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Abstract

Given a Boolean function f , we study two natural generalizations of the certificate complexity C (f):
the randomized certificate complexity RC(f) and the quantum certificate complexity QC(f). Using
Ambainis’ adversary method, we exactly characterize QC (f) as the square root of RC(f). We then
use this result to prove the new relation R0 (f) = O

(
Q

2
(f)2 Q

0
(f) log n

)
for total f , where R0, Q

2
,

and Q
0

are zero-error randomized, bounded-error quantum, and zero-error quantum query complexities
respectively. Finally we give asymptotic gaps between the measures, including a total f for which C(f) is
superquadratic in QC (f), and a symmetric partial f for which QC (f) = O (1) yet Q

2
(f) = Ω (n/ log n).

Most of what is known about the power of quantum computing can be cast in the query or decision-tree
model [1, 3, 4, 7, 6, 9, 10, 11, 20, 25, 24]. Here one counts only the number of queries to the input, not the
number of computational steps. The appeal of this model lies in its extreme simplicity—in contrast to (say)
the Turing machine model, one feels the query model ought to be ‘completely understandable.’ In spite of
this, open problems abound.

Let f : S → {0, 1} be a Boolean function with S ⊆ {0, 1}n
, that takes input Y = y1 . . . yn. Then the

deterministic query complexity D (f) is the minimum number of queries to the yi’s needed to evaluate f , if
Y is chosen adversarially and if queries can be adaptive (that is, can depend on the outcomes of previous
queries). Also, the bounded-error randomized query complexity, R2 (f), is the minimum expected number
of queries needed by a randomized algorithm that, for each Y , outputs f (Y ) with probability at least 2/3.
Here the ‘2’ refers to two-sided error; if instead we require f (Y ) to be output with probability 1 for every
Y , we obtain R0 (f), or zero-error randomized query complexity.

Analogously, Q2 (f) is the minimum number of queries needed by a quantum algorithm that outputs
f (Y ) with probability at least 2/3 for all Y . Also, let Q0 (f) be the minimum number of queries needed
by a quantum algorithm that outputs f (Y ) with probability at least 1/2, and otherwise outputs “I don’t
know” (it can never output an incorrect value). If we require the algorithm to succeed with probability 1
after a fixed number of queries, we obtain QE (f), or exact quantum query complexity. See Buhrman and
de Wolf [10] for a more detailed survey of these measures.

It is immediate that
Q 2 (f) ≤ R 2 (f) ≤ R 0 (f) ≤ D(f) ≤ n,

that QE (f) ≤ D (f), and that Q0 (f) ≤ R0 (f).1 If f is partial (i.e. S 6= {0, 1}n), then Q2 (f) can be
superpolynomially smaller than R2 (f); this is what makes Shor’s period-finding algorithm [21] possible.
For total f , by contrast, the largest known gap even between D (f) and Q2 (f) is quadratic, and is achieved
by the OR function on n bits: D (OR) = n (indeed R2 (OR) = Ω (n)), whereas Q2 (OR) = Θ (

√
n) because of

Grover’s search algorithm [11]. Furthermore, for total f , Beals et al. [6] showed that D (f) = O
(
Q2 (f)

6
)
,

while de Wolf [24] showed that D (f) = O
(
Q2 (f)2 Q0 (f)2

)
.

The result of Beals et al. [6] relies on two intermediate complexity measures, the certificate complexity
C (f) and block sensitivity bs (f), which are defined as follows.

∗Institute for Advanced Study, Princeton, NJ 08540 USA. Email: aaronson@ias.edu. This work was done while the author
was a graduate student at UC Berkeley, supported by an NSF Graduate Fellowship and by ARO grant DAAD19-03-1-0082.

1For Q0 (f) ≤ R0 (f): by Markov’s inequality, any randomized algorithm that succeeds in finding a 0- or 1-certificate after
an expected number of queries T , has found such a certificate with probability at least 1/2 after 2T queries. So it suffices for
the quantum algorithm to simulate the first 2T queries of the randomized algorithm.
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Deterministic Randomized Quantum
Query complexity D (f) R2 (f) Q2 (f)
Certificate complexity C (f) RC (f) QC (f)

Table 1: Query complexity measures and their certificate complexity analogues.

Definition 1 A certificate for an input X is a set S ⊆ {1, . . . , n} such that for all inputs Y of f , if yi = xi

for all i ∈ S then f (Y ) = f (X). Then CX (f) is the minimum size of a certificate for X, and C (f) is the
maximum of CX (f) over all X.

Definition 2 A sensitive block on input X is a set B ⊆ {1, . . . , n} such that f
(
X(B)

)
6= f (X), where X(B)

is obtained from X by flipping xi for each i ∈ B. Then bsX (f) is the maximum number of disjoint sensitive
blocks on X, and bs (f) is the maximum of bsX (f) over all X.

Clearly bs (f) ≤ C(f) ≤ D(f). For total f , these measures are all polynomially related: Nisan [14]

showed that C (f) ≤ bs (f)
2
, while Beals et al. [6] showed that D (f) ≤ C (f) bs (f). Combining these results

with bs (f) = O
(
Q2 (f)

2
)

(from the optimality of Grover’s algorithm), one obtains D (f) = O
(
Q2 (f)

6
)
.

1 Summary of Results

We investigate RC (f) and QC(f), the bounded-error randomized and quantum generalizations of the cer-
tificate complexity C (f) (see Table 8.1). My motivation is that, just as C (f) was used to show a polynomial
relation between D (f) and Q2 (f), so RC (f) and QC(f) can lead to new relations among fundamental query
complexity measures.

What the certificate complexity C (f) measures is the number of queries used to verify a certificate, not
the number of bits used to communicate it. Thus, if we want to generalize C (f), we should assume the
latter is unbounded. A consequence is that without loss of generality, a certificate is just a claimed value
X for the input Y 2—since any additional information that a prover might provide, the verifier can compute
for itself. The verifier’s job is to check that f (Y ) = f (X). With this in mind we define RC(f) as follows.

Definition 3 A randomized verifier for input X is a randomized algorithm that, on input Y to f , (i) accepts
with probability 1 if Y = X, and (ii) rejects with probability at least 1/2 if f (Y ) 6= f (X). (If Y 6= X but
f (Y ) = f (X), the acceptance probability can be arbitrary.) Then RCX (f) is the minimum expected number
of queries used by a randomized verifier for X, and RC(f) is the maximum of RCX (f) over all X.

We define QC(f) analogously, with quantum instead of randomized algorithms. The following justifies
the definition (the RC (f) part was originally shown by Raz et al. [17]).

Theorem 4 Making the error probability two-sided rather than one-sided changes RC(f) and QC(f) by at
most a constant factor.

Proof. For RC(f), let rY
V be the event that verifier V rejects on input Y , and let dY

V be the event that V
encounters a disagreement with X on Y . We may assume Pr

[
rY
V | dY

V

]
= 1. Suppose that Pr

[
rY
V

]
≤ ε0

if Y = X and Pr
[
rY
V

]
≥ 1 − ε1 if f (Y ) 6= f (X). We wish to lower-bound Pr

[
dY

V

]
for all Y such that

f (Y ) 6= f (X). Observe that any time V rejects on Y without having encountered a disagreement with X ,
the same sequence of coin tosses would also cause it to reject on X . So

Pr
[
rY
V ∧ qdY

V

]
≤ Pr

[
rX
V ∧ qdX

V

]

= Pr
[
rX
V

]

≤ ε0,

2Throughout this chapter, I use Y to denote the ‘actual’ input being queried, and X to denote the ‘claimed’ input.
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where the second line follows since Pr
[
qdX

V

]
= 1. Hence for f (Y ) 6= f (X),

Pr
[
dY

V

]
≥ Pr

[
rY
V

]
− Pr

[
rY
V ∧ qdY

V

]

≥ 1 − ε1 − ε0.

Now let V ∗ be identical to V except that, whenever V rejects despite having found no disagreement with
X , V ∗ accepts. Clearly Pr

[
rX
V ∗

]
= 0. Also, in the case f (Y ) 6= f (X),

Pr
[
rY
V ∗

]
= Pr

[
dY

V

]

≥ 1 − ε1 − ε0.

The result follows since O (1) repetitions suffice to boost any constant error probability to any other constant
error probability.

For QC (f), assume without loss of generality that all amplitudes are real. Suppose the verifier’s final
state given input Y is ∑

z

αY
z |z〉

(
βY

z |0〉 + γY
z |1〉

)

where |0〉 is the reject state, |1〉 is the accept state, and
(
βY

z

)2
+
(
γY

z

)2
= 1 for all z. Suppose also that

AX ≥ 1 − ε0 and that AY ≤ ε1 whenever f (Y ) 6= f (X), where AY =
∑

z

(
αY

z γY
z

)2
is the probability of

accepting. Then the verifier can make AX = 1 by performing the conditional rotation

(
γX

z −βX
z

βX
z γX

z

)

on the second register prior to measurement. In the case f (Y ) 6= f (X), this produces

AY =
∑

z

(
αY

z

)2 (
βX

z βY
z + γX

z γY
z

)2

≤ 2
∑

z

(
αY

z

)2 ((
βX

z

)2
+
(
γY

z

)2)

≤ 2 (ε0 + ε1) .

It is immediate that QC (f) ≤ RC(f) ≤ C (f), that QC(f) = O (Q2 (f)), and that RC (f) = O (R2 (f)).
We also have RC (f) = Ω (bs (f)), since a randomized verifier for X must query each sensitive block on
X with 1/2 probability. This suggests viewing RC (f) as an ‘alloy’ of block sensitivity and certificate
complexity, an interpretation for which Section 5 gives some justification.

The results of this paper are as follows. In Section 3 we show that QC (f) = Θ
(√

RC (f)
)

for all f

(partial or total), precisely characterizing quantum certificate complexity in terms of randomized certificate
complexity. To do this, we first give a nonadaptive characterization of RC (f), and then apply the adversary
method of Ambainis [4] to lower-bound QC(f) in terms of this characterization. Then, in Section 4, we
extend results on polynomials due to de Wolf [24] and to Nisan and Smolensky (as described by Buhrman and
de Wolf [10]), to show that R0 (f) = O (RC (f) ndeg (f) log n) for all total f , where ndeg (f) is the minimum
degree of a polynomial p such that p (X) 6= 0 if and only if f (X) 6= 0. Combining the results of Sections 3

and 4 leads to a new lower bound on quantum query complexity: that R0 (f) = O
(
Q2 (f)

2
Q0 (f) log n

)
for

all total f . To our knowledge, this is the first quantum lower bound to use both the adversary method and
the polynomial method at different points in the argument.

Finally, in Section 5, we exhibit asymptotic gaps between RC (f) and other query complexity measures,

including a total f for which C (f) = Θ
(
QC(f)

2.205
)
, and a symmetric partial f for which QC(f) = O (1)

yet Q2 (f) = Ω (n/ logn). We conclude in Section 6 with some open problems.
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2 Related Work

Raz et al. [17] studied a query complexity measure they called ma (f), for Merlin-Arthur. In our notation,
ma (f) equals the maximum of RCX (f) over all X with f (X) = 1. Raz et al. observed that ma (f) = ip (f),
where ip (f) is the number of queries needed given arbitrarily many rounds of interaction with a prover. They
also used error-correcting codes to construct a total f for which ma (f) = O (1) but C (f) = Ω (n). This
has similarities to the construction, in Section 5.2, of a symmetric partial f for which QC(f) = O (1) but
Q2 (f) = Ω (n/ logn).

Very recently Midrijanis [13] has shown that D (f) = O
(
Q2 (f)

2
Q0 (f)

)
for all total f . This improves

on our R0 (f) = O
(
Q2 (f)2 Q0 (f) log n

)
result in two ways: first, the simulation is deterministic instead of

randomized, and second, there is no log n factor. By modifying our simulation procedure in a simple but
critical respect, Midrijanis was able to use the ordinary block sensitivity bs (f) instead of RC (f).

Watrous [22] has investigated a different notion of “quantum certificate complexity”—whether certificates
that are quantum states can be superpolynomially smaller than any classical certificate. Raz and Shpilka [16]
have further considered quantum query complexity and quantum communication complexity in the QMA

(Quantum Merlin Arthur) model. Also, de Wolf [25] has investigated ‘nondeterministic quantum query
complexity’ in the alternate sense of algorithms that accept with zero probability when f (Y ) = 0, and with
positive probability when f (Y ) = 1.

3 Characterization of Quantum Certificate Complexity

We wish to show that QC(f) = Θ
(√

RC (f)
)
, precisely characterizing quantum certificate complexity in

terms of randomized certificate complexity. The first step is to give a simpler characterization of RC (f).

Lemma 5 Call a randomized verifier for X nonadaptive if, on input Y , it queries each yi with independent
probability λi, and rejects if and only if it encounters a disagreement with X. (Thus, we identify such a
verifier with the vector (λ1, . . . , λn).) Let RCX

na (f) be the minimum of λ1 + · · · + λn over all nonadaptive
verifiers for X. Then RCX

na (f) = Θ
(
RCX (f)

)
.

Proof. Clearly RCX
na (f) = Ω

(
RCX (f)

)
. For the upper bound, we can assume that a randomized verifier

rejects immediately on finding a disagreement with X , and accepts if it finds no disagreement. Let Y =
{Y : f (Y ) 6= f (X)}. Let V be an optimal randomized verifier, and let pt (Y ) be the probability that V ,
when given input Y ∈ Y, finds a disagreement with X on the tth query. By Markov’s inequality, V must
have found a disagreement with probability at least 1/2 after T =

⌈
2 RCX (f)

⌉
queries. So by the union

bound

p1 (Y ) + · · · + pT (Y ) ≥ 1

2

for each Y ∈ Y. Suppose we choose t ∈ {1, . . . , T} uniformly at random and simulate the tth query,
pretending that queries 1, . . . , t − 1 have already been made and have returned agreement with X . Then
we must find a disagreement with probability at least 1/2T . By repeating this procedure 4T times, we can
boost the probability to 1−e−2. For i ∈ {1, . . . , n}, let λi be the probability that yi is queried at least once.
Then λ1 + · · · + λn ≤ 4T , whereas for each Y ∈ Y,

∑

i:yi 6=xi

λi ≥ 1 − e−2.

It follows that, if each yi is queried with independent probability λi, then the probability that at least one
yi disagrees with X is at least

1 −
∏

i:yi 6=xi

(1 − λi) ≥ 1 −
(

1 − 1 − e−2

n

)n

> 0.57.
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To obtain a lower bound on QC (f), we will use the following simple reformulation of Ambainis’s quantum
adversary method [4].

Theorem 6 (Ambainis) Given a function f : S → {0, 1} with S ⊆ {0, 1}n
, let β be a function from S

to nonnegative reals, and let R : S2 → {0, 1} be a relation such that R (X, Y ) = R (Y, X) for all X, Y and
R (X, Y ) = 0 whenever f (X) = f (Y ). Let δ0, δ1 ∈ (0, 1] be such that for every X ∈ S and i ∈ {1, . . . , n},

∑

Y : R(X,Y )=1

β (Y ) ≥ 1,

∑

Y : R(X,Y )=1,xi 6=yi

β (Y ) ≤ δf(X).

Then Q2 (f) = Ω
(√

1
δ0δ1

)
.

We now prove the main result of the section.

Theorem 7 For all f (partial or total) and all X,

QC X (f) = Θ

(√
RC X (f)

)
.

Proof. Let (λ1, . . . , λn) be an optimal nonadaptive randomized verifier for X = x1 . . . xn, and let

S = λ1 + · · · + λn.

We first show that QCX (f) = O
(√

S
)
. Given an input Y = y1 . . . yn, the goal is to find an i such that

yi 6= xi. To do so, we run a weighted version of Grover’s search algorithm, in which there are dnλi/Se basis
states querying yi (and which consider it marked if yi 6= xi). Thus, the total number of basis states is

n∑

i=1

⌈
nλi

S

⌉
=

(
n∑

i=1

nλi

S

)
+ O (n)

= O (n) ,

and the proportion of basis states that query yi is

dnλi/Se∑n
j=1 dnλj/Se = Ω

(
λi

S

)
.

Let Y = {Y : f (Y ) 6= f (X)}. Then for any Y ∈ Y, the expected number of iterations needed to find a

disagreement with X with probability Ω (1) is just O
(√

S
)
, the square root of the number needed classically.

We now show that QCX (f) = Ω
(√

S
)
. Consider a matrix game in which Alice chooses an index i to

query and Bob chooses Y ∈ Y; Alice wins if and only if yi 6= xi. If Alice and Bob both play optimally,
then Alice can win this game with probability at most O (1/S). For otherwise Alice’s strategy would yield
a verifier (λ′

1, . . . , λ
′
n) with

λ′
1 + · · · + λ′

n = o (S) ,

contradicting the optimality of (λ1, . . . , λn). Hence, by the minimax theorem, there exists a distribution µ
over Y such that for all i ∈ {1, . . . , n},

Pr
Y ∈µ

[yi 6= xi] = O

(
1

S

)
.

Let β (X) = 1 and let β (Y ) = µ (Y ) for each Y ∈ Y. Also, let R (Y, Z) = 1 if and only if Z = X for each
Y ∈ Y and Z /∈ Y. Then we can take δf(Y ) = 1 and δf(X) = O (1/S) in Theorem 6. It follows that the

quantum query complexity of distinguishing X from an arbitrary Y ∈ Y is Ω
(√

S
)
.
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4 Quantum Lower Bound for Total Functions

The goal of this section is to show that

R0 (f) = O
(
Q2 (f)

2
Q0 (f) log n

)

for all total f . Say that a real multilinear polynomial p (x1, . . . , xn) nondeterministically represents f if for
all X ∈ {0, 1}n, p (X) 6= 0 if and only if f (X) 6= 0. Let ndeg (f) be the minimum degree of a nondeterministic
polynomial for f . Also, given such a polynomial p, say that a monomial M1 ∈ p is covered by M2 ∈ p
if M2 contains every variable in M1. A monomial M is called a maxonomial if it is not covered by any
other monomial of p. The following is a simple generalization of a lemma attributed in [10] to Nisan and
Smolensky.

Lemma 8 (Nisan-Smolensky) Let p nondeterministically represent f . Then for every maxonomial M
of p and X ∈ f−1 (0), there is a set B of variables in M such that f

(
X(B)

)
6= f (X), where X(B) is obtained

from X by flipping the variables in B.

Proof. Obtain a restricted function g from f , and a restricted polynomial q from p, by setting each variable
outside of M to xi. Then g cannot be constant, since the polynomial q that nondeterministically represents
it contains M as a monomial. Thus there is a subset B of variables in M such that g

(
X(B)

)
= 1, and hence

f
(
X(B)

)
= 1.

Using Lemma 8, de Wolf [24] showed that D (f) ≤ C (f) ndeg (f) for all total f , slightly improving the
result D (f) ≤ C(f) deg (f) due to Buhrman and de Wolf [10]. In Theorem 10, we will give an analogue of
this result for randomized query and certificate complexities. However, we first need a probabilistic lemma.

Lemma 9 Suppose we repeatedly apply the following procedure: first identify the set B of maxonomials of
p, then ‘shrink’ each M ∈ B with (not necessarily independent) probability at least 1/2. Shrinking M means
replacing it by an arbitrary monomial of degree deg (M) − 1. Then with high probability p is a constant
polynomial after O (deg (p) log n) iterations.

Proof. Let A be a set of nontrivial (degree 1 or higher) monomials, and consider the weighting function

ω (A) =
∑

M∈A

deg (M)!

Let S be the set of nontrivial monomials of p. Initially ω (S) ≤ ndeg(p) deg (p)!, and we are done when
ω (S) = 0 (or equivalently S is empty, p having been restricted to a constant polynomial). The claim is that
at every iteration, ω (B) ≥ 1

eω (S). For every M∗ ∈ S \ B is covered by some M ∈ B, but a given M ∈ B

can cover at most
(
deg(M)

`

)
distinct M∗ with deg (M∗) = `. Hence

ω (S \ B) ≤
∑

M∈B

deg(M)−1∑

`=0

(
deg(M)

`

)
`!

≤
∑

M∈B

deg (M)!

(
1

1!
+

1

2!
+ · · ·

)

≤ (e − 1)ω (B) .

At every iteration, the contribution of each M ∈ B to ω (A) has at least 1/2 probability of shrinking
from deg (M)! to (deg (M) − 1)! (or to 0 if deg (M) = 1). When this occurs, the contribution of M is at
least halved. Hence ω (S) decreases by an expected amount at least 1

4eω (S). Thus after

log4e/(4e−1)

(
2ndeg(p) deg (p)!

)
= O (deg (p) log n)

iterations, the expectation of ω (S) is less than 1/2, so S is empty with probability at least 1/2.
We can now prove the main result.3

3The proof of Theorem 10 that I gave previously [2] makes a claim that is both superfluous for proving the theorem and
false. I am grateful to Gatis Midrijanis for pointing this out to me.
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Theorem 10 For total f ,
R0 (f) = O (RC (f) ndeg (f) log n) .

Proof. The algorithm is as follows.
Repeat

Choose a 0-input X compatible with all queries made so far4

Query a randomized 0-certificate for X

Until f has been restricted to a constant function

Let p be a polynomial that nondeterministically represents f . Then the key fact is that for every 0-input
X , when we query a randomized 0-certificate for X we “hit” each maxonomial M of p with probability at
least 1/2. Here hitting M means querying a variable in M . This is because, by Lemma 8, it is possible to
change f (X) from 0 to 1 just by flipping variables in M . So a randomized certificate would be incorrect if
it probed those variables with probability less than 1/2.

Therefore, each iteration of the algorithm shrinks each maxonomial of p with probability at least 1/2. It
follows from Lemma 9 that the algorithm terminates after an expected number of iterations O (deg (p) log n).

Buhrman et al. [6] showed that ndeg (f) ≤ 2 Q0 (f) (indeed ndeg (f) = Q0 (f), as shown by Høyer and
de Wolf [12]). Combining this with Theorems 7 and 10 yields a new relation between classical and quantum
query complexity.

Theorem 11 For all total f ,

R0 (f) = O
(
Q2 (f)2 Q0 (f) log n

)
.

The best previous relation of this kind was R0 (f) = O
(
Q2 (f)

2
Q0 (f)

2
)
, due to de Wolf [24]. It is

worth mentioning another corollary of Theorems 7 and 10, this one purely classical:

Corollary 12 For all total f ,
R0 (f) = O (R2 (f) ndeg (f) log n)

Previously, no relation between R0 and R2 better than R0 (f) = O
(
R2 (f)

3
)

was known (although no

asymptotic gap between R0 and R2 is known either [19]). Subsequent to this work, Midrijanis [13] has also

shown that R0 (f) = O
(
R2 (f)

2
log n

)
for all total f .

5 Asymptotic Gaps

Having related RC(f) and QC (f) to other query complexity measures in Section 4, in what follows we seek
the largest possible asymptotic gaps among the measures. In particular, we give a total f for which RC(f) =

Θ
(
C (f)0.907

)
and hence C (f) = Θ

(
QC(f)2.205

)
, as well as a total f for which bs (f) = Θ

(
RC (f)0.922

)
.

Although these gaps are the largest of which we know, Section 5.1 shows that no ‘local’ technique can improve

the relations C (f) = O
(
RC (f)

2
)

and RC (f) = O
(
bs (f)

2
)
. Finally, Section 5.2 uses combinatorial designs

to construct a symmetric partial f for which RC(f) and QC (f) are O (1), yet Q2 (f) = Ω (n/ logn).
Wegener and Zádori [23] exhibited total Boolean functions with asymptotic gaps between C (f) and bs (f).

In similar fashion, we give a function family {gt} with an asymptotic gap between C (gt) and RC (gt). Let
g1 (x1, . . . , x29) equal 1 if and only if the Hamming weight of its input is 13, 14, 15, or 16. (The parameter
29 was found via computer search to produce a maximal separation.) Then for t > 1, let

gt (x1, . . . , x29t) = g0 [gt−1 (X1) , . . . , gt−1 (X29)]

4Clearly, as long as f is not a constant function, there exists a 0-input X compatible with all queries made so far.
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where X1 is the first 29t−1 input bits, X2 is the second 29t−1, and so on. For k ∈ {0, 1}, let

bs k (f) = max
f(X)=k

bs X (f) ,

C k (f) = max
f(X)=k

C X (f) .

Then since bs0 (g1) = bs1 (g1) = 17, we have bs (gt) = 17t. On the other hand, C0 (g1) = 17 but
C1 (g1) = 26, so

C 1 (gt) = 13 C 1 (gt−1) + 13 C 0 (gt−1) ,

C 0 (gt) = 17 max
{
C 1 (gt−1) , C 0 (gt−1)

}
.

Solving this recurrence yields C (gt) = Θ (22.725t). We can now show a gap between C and RC.

Proposition 13 RC (gt) = Θ
(
C (gt)

0.907
)
.

Proof. Since bs (gt) = Ω
(
C (gt)

0.907
)
, it suffices to show that RC (gt) = O (bs (gt)). The randomized verifier

V chooses an input variable to query as follows. Let X be the claimed input, and let K =
∑29

i=1 gt−1 (Xi).
Let I0 = {i : gt−1 (Xi) = 0} and I1 = {i : gt−1 (Xi) = 1}. With probability pK , V chooses an i ∈ I1

uniformly at random; otherwise A chooses an i ∈ I0 uniformly at random. Here pK is as follows.

K [0, 12] 13 14 15 16 [17, 29]

pK 0 13
17

7
12

5
12

4
17 1

Once i is chosen, V repeats the procedure for Xi, and continues recursively in this manner until reaching
a variable to query. One can check that if gt (X) 6= gt (Y ), then gt−1 (Xi) 6= gt−1 (Yi) with probability at
least 1/17. Hence the verifier detects the change with probability at least 1/17t, and RC(gt) = O (17t).

By Theorem 7, it follows that C (gt) = Θ
(
QC(gt)

2.205
)
. This offers a surprising contrast with the query

complexity setting, where the best known gap between the deterministic and quantum measures is quadratic

(D (f) = Θ
(
Q2 (f)

2
)
).

The family {gt} happens not to yield an asymptotic gap between bs (f) and RC (f). The reason is that
any input to g0 can be covered perfectly by sensitive blocks of minimum size, with no variables left over. In
general, though, one can have bs (f) = o (RC (f)). As reported by Bublitz et al. [8], M. Paterson found a
total Boolean function h1 (x1, . . . , x6) such that CX (h1) = 5 and bsX (h1) = 4 for all X . Composing h1

recursively yields bs (ht) = Θ
(
C(ht)

0.861
)

and bs (ht) = Θ
(
RC (ht)

0.922
)
, both of which are the largest

such gaps of which we know.

5.1 Local Separations

It is a longstanding open question whether the relation C (f) ≤ bs (f)2 due to Nisan [14] is tight. As a first

step, one can ask whether the relations C (f) = O
(
RC(f)

2
)

and RC (f) = O
(
bs (f)

2
)

are tight. In this

section we introduce a notion of local proof in query complexity, and then show there is no local proof that

C (f) = o
(
RC (f)

2
)

or that RC (f) = o
(
bs (f)

2
)
. This implies that proving either result would require

techniques unlike those that are currently known. My inspiration comes from computational complexity,
where researchers first formalized known methods of proof, including relativizable proofs [5] and natural
proofs [18], and then argued that these methods were not powerful enough to resolve the field’s outstanding
problems.

Let G (f) and H (f) be query complexity measures obtained by maximizing over all inputs—that is,

G (f) = max
X

GX (f) ,

H (f) = max
X

HX (f) .
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Call B ⊆ {1, . . . , n} a minimal block on X if B is sensitive on X (meaning f
(
X(B)

)
6= f (X)), and no

sub-block B′ ⊂ B is sensitive on X . Also, let X ’s neighborhood N (X) consist of X together with X(B) for
every minimal block B of X . Consider a proof that G (f) = O (t (H (f))) for some nondecreasing t. We
call the proof local if actually shows the stronger statement that for every input X ,

GX (f) = O

(
max

Y ∈N (X)

{
t
(
HY (f)

)})
.

As a canonical example, Nisan’s proof [14] that C (f) ≤ bs (f)
2

is local. For each X , Nisan observes that
(i) a maximal set of disjoint minimal blocks is a certificate for X , (ii) such a set can contain at most bsX (f)
blocks, and (iii) each block can have size at most maxY ∈N (X) bsY (f). Another example of a local proof is

the proof in Section 3 that RC (f) = O
(
QC(f)

2
)
.

Admittedly, “local proof” is not a mathematically precise notion. But to show that no proof of a
statement P can proceed by showing the stronger statement Q, all one needs to show is that Q is false! This
is similar to how one shows that there is no relativizable proof of P 6= NP: by exhibiting an oracle relative
to which P = NP.

Proposition 14 There is no local proof showing that C (f) = o
(
RC(f)

2
)

or that RC (f) = o
(
bs (f)

2
)

for

all total f .

Proof. The first part is easy: let f (X) = 1 if |X | ≥ √
n (where |X | denotes the Hamming weight of

X), and f (X) = 0 otherwise. Consider the all-zero input 0n. We have C0n

(f) = n − d√ne + 1, but

RC0n

(f) = O (
√

n), and indeed RCY (f) = O (
√

n) for all Y ∈ N (0n). For the second part, arrange the
input variables in a lattice of size

√
n ×√

n. Take m = Θ
(
n1/3

)
, and let g (X) be the monotone Boolean

function that outputs 1 if and only if X contains a 1-square of size m×m. This is a square of 1’s that can
wrap around the edges of the lattice; note that only the variables along the sides must be set to 1, not those
in the interior. An example input, with a 1-square of size 3 × 3, is shown below.

0 0 0 0 0
0 0 0 0 0
1 0 0 1 1
1 0 0 1 0
1 0 0 1 1

Clearly bs0
n

(g) = Θ
(
n1/3

)
, since there can be at most n/m2 disjoint 1-squares of size m × m. Also,

bsY (g) = Θ
(
n1/3

)
for any Y that is 0 except for a single 1-square. On the other hand, if we choose

uniformly at random among all such Y ’s, then at any lattice site i, PrY [yi = 1] = Θ
(
n−2/3

)
. Hence

RC0n

(g) = Ω
(
n2/3

)
.

5.2 Symmetric Partial Functions

If f is partial, then QC (f) can be much smaller than Q2 (f). This is strikingly illustrated by the collision
problem: let Col (Y ) = 0 if Y = y1 . . . yn is a one-to-one sequence and Col (Y ) = 1 if Y is a two-to-one
sequence, promised that one of these is the case. Then RC(Col) = QC (Col) = O (1), since every one-to-one
input differs from every two-to-one input on at least n/2 of the yi’s. On the other hand, Aaronson [1]
showed that Q2 (Col) = Ω

(
n1/5

)
.

¿From the example of the collision problem, it is tempting to conjecture that (say) Q2 (f) = O
(
n1/3

)

whenever QC(f) = O (1)—that is, ‘if every 0-input is far from every 1-input, then the quantum query
complexity is sublinear.’ Here we disprove this conjecture, even for the special case of symmetric functions
such as Col. (Given a finite set H, a function f : S → {0, 1} where S ⊆ Hn is called symmetric if
x1 . . . xn ∈ S implies xσ(1) . . . xσ(n) ∈ S and f (x1 . . . xn) = f

(
xσ(1) . . . xσ(n)

)
for every permutation σ.)

The proof uses the following lemma, which can be found in Nisan and Wigderson [15] for example.
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Lemma 15 (Nisan-Wigderson) For any γ > 1, there exists a family of sets

A1, . . . , Am ⊆ {1, . . . , dγne}

such that m = Ω
(
2n/γ

)
, |Ai| = n for all i, and |Ai ∩ Aj | ≤ n/γ for all i 6= j.

A lemma due to Ambainis [3] is also useful. Let f : S → {0, 1} where S ⊆ {0, 1}n
be a partial Boolean

function, and let p : {0, 1}n → R be a real-valued multilinear polynomial. We say that p approximates f
if (i) p (X) ∈ [0, 1] for every input X ∈ {0, 1}n (not merely those in S), and (ii) |p (X) − g (X)| ≤ 1/3 for
every X ∈ S.

Lemma 16 (Ambainis) At most 2O(∆(n,d)dn2) distinct Boolean functions (partial or total) can be approx-

imated by polynomials of degree d, where ∆(n, d) =
∑d

i=0

(
n
i

)
.

The result is an easy consequence of Lemmas 15 and 16.

Theorem 17 There exists a symmetric partial function f from {1, . . . , 3n}n
to {0, 1}, for which QC (f) =

O (1) and Q2 (f) = Ω (n/ logn). Here QC and Q2 refer to the number of bits that must be queried (thus,
the result is a factor log2 n from optimal).

Proof. Let f : S → {0, 1} where S ⊆ {1, . . . , 3n}n
, and let m = Ω

(
2n/3

)
. Let A1, . . . , Am ⊆ {1, . . . , 3n} be

as in Lemma 15. We put x1, . . . , xn in S if and only if {x1, . . . , xn} = Aj for some j. Clearly QC (f) = O (1),
since if i 6= j then every permutation of Ai differs from every permutation of Aj on at least n/3 indices.

The number of symmetric f with S as above is 2m = 2Ω(2n/3). We can represent any such f as a Boolean
function g on O (n log n) variables, with Q2 (g) = Q2 (f) and QC(g) = QC(f). But Beals et al. [6] showed
that, if Q2 (g) = T , then g is approximated by a polynomial of degree at most 2T . So by Lemma 16, if
Q2 (g) ≤ T for every g then

2T · ∆(n log n, 2T ) · (n log n)
2

= Ω
(
2n/3

)

and we solve to obtain T = Ω (n/ logn).

6 Open Problems

Is d̃eg (f) = Ω
(√

RC(f)
)
, where d̃eg (f) is the minimum degree of a polynomial approximating f? In

other words, can one lower-bound QC (f) using the polynomial method of Beals et al. [6], rather than the
adversary method of Ambainis [4]?

Also, is R0 (f) = O
(
RC (f)

2
)
? If so we obtain the new relations R0 (f) = O

(
Q2 (f)

4
)

and R0 (f) =

O
(
R2 (f)

2
)
.
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