

3 Proving 3SAT With O (,/n) Qubits

We now present our protocol for proving the satisfiabil-
ity of a 3SaT instance, usin@ (v/n) unentangled quantum
proofs withO (log n) qubits each. For ease of presentation,
the protocol will be broken into four steps: first, classieal
ductions from the 35t problem to a differentiP-complete
problem that we will actually use; second, a protocol for
the special case where the witness is “proper”; third, a pro-
tocol for the case where the Merlins send Artlif,/n)
withesses, which are not necessarily proper but which are
guaranteed to be identical; and fourth, a protocol for the
general case. We end in Section 3.5 with some general
observations about our protocol and the prospects for im-
proving it further.

3.1 Classical Reductions

It will be convenient to work not with 3&8r but with
a related problem called 24¥-OF-4-SAT, in which ev-
ery clause has exactly four literals, and is satisfied if and
only if exactly two of the literals are. We will also need
our 2-QuT-OF-4-SAT instance to be a PCP, and to have
every variable appear in at mast(1) clauses. The follow-
ing lemma shows how to get everything we want with only
a polylogarithmic blowup in the number of variables and
clauses.

Lemma 11. There exists a polynomial-time Karp reduction
that maps a3SAT instancey to a 2-OuT-OF-4-SAT in-
stancep, and that has the following properties:

(i) If ¢ hasn variables andm > n clauses, thenp
hasO (m polylog m) variables andD (m polylog m)
clauses.



(i) Every variable of¢ occurs in at most clauses, for
some constant

(iii) The reduction is a PCP (meaning that satisfiable in-
stances map to satisfiable instances, while unsatisfi-
able instances map to instances that asiar from sat-
isfiable for some constaat> 0).

yields the following reduced state, for some random clause
Cijke := (i, j, k, 0) in By

[ijnr) i= (—=1)" [))+(=1)" [5)+(—

Notice that, of thel6 possible assignments to the variables
(@i, x5, Tk, x0), Six of them satisfyC; ;x¢, and those six lead

to three statef); ;) that are orthogonal to one another (as
well as the negations of those states, which are essentially

D [k)+(=1)"16) .

Proof. Given a 33T instancep, we first amplify its sound-

ness gap to a constant using the celebrated method of Dinaneasurement Ofbijue), Which accepts with probability

[9]. Nextwe use a reduction due to Papadimitriou and Yan- if Ci;xe is satisfied, and rejects with constant probability if
nakakis [17], which makes every variable occur in exactly Cinn

e 1S UNSatisfied.
29 clauses, while weakening the soundness gap by only a gkt

the same). It follows that Arthur can perform a projective

constant factor.
al. [10], which converts from 3& to 2-OuT-OF-4-SAT,
while decreasing the soundness gap and increasing the nu
ber of clauses per variable by at most constant factors. Not
that the reduction of Dinur [9] incurs only a polylogarith-
mic blowup in the number of variables and clauses, while
the other two reductions incur a constant blowup. [

3.2 The Proper State Case

Suppose Arthur has applied Lemma 11, to obtain
a balanced 2-OT1-OF-4-SAT instance¢ with N
O (mpolylogm) variables, M O (mpolylogm)
clauses, and a constant soundnessgap 0. And now
suppose Merlin sends Arthutt@ N-qubit state of the form

1 N
:\/—N;(_

wherezy,...,zy € {0, 1}N is a claimed satisfying assign-
ment for¢. Call a state having the above form (for some
Booleanz;’s) aproperstate. Then we claim the following:

Lemma 12. Assuming|y) is proper, Arthur can check
whetherg is satisfiable with perfect completeness and con-
stant soundness.

Proof. To perform the check, Arthur uses the followiSgt-
isfiability Test First he partitions the clauses ofinto

a constant number of blockB,, ..., By, such that within
each block, no two clauses share a variable. Such a parti-
tion clearly exists by the assumption thais balanced, and
furthermore can be found efficiently (e.g., using a greedy
algorithm). Next he chooses one of the blodgs uni-
formly at random, and measurgs) in an orthonormal ba-
sis with one projector for each clause i). Because a
single block in the partition of clauses does not necessaril

Finally we use a gadget due to Khanna et

i

Furthermore, because the number of bloBkds a con-
stant, each of thé/ clauses ofp is checked in this test with
robabilityQ2 (1/M). And we know that, ifzq, ..., zy IS
ota satisfying assignment fgr, then a constant fraction of

&he clauses will be unsatisfied. Putting everything togethe

we find that if¢ is satisfiable, then the Satisfiability Test ac-
cepts|y) with probability1; while if ¢ is unsatisfiable, then
it rejects with constant probability. O

3.3 The Symmetric Case

Thus, the problem we need to solve is “merely” how to
force Merlin to send a proper state. For example, how can
Arthur prevent a cheating Merlin from concentrating the
amplitude of|i)) on some subset of basis states for which
the Satisfiability Test accepts, and omitting the otherdasi
states?

To solve this problem, Arthur is going to need more Mer-
lins. In particular, let us suppose there de= O(v/N)
unentangled Merlins, who send Arthlarg N-qubit states
lp1), ..., lpk) respectively. By convexity, we can assume
without loss of generality that these states are pure. For
the time being, we also assume that the states are identical;
that is, |p;) = |¢) for all i € [K]. Given these states,
Arthur performs one of the following two tests, each with
probability1/2:

Satisfiability Test: Arthur chooses any copy ¢f), and
performs the Satisfiability Test described in Section 3.2.

Uniformity Test: Arthur chooses a matchingt on [N]
uniformly at random. He then measures each coplypf

in an orthonormal basis, which contains the vectpis+

l7), i) — |7) for every edgé¢i, j) € M. If for some(i, j) €

M, the two outcomeg§) + |j) and |i) — |j) both occur
among theK” measurement outcomes, then Arthur rejects.
Otherwise he accepts.

It is clear that the above protocol has perfect complete-
ness. For ifp is satisfiable, then the Merlins can just send

cover all the variables, it is possible that the measurementK copies of a proper staté) corresponding to a satisfying

result will not correspond to any clausef, in which case
Arthur accepts.

However, suppose that the measuremenprobability 1.

assignment for. In that case, both tests will accept with
Our goal is to prove the following:



Theorem 13. The protocol has constant soundness (again,
assuming thép;)’s are all identical).

To prove Theorem 13, we need to show thap ifs un-
satisfiable, then one of the two tests rejects with constant
probability. There are two cases. First suppbsgis
e-close in trace distance to some proper state Then
provided we choose > 0 sufficiently small, Lemma 12,
combined with Proposition 7, already implies that the Sat-
isfiability Test rejects with constant probability. So ocask
reduces to proving the following:

Claim 14. Supposéy) is e-far in trace distance from any
proper statels)), for somes > 0. Then the Uniformity Test
rejects with some constant probabilitye) > 0.

In analyzing the Uniformity Test, we say that Arthur
finds a collisionif he obtains two measurement outcomes
of the form|:) & |;) for the same(i, j) pair, and that he
finds a disagreemeiiftone of the outcomes ig) + |j) and
the other igé) — |j). Of course, finding a disagreement is
what causes him to reject.

The first step, though, is to lower-bound the probabil-
ity that Arthur finds a collision. Lety) = a1 |1) +
-~ + any|N). Then for every copy ofy) and every
edge(i, j) € M, Arthur measures an outcome of the form
i) + |j) with probability|e;|* + |o;|*, and these outcomes
are independent from one copy to the next. We are in-
terested in the probability that, for sorig j) pair, Arthur
measures$i) & |j) more than once. But this is just the fa-
mous Birthday Paradox, withk’ = ©(v/N) “people” (the
copies ofl¢)) and N/2 “days” (the edges ioM). The one
twist is that the distribution over birthdays need not be uni
form. However, a result of Bloom and Knight [7] shows

The 3SAT Protocol

Given|p1),...,|¢x), Arthur performs one of the fo
lowing three tests, each with probability3.

—t

Satisfiability Test: Arthur applies the Satisfiability Teg
described in Section 3.2, t@1).

Symmetry Test: Arthur chooses an index ¢
{2,..., K} uniformly at random, performs a swap t
between|p,) and |¢k), and accepts if and only if th
swap test accepts.

pst

Uniformity Test: Arthur chooses a matchingyf on [N]
uniformly at random. He then measures epgl) in an
orthonormal basis, which contains the vectors

|6) +14) i) —15)
V2 V2
for every edgdi, j) € M. If for some(i, j) € M, the

didtli) [1)—14)
two outcomes NG and 7 both occur among th

K measurement outcomes, then Arthur rejects. Of
wise he accepts.

her-

Then the key fact is the following:

Theorem 15. Supposeéy) is e-far in trace distance from
any proper state. TheS§. is d-large with respect tdyp)
with probability at leastl /3 over the choice aM, for some
constants: andd depending on.

The proof of Theorem 15 is deferred to the full version.
Assuming Theorem 15, we can complete the proof of
Claim 14, and hence of Theorem 13. The idea is this:

that the Birthday Paradox occurs in the nonuniform case aswhen Arthur performs the Uniformity Test, simply discard

well.

Therefore Arthur finds a collision with constant proba-
bility. The hard partis to show that he findslisagreement
with constant probability. Here, of course, we have to use
the fact thaty) is e-far from proper.

For now, let us restrict attention to two copieg@f. For
each edgéi, j) € M, define the “disagreement probabil-
ity”
e+ oyl Jai — oy

2
2 (|l + s )
to be the probability that, conditioned on measuring two
outcomes of the formi) + |j), one of the outcomes is
|i) + |7) and the other one ig) — |j). Also, say an edge
(i,7) € M is c-unbalanced with respect i) if p;; > ¢,

and letS. € M be the set of-unbalanced edges. Say a
set of edges C M is d-large with respect tdyp) if

> (lel® +1as?) = d.

(i,5)€S

ij

all measurement outcomes that are not of the fgjr |5)

for some(i,j) € S.. AssumingsS, is d-large—which

it is with constant probability by Theorem 15—with over-
whelming probability that still leave®(v/N) “good” mea-
surement outcomes. Then by the Birthday Paradox, with
constant probability there will be a collision among these
good outcomes. And by the definition §f, any such col-
lision will also be a disagreement with constant probapilit
thereby causing Arthur to reject.

3.4 The General Case

Of course, in general the statgs,) , ..., |¢x) sent by
the K = ©(+v/N) Merlins need not be identical. To deal
with this, we now give our final protocol (see box), which
removes the symmetry restriction.

Itis clear that the protocol has perfect completeness, and
thus the problem is to show soundness: that ig) i un-
satisfiable, then one of the three tests rejects with constan
probability. There are three cases.



The first case is thd, ) is e-close to some proper state  structure of 3&T. The following simple theorem, proved
|).  Then as before, the Satisfiability Test will reject in the full version, shows that the answer is no—and that
with constant probability, provided we choassufficiently indeed, in the black-box setting, there is essentially we sa
small. ings at all over the classical witness size.

The second case is thai: |pr)| < 1 — 0 for at least ay n
fraction of indicesk € {2,..., K}. Inthat case it is clear Theorem 17. Let f : {9; 1}* — {0,1} be a black-box
that the Symmetry Test will reject with probability at least function. Then an@MA (k) protocol to convince Arthur
~5/2. that there exists an such. thatf (z) = 1, with soqndness

The third case is thaty: [¢r)| > 1 — d for more thana ~ 9@P€2 (1/ poly (n)), mustinvolve. — O (log n) qubits sent
1 — ~ fraction of indicest € {2,..., K}, but nevertheless ~ PY the Merlins.

|i01) is e-far from any proper state. In this case we need t0  pjrq notice that our protocol does not let Arthiimd
genera}llze t.he result_s of_the.prew.ous section, to sh_oyv that, satisfying assignment fas; it only convinces him that
the Uniformity Test will still reject with constant probaity such an assignment exists. If there were a way to mod-

(depﬁn(;ent_?, ?’r‘?”d'y)' iva deferred to the full ify our protocol to let Arthur recover an assignment, this
The detalls of this giqera ization are ekerre_ to td,e U would have a spectacular consequence for quantum algo-
version. Here, we will just mention one key ingredient, g Namely, by running Arthur’s verification procedure

which is to generalize the Birthday Paradox further, to the with the O (,/m)-qubit maximally mixed state in place of
case where the birthday distributions are not only nonuni- the witnesses, we could find a satisfying assignmentfor

form but can also differ from each other by small amounts. with probabilityz_o(ﬁ), with no help from any Merlins.

In particular we want the following: ) ) ~ . _
But this would yield 2°(v™) time guantum algorithm for

3SaT—and in particular, 20(v1)_time algorithm in the
“critical regime”m = O(n)!
Fourth, one of course wonders whether @if/m)-

1 qubit protocol is optimal. In Section 5, we will give evi-
Pr(3i,j: Xi = X;] > 9° dence thasomepolynomial dependence on is necessary.
In particular, it will follow from our results there that, -as
Fuming the Strong Amplification Conjecture, there are no
unentangled witnesses of siz&(!) for any NP-complete
problem, which can be verified by ar?(!)-time quantum
algorithm, unleslP € DTIME(27"").

Theorem 16. Let X;,..., Xx be independent random
variables ovel{N], and letD; be the distribution ovelX;.
Supposes > 6v/N and | D; — D;|| < 1/10 for all i, j.
Then

In the full version, we present a proof of Theorem 16
based on the second moment method. (Indeed, our proo
works even if theX;’s are only4-wise independent.)

The bottom line is that we get a protocol with perfect
completeness, constant soundness, @(\¢/m) unentan-
gled witnesses witld (log m) qubits each.

As a final remark, we can amplify the soundness errorto 4~ Additivity Implies Amplification
1/p (m) for any desired polynomial. To do so, we sim-

ply multiply the number of Merlins by a furthgrolylog m In this section we show how to amplify afgMA (k)
factor, and repeat the whole protogellylog m times. protocol to exponentially small error, and to simuldte

provers with two, assuming the Additivity Conjecture.
3.5 General Observations

4.1 Entanglement of Formation
We conclude this subsection by making four general ob-
servations about Theorem 1. The analysis of our amplification protocol will involve
~ First, we strongly believe that our protocol can be ghqying that Arthur cannot create “too much” entanglement
improved to one involving two provers, one of whom q,ing his verification procedure. To make this precise,
sends O (logm) qubits and the other of whom sends e need some way to measure the entanglement of mixed
O(v/mpolylogm) qubits. Specifically, if all butone ofthe  gi4te5 Fortunately, this is one of the most studied topics

witnesses in our protocol are entangled with one another,;, quantum information theory. One particular entangle-
in a way that breaks the protocol's soundness, we believe,ont measure—thentanglement of formatioR» defined
Arthur should be able to use the remaining witness to detectby Bennett et al. [5]—will be particularly useful for us.

this. This is a problem we leave to future work.

Second, our protocol made essential use of the PCP TheDefinition 18. Given a bipartite statep?, the en-
orem, in the strong version proved by Dinur [9]. One tanglement of formationEr(pA%) is the minimum
might wonder whether Theorem 1 could also be proved inaof >, p;E (|¢;)) over all decompositionsp?? =
“black-box” fashion, without exploiting anything aboutth " p; [¢;) (|, whereE (|¢;)) is the entanglement entropy



of |¢;) (see Nielsen and Chuang [16] for a more detailed
definition).

Intuitively, Er measures the minimum number of entan-
gled pair% (]00) + |11)) that are needed to preparé®.

Almost by definition,E satisfiesconvexity for all p42
ando4?,

Er (apAB + ﬁUAB) < aFfr (pAB) + BERr (UAB) .

Itis also easy to see thaty (p*”) = 0 if and only if p*?

is separable. In this paper, we will need two further prop-
erties of Er. The first property is what we called “faithful-
ness” in Section 1.4.

Lemma 19. Supposerr(pAB) < e. Then there exists a
separable state that ig/2s-close top? in trace distance.

The second property is thalz cannot increase by much
by acting on few qubits.

Lemma 20. Suppose“? is obtained fromp“4Z by acting
on at most: qubits from each register. Thefy (07) <

Er (p*P) + 2n.

Proof. Let 748 be p”P tensored witt2n EPR pairs. Then
clearly Ep (r48) < Ep (p*?) + 2n. Furthermore, it is
not hard to see that*Z can be obtained from“4? using
local operations and classical communication, as follows.
First teleportn qubits from theA register to theB register

(usingn EPR pairs), then apply the requisite superoperator,

then teleport: qubits from theB register back to thet
register (using another EPR pairs). Henc&pr (o45) <
Ep (748), and the lemma follows. O

Given an entanglement measure we call E superad-
ditiveif for any statep4 25" on four registers,

E(pAA’,BB/) >F (pAB) -i-E(pA/B/).

As mentioned earlier, the analysis of AAMA (k) amplifi-
cation protocol will rely on the following central conjecéu
from quantum information theory:

Conjecture 21 (Additivity Conjecture) Er is superaddi-
tive.

Shor [18] showed that Conjecture 21 is equivalent to
several other additivity conjectures in quantum informati
theory, including the additivity of the Holevo capacity for
guantum channels.

4.2 The Two-Prover Case

We now show that the Additivity Conjecture implies the
QMA (2) Amplification Conjecture.

Theorem 22. Assume the Additivity Conjecture. Then
QMA (2,a,b) = QMA (2,277 1 —27P() for all b —
a = Q(1/poly (n)) and all polynomialg.

Proof. Let L be a language iQMA (2, a, b); then we need
to showL € QMA (2,277 1 —2-7(M)  Let Q be
Arthur’s verification algorithm in the origind@®MA (2, a, b)
protocol, and let the original Merlins’ messages haye)
qubits each for some polynomial Also, letT (n) be a
number of repetitions of) that suffices to amplify it to er-
ror probability2—7("), assuming no entanglement among
Merliny’s or Merling’s registers. By a standard Chernoff
bound, we can také& (n) := C - p(n) / (b — a)” for some
constantC.

Our amplified protocol is the following.

(1) Arthur asks Merlinn and Merling to supply ¢ (n)
copies each of their respective witnesses, where
q(n) 1287 (n)r (n) / (b—a)*.  Denote by
pArAzAan and pPrBzBae the g (n) r (n)-qubit
states that Arthur actually receives.

(2) Forallt :=1toT (n), Arthur chooses registers; and
By, uniformly and independently from among those
not already chosen, and ru@son the state?s B+,

(3) Arthur accepts if at leastf2T (n) of the T' (n) invo-
cations of( accepted, and rejects otherwise.

We need to show two things about this protocol, com-
pleteness and soundness.

Completenessif the Merlins are honest, they can sim-
ply send [¢4)®?™ and |5)®%™ respectively, where
[Ya) @ |[¢g) is a witness that) accepts with probability
at leastb. Then by assumption, Arthur will accept with
probability at least — 2—7("),

Soundness:As usual, this is the interesting part.
central claim is the following:

At every one of theT (n) iterations, Arthur can
be considered to be running) on a bipartite state
pAB that is e-close to a separable state, whete :=
VBT ()7 (n) /g (n).

Let us first see why soundness follows from the above
claim. Suppose ¢ L. Then( accepts every separable
state with probability at mosi. By Proposition 7, then,

Q also accepts every state thatiglose to separable with
probability at most: + ¢. But

8T (n)r(n) b
TV Tdm =

So every invocation of) accepts with probability at most
a+ bjT“. Therefore, provided we choose a sufficiently large
constantC' when definingT" (n), Arthur will accept with
probability at mos2 (") by a Chernoff bound.

Our

—a
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We now prove the claim.

tanglement of formation between Merliis registers and
Merling’s registers can be at maat (n) after the first iter-
ation, at mostir (n) after the second iteration, and so on.

Hence

By Lemma 20, the en- Proof. We will show that for all k and all 6 =

Ep (p™ 42 Au B1B2-Bui)) < 9T (n) ()

throughout. Also, lef54 andSg be the sets ofi-registers
and B-registers respectively that Arthur has not yet chosen.

Then|Sa| = |S5| = ¢ (n) — T (n).

tivity Conjecture, we therefore have

Z Ep (PAjBk)

AjGSA,BkESB

< (4 (n) = T (n)) B (o A2 Aac PiBa Bt

<2T (n)r(n)(g(n) =T (n)).

So if we define

1
O = —VF——F————
1SalSB|

then the convexity of/ implies that

1

Fr(o) < ————
r(9) < 15,7783

2T (n)r(n)
“q(n)—T(n)
< 4T (n) 7 (n)
- qn

)

>

>

using the fact thaf” (n) < ¢(n) /2. By Lemma 19, this
means that is /87 (n)r (n) /q (n)-close to a separable

state, as claimed.

4.3 The k-Prover Case

Recall that Kobayashi et al. [12] showed that amplifica-

Assuming the Addi-

phiBr,

AjGSA,BkGSB

Ep (PAjBk)

AjESA,BkESB

O

tion of QMA (k) protocols impliesQMA (k) = QMA (2)

forall & > 2. Now that we have shown that “additivity
implies amplification,” one might think it would follow that

additivity implies collapse oQMA (k) to QMA (2).

fortunately, the result of Kobayashi et al. requires angaii
tion for all QMA (k), while we have only shown that addi-
tivity implies amplification forQMA (2). In this section we
solve the problem by strengthening Kobayashi et al.’s tesul
In particular, we will show thaany QMA (k) protocol with
constant soundness can be simulated IG\A (2) proto-
col with soundnes® (1/k). Combined with Theorem 22,

Un-

this will then imply thatQMA (k) = QMA (2) forall k > 2

assuming the Additivity Conjecture.

Theorem 23.
QMA (k, a,b) C QMA (2, 1—

(b—a)?

8k

,1—2*”).

Q(1/poly (n)),

2
QMA (k,1—4,1—27") C QMA (2,1—§—k,1—2">.
This will suffice to prove the theorem, since Lemma 6 im-
plies that for allk and alla,b, we haveQMA (k,a,b) C
QMA (k,1—(b—a),1—27").

Our protocol is as follows. Merlip and Merling
sendk-partite stateg1 42 4% andpB1 B2 Br respectively.
Given these states, Arthur performs one of the following
two tests, each with probabilitly/2:

(1) Choose € [k] uniformly at random, perform a swap
test betweep: andp®:, and accept if and only if the
swap test accepts.

(2) Simulate th&QMA (k,1 — 4,1 — 2—™) protocol, using
pA142 Ak in place of thek witness registers.

We first show completeness of the above protocol. If the
Merlins are honest, they can both simply séndnentan-
gled accepting witnesses for tiGEMA (k) protocol being
simulated. In that case step (1) accepts with probadhility
while step (2) accepts with probability at ledast 2—".

We now show soundness. Suppose any set of unentan-
gled witnesses causes tR/1A (k) protocol to reject with
probability at least. Then we need to show that any pair
of witnessegp41 42 Ar andpB1 B2 Br causes th@MA (2)
protocol to reject with probability at Ieagfg. We consider
two cases.

First suppose”1424x is e-close in trace distance to
some separable pure stéfe). Then by Proposition 7, step
(2) rejects with probability at least— <.

Next supposg“142+4x is -far in trace distance from
any separable pure state. Then by Proposition 9, we have

P |pArd2- 4k Ty < 1 — £2 for all separable pure states
|¥). So taking the contrapositive of Proposition 8, for all
pure state&)1) , ..., |vx) we have

(1= (ilp™[i)) > €.

k
=1

3

Hence step (1) rejects with probability greater tr‘énby
Proposition 10.
Settinge = 4/2, we thus find that the protocol rejects

with probability at Ieas%z. O

Combining Theorem 23 with Theorem 22 now yields the
following:

Corollary 24. The Additivity Conjecture implies the Col-
lapse Conjecture, thaMA (k) = QMA (2) for all & > 2.



4.4 Limited Entanglement

Let us mention another interesting result that can be ob-
De-

tained by the same techniques as in Theorem 22.
fine the complexity clasQMA (2; k) to be the same as
QMA (2), except that now, instead of being completely un-
entangled, the two Merlins are allowed to shatePR pairs

% (|00) + |11)). Assuming the Additivity Conjecture, we
show that limited entanglement gives the Merlins no more
power to cheat than no entanglement at all:

Theorem 25. The Additivity Conjecture implies
QMA (2) € QMA (2; h (n)) for every fixed polynomiai.

Proof Sketch.To simulate a QMA(2) protocol in
QMA (2;h (n)), we use the amplified protocol ex-

know. In this section, we will show the nontrivial upper
boundQMA (k) C PSPACE, assuming the following con-
jecture.

Conjecture 28 (Strong Amplification) Every language in
QMA (2) admits a protocol with completeneks- 2" and
soundnes8~2("), wheres (n) is the number of qubits sent
by Merling.

Let us say a few words about why Conjecture 28 might
be true. In studying probabilistic complexity classes, one
typically assumes amplification theorems will hold unless
there is some clear obstruction to them. In the case of
QMA (2) amplification where both of the witnesses remain
small, there really is such an obstruction: namely, it valt f
low from results in this section that such in-place amplifica

actly as in Theorem 22, except that instead of asking thetion would implyNP C DTIME(nPo!5™). - On the other

Merlins for O (T (n)r (n)) witnesses each, Arthur asks
them for O (T (n)r (n) + h(n)) witnesses.  The only

hand, we know of no similar obstruction in the case where
one witness remains small, but the other could grow by a

observation we need to make is that the proof of TheoremPOlynomial factor depending on the desired error bound.

22 still goes through if, in addition to the entanglement tha
Arthur creates in the course of his verification, theral&
some fixed amount of entanglement to start. O

It is an interesting question whether the converse holds:

that is, whetheQMA (2; h (n)) C QMA (2).
4.5 Symmetric QMA (k)

Define the complexity classymQMA (k, a, b) the same
way asQMA (&, a, b), except that now we are promised that

the k witnesses are all identical (in both the completeness
We saw in Section 3.3 that sym

and soundness cases).
metricQMA (k) protocols are sometimes easier to analyze
than non-symmetric ones. However, in the full version
we show that assuming the Additivity Conjectu@VIA (k)
andSymQMA (k) are actually equivalent.

The first step is to show they are (unconditionally) equiv-
alent up to a loss in error bounds.

Lemma 26. QMA (k,a,b) < SymQMA (k,a,b)
QMA (k,l— (b=a)? 1—2—n).

c
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Combining Lemma 26 with Theorem 23, we immedi-
ately get the following.

Theorem 27. The Additivity Conjecture
SymQMA (k) = QMA (k) = QMA (2) for all k& > 2.

implies

5 Evidence ThatQMA (k) C PSPACE

It is obvious thatQMA (k) € NEXP: simply guess
exponentially-long classical descriptions of theuantum
proofs. Yet this trivial upper bound is still the best we

We now turn to proving that Conjecture 28 implies
QMA (k) C PSPACE for all k. We know from Kobayashi
et al. [12] that even the ordinary amplification conjecture
implies QVMA (k) = QMA(2) for all k& > 2. There-
fore, our task reduces to showing that Conjecture 28 implies
QMA (2) C PSPACE.

We will need the following lemma of Aaronson [1].

Lemma 29 ([1]). Let M be a2-outcome POVM on a bi-
partite Hilbert spacé{ 4 @ Hp. Also, let{|1),...,|d)} be
any orthonormal basis fot{z, and for allj € {1,...,d}

let M; be the POVM oriH 4 induced by applying/ to
Ha ® |7). Suppose that there exists a product state o

iIn H4 ® Hp such that)M yields outcomd with proba-
bility at leastp > 0 when applied tq ® 0. Then, if we
apply M, , ... M;, in sequence tp, wherej, ... jr are
drawn uniformly and independently frofr, ..., d}, and

T > d/p?, the probability that at least one of these mea-

2
surements yields outcones at Ieast(p — 3 /d/T) .

Let QMApspace be the same a@8MA, except that Arthur
can run in quantum polynomial space.

-

Lemma 30. Conjecture 28
QMApspacE-

Proof. Let L be a language iQMA (2). By Conjecture
28, there is a protocol fok. in which the completeness and
soundness bounds ate— 2= and2-"5("), respectively,
and Merling’s message is ovei(n) qubits. LetM be the
two-outcome POVM induced by Arthur’s verification pro-
cedure. Asin Lemma 29, Arthur can receive just the mes-
sage of Merlin,, guess a classical basis state in place of
Merling’s message, apply/, repeat this process times,
and finally take the OR of the outcomes as his answer.

implies QMA (2)



More precisely, we sef := 25(") andT := 225(")—2,
Then if z € L, Arthur accepts with probability at least
(1—2""—/d/T)* > 2/3 by Lemma 29. Ifz ¢ L,
on the other hand, then in each step Arthur’s probability of
acceptance is at mogt (™). So by the union bound, his
total probability of acceptance after taking the OR is atimos

T2725(") < 1/3. O
Lemma 31. QMAPSPACE = PSPACE.
Proof Sketch.Let L. be a language iQMApspace. Then

L has a protocol in which Arthur receives a witness with
p(n) qubits (for some polynomiap), and then decides
whether to accept or reject it in quantum polynomial space.
Hence there exists a positive Hermitian matrx of size
2p(n) x 2r(") such that ifz € L then the largest eigen-
value of A is at least2/3, while if x ¢ L then the largest
eigenvalue is at most/3. FurthermoreA is equal to the
product of exponentially many efficiently-computable ma-
trices. So computingr(A2P(™) is just an exponential-size
linear algebra problem, which can be solvedPiBPACE.

On the other handr(A2P(")) depends on the largest eigen-
value of A, and is greater thaf2/3)?(") if z € L, and
less than2r(™) /32P(") if oo ¢ L. Hence we can de-
cide L in PSPACE, andQMApspace € PSPACE. Since
PSPACE C QMApspace is obvious we are done. O

Combining Lemma 30 with Lemma 31 now yields the
main result.

Theorem 32. Conjecture 28 implieQMA (2) C PSPACE.

Or if we “scale down by an exponential,” Conjecture 28
implies that

QMA (2) € DSPACE(polylogn) C DTIME(nPoos™)

where QMA,,, (2) is the same afQMA (2) except that
the witnesses have size (logn) and are verified in time
polylogn. Assuming Conjecture 28, this means in partic-
ular that the3-CoLORING protocol of Blier and Tapp [6]
cannot be amplified to constant soundness, und3sC
DTIME(nPolylogn),

Theorem 32 can also be seen as giving a
guasipolynomial-time approximation algorithm for an
NP-hard optimization problem namely, the problem of
finding the separable staté4) |¢5) that maximizes the
expectation value of a given observable. (Of course,
such an algorithm would require a strong amplification

Theorem 33. Let M be a measurement on a bipartite
Hilbert spaceH 4 ® Hp, and letp (M) be the maximum,
over all separable statels)4) | 5), of the probability that
M acceptda) [1p). Also, letN = (dimH ) (dim Hp)
ande > 0. Then assuming Conjecture 28, there exists
a deterministic algorithm that take®/ as input, approxi-

matesp (M) to within additive errore, and runs in time
Npolylog N/ poly(e) .

6 Nonexistence of Perfect Disentanglers

Definition 34. Let H and K be two finite-dimensional
Hilbert spaces. Then given a superoperafor: H —
K ® K, we sayd is an (e, §)-disentangler if

(i) ®(p)ise-close to a separable state for everyand

(i) for every separable state, there exists @ such that
® (p) is d-close too.

As pointed out in Section 1.6, if for sufficiently
small constants, § there exists afie, ¢)-disentangler with
log dim H = O (poly (log dim K))—and if, moreover, that
disentangler can be implemented in quantum polynomial
time—thenQMA (2) = QMA.

Watrous (personal communication) has proposed the fol-
lowing fundamental conjecture.

Conjecture 35 (Watrous) For all constants,§ < 1, any
(¢, 6)-disentangler requiredim H = 2dimX),

A proof of Conjecture 35 would be an important piece
of formal evidence thaQMA (2) # QMA, and might even
lead to a “quantum oracle separation” (as defined by Aaron-
son and Kuperberg [2]) between the two classes.

In the full version we show that, at least in the case
0 = 0, no disentangler exists @enyfinite dimension. This
result would be false if we let eitheror 6 be nonzero.

Theorem 36. Let® : H — K ® K be any superoperator
whose image is the set of separable states. TheariC > 2
impliesdim H = oc.

7 Open Problems

7.1 The Power of Multiple Merlins

The power 0fQMA (2) and related classes is still poorly
understood. Can we find a “classical” problem (for exam-

procedure as a subroutine.) We now state the connectiomyje, a group-theoretic problem like those of Watrous [20])

more precisely.

9We know that this problem i8lP-hard (and indeed, hard to approxi-
mate to within &2 (1/N) additive term) by the result of Blier and Tapp

6.

that is inQMA (2) but not obviously irQMA? Can we find
a naturaQMA (k)-complete promise problem?

Regarding our 38t protocol, can we reduce the num-
ber of proversto two? Can we reduce the number of qubits



below O (y/n), or alternatively, give evidence against this Acknowledgments
possibility? For example, can we show ti§at\/n) wit-
nesses are information-theoretically required for the-Uni
formity Test? Finally, can we show unconditionally that
QMA (2) C EXP?

A long-shot possibility would be to give a quantum al-
gorithm tofind the unentangled witnesses in thea3$ro-

We thank Norbert Schuch for pointing out that Theorem
22 can be based on the Additivity Conjecture rather than
a conjecture about squashed entanglement; Madhu Sudan
for pointers on the PCP Theorem; John Watrous for posing
Conjecture 35; an anonymous reviewer for greatly simpli-

tocol, in as much time as it would take were the witnessesfying the proof of Lemma 20 and other help; and Patrick

entangled. This would yield 20(v7) time quantum algo-
rithm for 3GaT.

7.2 Amplification and Other Complexity
Issues
[1]

In definingQMA (k), does it matter if the amplitudes are
reals or complex numbers? FBQP andQMA, it is not
hard to show that this distinction is irrelevant. Interest-
ingly, though, the usual equivalence proofs break down for
QMA (k).

Can we show directly (i.e., without proving the full Ad-
ditivity Conjecture) thatQMA (k) = QMA (2), or that
QMA (2) protocols can be amplified?

Can we prove Conjecture 35: that there is (@d)-
disentangler withpoly (n) qubits ands,é > 0? Can we
at least rule out such a disentangler when either 0 or
0 > 0? Related to that, can we give a quantum oracle
U (as defined by Aaronson and Kuperberg [2]) such that
QMAY £ QMAY (2)? Can we at least show that Conjec-
ture 35 would imply the existence of such an oracle?

(2]

(3]
(4]

(5]

(6]
(7]
(8]

El

7.3 QMA (k) With Unentangled Measure- [10]
ments
[11]
Recall that our 38T protocol involved three tests: Satis- [12]
fiability, Symmetry, and Uniformity. Suppose we are will-
ing to settle for completeness— ¢ rather tharl, and sup- 13]

pose we modify the Uniformity Test so that Arthur rejects
on not seeing enough collisions. Then can the Symmetry
Test be omitted? If so, then the resulting protocol would [14]
have the extremely interesting property of making no entan-
gled measurements, yet nevertheless depending cruanally o [15]
the absence of entanglement among the witnesses. [16]
More generally, defineBellQMA (k) to be the sub-
class of QMA (k) in which Arthur is restricted to mak-
ing a separate measurement on each witdess with
no entanglement between the measurements. (The namgs]
arises because Arthur is essentially restricted to perorm
ing a “Bell experiment.”) What is the power of this class? [19]
DoesBellQMA (k) = QMA (k)? DoesBellQMA (k) =
BellQMA (2) for all £ > 2? Note that it is trivial to show
amplification for BellQMA (k).  This is because, with- [21]
out entangling measurements, the entanglement-swapping
problem described in Section 1.4 can never arise.

[17]

[20]

Hayden, Ryan O’Donnell, Alain Tapp, and Andreas Winter
for helpful discussions.
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