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Abstract

Formalizing an old desire of Einstein, “ψ-epistemic theories” try to reproduce the predictions
of quantum mechanics, while viewing quantum states as ordinary probability distributions over
underlying objects called “ontic states.” Regardless of one’s philosophical views about such
theories, the question arises of whether one can cleanly rule them out, by proving no-go theorems
analogous to the Bell Inequality. In the 1960s, Kochen and Specker (who first studied these
theories) constructed an elegant ψ-epistemic theory for Hilbert space dimension d = 2, but
also showed that any deterministic ψ-epistemic theory must be “measurement contextual” in
dimensions 3 and higher. Last year, the topic attracted renewed attention, when Pusey, Barrett,
and Rudolph (PBR) showed that any ψ-epistemic theory must “behave badly under tensor
product.” In this paper, we prove that even without the Kochen-Specker or PBR assumptions,
there are no ψ-epistemic theories in dimensions d ≥ 3 that satisfy two reasonable conditions: (1)
symmetry under unitary transformations, and (2) “maximum nontriviality” (meaning that the
probability distributions corresponding to any two non-orthogonal states overlap). The proof
of this result, in the general case, uses some measure theory and differential geometry. On the
other hand, we also show the surprising result that without the symmetry restriction, one can
construct maximally-nontrivial ψ-epistemic theories in every finite dimension d.

1 Introduction

Debate has raged for almost a century about the interpretation of the quantum state. Although a
quantum state evolves in a unitary and deterministic manner according to the Schrödinger equation,
measurement is a probabilistic process in which the state is postulated to collapse to a single
eigenstate. This is often viewed as an unnatural and poorly-understood process.

ψ-epistemic theories have been proposed as alternatives to standard quantum mechanics. In
these theories, a quantum state merely represents probabilistic information about a “real, underly-
ing” physical state (called the ontic state). Perhaps not surprisingly, several no-go theorems have
been proven that strongly constrain the ability of ψ-epistemic theories to reproduce the predictions
of standard quantum mechanics. Most famously, the Bell inequality [1]—while not usually seen
as a result about ψ-epistemic theories—showed that no such theory can account for the results
of all possible measurements on an entangled state in a “factorizable” way (i.e., so that the ontic
state has a separate component for each qubit, and measurements of a given qubit only reveal
information about that qubit’s component of the ontic state). Also, the Kochen-Specker theorem
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[2] showed that in Hilbert space dimensions d ≥ 3, no ψ-epistemic theory can be both deterministic
and “noncontextual” (meaning that whether an eigenstate ψ gets returned as a measurement out-
come is independent of which other states are also in the measurement basis). More recently, the
Pusey-Barrett-Rudolph (PBR) theorem [3] showed that nontrivial ψ-epistemic theories are incon-
sistent, if the ontic distribution for a product state |ψ〉⊗|φ〉 is simply the tensor product of the ontic
distribution for |ψ〉 with the ontic distribution for |φ〉. Even more recently, papers by Maroney [4]
and Leifer and Maroney [5] prove the impossibility of a “maximally ψ-epistemic theory,” in which
the overlap of the ontic distributions for all non-orthogonal states fully accounts for the uncertainty
in distinguishing them via measurements.

In this paper, we study what happens if one drops the Bell, Kochen-Specker, and PBR as-
sumptions, and merely asks for a ψ-epistemic theory in which the ontic distributions overlap for
all non-orthogonal states.

Formally, a ψ-epistemic theory in d dimensions specifies:

1. A measurable space Λ, called the ontic space (the elements λ ∈ Λ are then the ontic states).

2. A function mapping each quantum state |ψ〉 ∈ Hd to a probability measure µψ over Λ, where
Hd is the Hilbert space in d dimensions.

3. For each orthonormal measurement basis M = {φ1, . . . , φd}, a set of d response functions
{ξk,M (λ) ∈ [0, 1]}, which give the probability that an ontic state λ would produce a measure-
ment outcome φk.

The response functions must satisfy the following two conditions:
∫

Λ
ξk,M(λ)µψ(λ) dλ = |〈φk|ψ〉|

2 , (1)

d
∑

i=1

ξi,M(λ) = 1 ∀λ, M. (2)

Here Equation (1) says that the ψ-epistemic theory perfectly reproduces the predictions of quantum
mechanics (i.e., the Born rule). Meanwhile, Equation (2) says that the probabilities of the possible
measurement outcomes must always sum to 1, even when ontic states are considered individually
(rather than as elements of probability distributions). Note that Equations (1) and (2) are logically
independent of each other.1

The conditions above can easily be satisfied by setting Λ = CPd−1, the complex projective
space consisting of unit vectors in Hd up to an arbitrary phase, and µψ(λ) = δ(λ − ψ), where
δ is the Dirac delta function, and ξk,M(λ) = |〈φk|λ〉|

2. But that simply gives an uninteresting
restatement of quantum mechanics, since the µψ’s for different ψ’s have disjoint supports.2 Thus,
let Supp(µψ) ⊆ Λ be the support of µψ. Then we call a ψ-epistemic theory nontrivial if there exist
ψ 6= φ such that µψ and µφ have total variation distance less than 1, i.e.

1

2

∫

Λ
|µψ(λ)− µφ(λ)| dλ < 1. (3)

1Also, we call a ψ-epistemic theory deterministic if the response functions take values only in {0, 1}. The Kochen-
Specker theorem then states that, in dimensions d ≥ 3, any deterministic theory must have response functions that
depend nontrivially on M .

2Indeed, some authors would not even call this trivial theory “ψ-epistemic”; they would insist on calling it “ψ-
ontic” instead. In this paper, we adopt a uniform definition of ψ-epistemic theories, but then distinguish between
trivial and nontrivial such theories.
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If µψ and µφ have total variation distance less than 1, then we say that |ψ〉 and |φ〉 have “nontrivial
overlap”. Otherwise we say they have “trivial overlap”. Note that it’s possible for |ψ〉 and |φ〉 to
have trivial overlap even if µψ and µφ have intersecting supports (this can happen if Supp(µψ) ∩
Supp(µφ) has measure 0).

Note also that if |ψ〉 and |φ〉 are orthogonal, then if we set |φ1〉 = |ψ〉 and |φ2〉 = |φ〉, the
conditions |〈φ1|ψ〉| = |〈φ2|φ〉| = 1 and |〈φ2|ψ〉| = |〈φ1|φ〉| = 0 imply that µψ and µφ have trivial
overlap. Hence, we call a theory maximally nontrivial if the overlap is only trivial for orthogonal
states: that is, if all non-orthogonal states |ψ〉, |φ〉 have nontrivial overlap.

In a maximally nontrivial theory, some of the uncertainty of quantum measurement is ex-
plained by the overlap between the distributions corresponding to non-orthogonal states. Recently
Maroney [4] and Leifer and Maroney [5] showed that it is impossible to have a “maximally ψ-
epistemic theory” in which all of the uncertainty is explained by the overlap of distributions.
Specifically, they require that, for all quantum states |ψ〉, |φ〉,

∫

Supp(µφ)
µψ(λ)dλ = |〈φ|ψ〉|2. (4)

Here we are asking for a much weaker condition, in which only some of the uncertainty in measure-
ment statistics is explained by the overlap of distributions, and we do not impose any conditions
on the amount of overlap.

Another property that we might like a ψ-epistemic theory to satisfy is symmetry. Namely,
we call a ψ-epistemic theory symmetric if Λ = CPd−1 and the probability distribution µψ(λ) is
symmetric under unitary transformations that fix |ψ〉—or equivalently, if µψ is a function fψ only
of |〈ψ|λ〉|. We stress that this function is allowed to be different for different ψ’s: symmetry only
applies to each µψ individually. This makes our no-go theorem for symmetric theories stronger.
If additionally µψ is a fixed function f only of |〈ψ|λ〉|, then we call the theory strongly symmetric.
Note that, if a theory is strongly symmetric, then in order to apply a unitary U to a state |ψ〉, one
can simply apply U to the ontic states. So strongly symmetric theories have a clear motivation:
namely, they allow us to keep the Schrödinger equation as the time evolution of our system.

A similar notion to symmetry was recently explored by Hardy [6] and Patra et al. [7]. Given a
ψ-epistemic theory, it is natural to consider the action of unitaries on the ontic states λ ∈ Λ. Hardy
and Patra et al. define such a theory to obey “ontic indifference” if for any unitary U such that
U |ψ〉 = |ψ〉, and any λ ∈ Supp(µψ), we have Uλ = λ. They then show that no ψ-epistemic theories
satisfying ontic indifference exist in dimensions d ≥ 2. Note that symmetric theories and even
strongly symmetric theories need not obey ontic indifference, since unitaries can act nontrivially
on ontic states in Supp(µψ). So the result of Hardy and Patra et al. is incomparable with ours.

In dimension 2, there exists a strongly symmetric and maximally nontrivial theory found by
Kochen and Specker [2]. In dimensions d ≥ 3, Lewis et al. [8] found a nontrivial ψ-epistemic theory
for all finite d. However, their theory is not symmetric and is far from being maximally nontrivial.

In this paper, we first give a construction of a maximally nontrivial ψ-epistemic theory for
arbitrary d. Our theory builds on that of Lewis et al. [8], and was first constructed in a post
on MathOverflow [9]. Unfortunately, this theory is rather unnatural and is not symmetric. We
then prove that it is impossible to construct a maximally nontrivial theory that is symmetric, for
Hilbert space dimensions d ≥ 3. In other words, if we want maximally nontrivial theories in 3
or more dimensions, then we either need an ontic space Λ other than Λ = CPd−1, or else we need
ontic distributions µψ that “single out preferred directions in Hilbert space,” depending on more
than just the inner product |〈ψ|λ〉|.
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2 Nonsymmetric, Maximally Nontrivial Theory

By considering Λ = CPd−1 × [0, 1], Lewis et al. [8] found a deterministic, nontrivial ψ-epistemic
theory for all finite d. They raised as an open problem whether a maximally nontrivial theory
exists. In this section, we answer their question in the affirmative. Specifically, we first show
that, for any two non-orthogonal states, we can construct a theory such that their probability
distributions overlap. We then take a convex combination of such theories to obtain a maximally
nontrivial theory.

Lemma 1. Given any two non-orthogonal quantum states |a〉, |b〉, there exists a ψ-epistemic theory
T (a, b) = (Λ, µ, ξ) such that µa and µb have nontrivial overlap. Moreover, for T (a, b), there exists
ε > 0 such that µa′ and µb′ have nontrivial overlap for all |a′〉, |b′〉 such that

||a− a′||, ||b− b′|| < ε.

Proof. Our ontic state space will be Λ = CPd−1 × [0, 1]. Given an orthonormal basis M =
{φ1, . . . , φd}, we first sort the φi’s in decreasing order of min(|〈φi|a〉|, |〈φi|b〉|). Then the outcome
of measurement M on ontic state (λ, p) will be the smallest positive integer i such that

|〈φ1|λ〉|
2 + · · ·+ |〈φi−1|λ〉|

2 ≤ p ≤ |〈φ1|λ〉|
2 + · · ·+ |〈φi|λ〉|

2. (5)

In other words, ξi,M(|λ〉, p) = 1 if i satisfies the above and no j < i does, and is 0 otherwise. If we
assume that µψ(|λ〉, p) = δ(|λ〉 − |ψ〉) for all p ∈ [0, 1], then it can be verified that T (a, b) is a valid
ψ-epistemic theory, albeit so far a trivial one.

We now claim that there exists ε > 0 such that, for all orthonormal bases M = {φ1, . . . , φd},
there exists i such that |〈φi|a〉| ≥ ε and |〈φi|b〉| ≥ ε. Indeed, by the triangle inequality, we can
let ε = |〈a|b〉|/d, and ε > 0 since |〈a|b〉| > 0. This means that, for all measurements M and all
p ∈ [0, ε], the outcome is always i = 1 when M is applied to either of the ontic states (|a〉, p) or
(|b〉, p).

Following Lewis et al. [8], we can “mix” the probability distributions µa and µb, or have them
intersect in the region p ∈ [0, ε], without affecting the Born rule statistics for any measurement.
Explicitly, we can let

Ea,b = {|a〉, |b〉} × [0, ε], (6)

so that all λ ∈ Ea,b give the same measurement outcome φ1 for all measurements M . Then
any probability assigned by µa or µb to states within Ea,b can be redistributed over Ea,b without
changing the measurement statistics. Thus, we can define µa such that the weight it originally
placed on |a〉 × [0, ε] is now placed uniformly on Ea,b. More formally, we set

µa(|λ〉, x) =

{

δ(|λ〉 − |a〉) if x > ε

εµEa,b(|λ〉, x) if x ≤ ε .
(7)

where µEa,b is the uniform distribution over Ea,b. We similarly define µb. This then yields a
theory with nontrivial overlap between |a〉 and |b〉.

Furthermore, suppose we have |a′〉, |b′〉, such that ||a− a′||, ||b − b′|| < ε
2 . Then by continuity,

we can similarly mix the distributions µa′ and µb′ , or have them intersect each other in the region
p ∈ [0, ε2 ], without affecting any measurement outcome. Note that the procedure of sorting the
basis vectors of M might cause the measurement outcome to change discontinuously. However,
this is not a problem since the procedure depends only on |a〉 and |b〉, which are fixed, and hence
occurs uniformly for all |a′〉 and |b′〉 defined as above.
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Lemma 1 implies that for any two non-orthogonal states |a〉 and |b〉, we can construct a theory
where µa′ and µb′ have nontrivial overlap for all ||a − a′||, ||b − b′|| < ε, for some ε > 0. To
obtain a maximally nontrivial theory, such that any two non-orthogonal vectors have probability
distributions that overlap, we take a convex combination of such ψ-epistemic theories.

Given two ψ-epistemic theories T1 = (Λ1, µ1, ξ1) and T2 = (Λ2, µ2, ξ2) and a constant c ∈ (0, 1),
we define the new theory cT1+(1− c)T2 = (Λc, µc, ξc) by setting Λc = (Λ1 × {1})∪ (Λ2 × {2}) and
µc = cµ1 + (1− c)µ2. For any (λ, i) ∈ Λc, we then define ξc to equal ξi on Λi.

The following is immediate from the definitions.

Lemma 2. cT1 + (1 − c)T2 is a ψ-epistemic theory. Furthermore, if T1 mixes the probability
distributions µψ, µφ of two states |a〉 and |b〉, and T2 mixes µa′ and µb′, then cT1 +(1− c)T2 mixes
both pairs of distributions, assuming c 6∈ {0, 1}.

Note that the ontic state space of a convex combination of theories contains a copy of each of the
original ontic spaces Λ1 and Λ2. If Λ1 = Λ2, it is natural to ask if we could get away with keeping
only one copy of the ontic state space. Unfortunately the answer in general is no. Suppose that
we let Λc = Λ1 = Λ2, let µc = cµ1 + (1− c)µ2, and let ξc = cξ1 + (1− c)ξ2. Then the probability
of measuring outcome i under measurement M and ontic distribution µcψ is

∫

Λ

(

cξ1i,M (λ) + (1− c)ξ2i,M (λ)
) (

cµ1ψ (λ) + (1− c)µ2ψ (λ)
)

dλ

which will not in general reproduce the Born rule due to unwanted cross terms. This is why it is
necessary to keep two copies of the ontic state space when taking a convex combination of theories.

Using Lemmas 1 and 2, we now construct a maximally nontrivial ψ-epistemic theory. Let
T (a, b) be the theory returned by Lemma 1 given |a〉, |b〉 ∈ Hd. Also, for all positive integers n,
let An be a 1/n-net for Hd, that is, a finite subset An ⊆ Hd such that for all |a〉 ∈ Hd, there exists
|a′〉 ∈ An satisfying ||a− a′|| < 1/n. By making small perturbations, we can ensure that 〈a|b〉 6= 0
for all |a〉, |b〉 ∈ An. Then our theory T is defined as follows:

T =
6

π2

∞
∑

n=1

1

n2





1

|An|2

∑

a,b∈An
T (a, b)



 . (8)

(Of course, in place of 6/(π2n2), we could have chosen any infinite sequence summing to unity.)
This yields a maximally nontrivial theory, since it can be verified that µa and µb have nontrivial
overlap for all non-orthogonal states |a〉 and |b〉. Note that the ontic space is now CPd−1×[0, 1]×N,
which has the same cardinality as CPd−1. It is thus possible to map this theory into a theory that
uses Λ = CPd−1 as its ontic space, using a bijection between the ontic spaces. However, it is clear
that under such a bijection the theory becomes less symmetric: the quantum state |a〉 no longer
has any association with the state |a〉 in the ontic space, and the measure is also very unnatural.

3 Nonexistence of Symmetric, Maximally Nontrivial Theories

We now turn to showing that it is impossible to construct a symmetric maximally nontrivial theory,
in dimensions d ≥ 3. Recall that a theory is called symmetric if

1. Λ = CPd−1, and

2. for any quantum state |ψ〉, the associated probability distribution µψ is invariant under
unitary transformations that preserve |ψ〉.
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Specifically, if U is a unitary transformation such that U |ψ〉 = |ψ〉, then we require that
µUψ(Uλ) = µψ(λ). This implies that µψ(λ) is a function only of |〈ψ|λ〉|2: that is,

µψ(λ) = fψ
(

|〈ψ|λ〉|2
)

(9)

for some nonnegative function fψ. In other words, the probability measure µψ associated with
state ψ must be a measure νψ on the unit interval which has been “stretched out” onto Hd over
curves of constant |〈ψ|λ〉|2. If additionally we assume that for any U , µUψ(Uλ) = µψ(λ), or
equivalently that µψ(λ) = f

(

|〈ψ|λ〉|2
)

for some fixed nonnegative function f , the theory is called
strongly symmetric.

In this section, we will first prove several facts about symmetric, maximally nontrivial theories
in general. Using these facts, we will then show that no strongly symmetric, maximally nontrivial
theory exists in dimension 3 or higher. Restricting to the strongly symmetric case will make the
proof considerably easier. Later we will show how to generalize to the “merely” symmetric case.

|�2�

|ψ�

|�1�

Figure 1: Diagram of maximally nontrivial theory in d = 2 on the Bloch sphere. The shaded region
corresponds to Supp(µψ).

As mentioned earlier, Kochen and Specker proved that a strongly symmetric, maximally non-
trivial ψ-epistemic theory exists in dimension d = 2 [2]. In their theory, which is illustrated in
Figure 1, the ontic space is Λ = CP1, and the response functions for a given basis M = {φ1, φ2}
are

ξ1,M (λ) = 1 if |〈λ|φ1〉| ≥ |〈λ|φ2〉| or 0 otherwise, (10)

ξ2,M (λ) = 1 if |〈λ|φ2〉| ≥ |〈λ|φ1〉| or 0 otherwise. (11)

Hence the response functions are deterministic and partition the ontic space. Intuitively, the result
of a measurement on any ontic state is the state in the measurement basis to which it is closest.
For any quantum state |ψ〉 ∈ H2, the probability distribution over Λ is given by

µψ(λ) =

{

2
π

(

|〈λ|ψ〉|2 − 1
2

)

if |〈λ|ψ〉|2 > 1
2

0 otherwise.

It can readily be verified that this theory satisfies the conditions for a ψ-epistemic theory, and
has the properties of being strongly symmetric and maximally nontrivial. It is also maximally
ψ-epistemic in the sense described by Maroney [4] and Maroney and Leifer [5].

Given a measurement outcome ψ and a basis M containing ψ, we define the nonzero set
Nonzero(ξψ,M ) to be the set of ontic states λ such that the response function ξψ,M (λ) gives a
nonzero probability of returning ψ when M is applied:

Nonzero(ξψ,M ) = {λ : ξψ,M (λ) 6= 0} . (12)
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Clearly in any ψ-epistemic theory, Supp(µψ) ⊆ Nonzero(ξψ,M ) for any measurement basis M that
contains ψ, because the state |ψ〉 must return measurement outcome ψ with probability 1 for any
such M . Harrigan and Rudolph [11] call a ψ-epistemic theory deficient if there exists a quantum
state |ψ〉 and measurement basis M containing ψ such that

Supp(µψ) ( Nonzero(ξψ,M ). (13)

In other words, a theory is deficient if there exists an ontic state λ such that λ has a nonzero
probability of giving the measurement outcome corresponding to |ψ〉 for some M , even though
λ /∈ Supp(µψ). This can be thought of as a “one-sided friendship” between |ψ〉 and λ.

It was first pointed out by Rudolph [10], and later shown by Harrigan and Rudolph [11],
that theories in dimension d ≥ 3 must be deficient. In this section, we prove that as a result of
deficiency, it is impossible to have a symmetric, maximally nontrivial theory with d ≥ 3. We derive
a contradiction by showing that if the theory is maximally nontrivial, then there exist orthogonal
states |ψ〉, |φ〉, and a measurement basis M containing |ψ〉, such that if |φ〉 is measured, then the
outcome |ψ〉 is returned with nonzero probability, contradicting the laws of quantum mechanics.
We do this by choosing |ψ〉 orthogonal to |φ〉 such that its associated response function ξψ,M
has nonzero measure in the deficient region, and proving that there exists |φ〉 such that Supp(µφ)
overlaps with Nonzero(ξψ,M ) in the deficient region. Thus the deficiency imposed by the symmetry
assumption makes it impossible for a maximally nontrivial theory to exist in d ≥ 3.

We start with a few preliminary results on symmetric, maximally nontrivial theories. As stated
previously, we know that µψ is generated by stretching a probability measure νψ on the unit interval
over Hd along spheres of constant |〈ψ|λ〉|2. By the Lebesgue decomposition theorem, νψ can be
written uniquely as a sum of two measures νψ,C and νψ,S , where νψ,C is absolutely continuous with
respect to the Lebesgue measure over the unit interval, and νψ,S is singular with respect to that
measure. Here when we say νψ,C is “absolutely continuous” with respect to the Lebesgue measure,
we mean that it assigns zero measure to any set of Lebesgue measure zero. When we say νψ,S
is “singular,” we mean that its support is confined to a set of Lebesgue measure zero. Similarly,
µψ can be decomposed into its absolutely continuous and singular parts µψ,C and µψ,S, which are
defined respectively from the components νψ,C and νψ,S of νψ. By the Radon-Nikodym theorem,
due to its absolute continuity νψ,C has a probability density function gψ(x) that is a function, not
a pseudo-function or delta function. To simplify our analysis, first we will show that it is only
necessary to look at the absolutely continuous part of the distribution.

Lemma 3. For any distinct and non-orthogonal states |ψ〉, |φ〉 in a symmetric, maximally non-
trivial theory, µψ,C and µφ,C have nontrivial overlap.

Proof. Let Sa denote the set of states λ ∈ Λ with |〈λ|ψ〉|2 = a. If a = 1, then Sa is a single
point with zero µφ measure. For 0 < a < 1, Sa is a (2d − 3)-sphere centered about ψ, and for
a = 0 it is a (2d− 4)-dimensional manifold diffeomorphic to CPd−1. In both of the latter cases, as
φ,ψ are distinct non-orthogonal states, the distribution of |〈λ|φ〉|2 for λ chosen uniformly on Sa is
absolutely continuous with respect to the Lebesgue measure on [0, 1]. Therefore, the distribution
of |〈λ|φ〉|2 for λ ∈ Λ chosen according to µψ is absolutely continuous over |〈λ|ψ〉| < 1.

By our symmetry condition µφ,S is the product of a singular measure on [0,1], denoted νφ,S, and
the uniform measure on rings of constant |〈φ|λ〉|2. Since drawing λ from µψ induces an absolutely
continuous measure on |〈φ|λ〉|2, then in particular µψ has probability zero of producing a state λ
with |〈φ|λ〉|2 ∈ Supp(νφ,S), because Supp(νφ,S) is a set of measure zero. This implies that µψ has
probability zero of producing a state λ ∈ Supp(µφ,S). Hence there is zero overlap between µψ and
µφ,S. In particular, µψ,C and µψ,S have zero overlap with µφ,S. Similarly, µφ,C and µφ,S have zero
overlap with µψ,S .

This shows that the overlap between µφ,C and µψ,C equals that between µφ and µψ, which is
nonzero for maximally nontrivial theories.
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From now on, we will assume µψ is generated only from the absolutely continuous part νψ,C ,
so that µψ has as probability density function fψ

(

|〈ψ|λ〉|2
)

where fψ is a function, not a pseudo-
function. We can do this without loss of generality, as our proof will not depend on the normal-
ization of the probability distributions, and will only use facts about the absolutely continuous
components of the measures.

Next, let the distance between two states ψ and φ be defined by their scaled radial distance
(also called the Fubini-Study metric):

||ψ − φ|| =
2

π
arccos (|〈ψ|φ〉|) .

For any state |ψ〉 ∈ Hd, with probability distribution µψ(λ) = fψ(|〈ψ|λ〉|
2), we define the radius of

µψ to be the distance between |ψ〉 and the furthest away state at which µψ has substantial density:

rψ = sup

{

r : ∀δ > 0

∫

λ:r−δ<||ψ−λ||<r
µψ(λ) dλ > 0

}

. (14)

Lemma 4. For a symmetric theory, given any two states |ψ〉, |φ〉, we have ||ψ − φ|| ≥ rψ + rφ if
and only if |ψ〉 and |φ〉 have trivial overlap.

Proof. Suppose that ||ψ−φ|| ≥ rψ+ rφ but |ψ〉 and |φ〉 have nontrivial overlap. Then Supp(µψ)∩
Supp(µφ) has nonzero measure, and for any λ in that set, the triangle inequality implies that
rψ + rφ ≥ ||ψ − λ|| + ||φ − λ|| ≥ ||ψ − φ||. Thus rψ and rφ satisfy rψ + rφ = ||ψ − φ||, which is a
contradiction since ||ψ − λ||+ ||φ− λ|| = ||ψ − φ|| only on a set of measure zero.

Now suppose that ||ψ−φ|| < rψ+rφ. Consider λint, an ontic state which lies at the intersection
of rings of radii rψ and rφ about ψ and φ, respectively. In other words ||ψ − λint|| = rψ and
||φ− λint|| = rφ. Such a λint exists because ||ψ− φ|| < rψ + rφ. Then in the neighborhood of λint,
we claim that µψ and µφ have nontrivial overlap.

To show this, we will define a set B of positive measure, on which µψ and µφ are “equivalent”
to the Lebesgue measure, in the sense that if S ⊆ B has positive Lebesgue measure, then S has
positive measure under both µψ and µφ. This implies that ψ and φ have nontrivial overlap on B.

By the symmetry condition, each µψ is a product measure between a measure νψ on [0, 1] and a
uniform measure on surfaces of constant |〈ψ|λ〉|. Let u and v be the normal vectors to surfaces of
constant |〈ψ|λ〉| and |〈φ|λ〉| at |λint〉, respectively. Note that u (v) is equal to the tangent vector
to the geodesic running from ψ (φ) to λint evaluated at λint. Since ||ψ − φ|| < rψ + rφ, these are
distinct geodesics, so u and v are linearly independent.

Since CPd−1 is a smooth Riemannian manifold, u and v form a local coordinate system in the
ε neighborhood of |α〉, which we denote Nε(|α〉). If we associate coordinates x1, x2 with u and v,
the integral over Nε(|α〉) can be parameterized as

∫

g(x1, x2, y1 . . . y2d−4)dx1dx2dy1 . . . dy2d−4

Here g is the square root of the metric, which is strictly positive in the neighborhood of |λint〉.
Also, dxi is the Lebesgue integral over the coordinate xi, and the yi are coordinates corresponding
to the remaining 2d− 4 dimensions of the space.

Now consider the set
B = Nε(|α〉) ∩ Supp(µψ) ∩ Supp(µφ)

Trivially µψ and µφ are equivalent to the Lebesgue measure on B. Note that Supp(µψ) is a union
of surfaces S1 of constant |〈λ|ψ〉| which are perpendicular to u at α. If ε is sufficiently small these
surfaces have negligible curvature, so they look like orthogonal hyperplanes in the x1 coordinate
system. Let ε1 be the Lebesgue measure on Supp(µψ)

⋂

B. Let S2 and ε2 be defined similarly
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for φ. If the surfaces S1, S2 had zero curvature, the Lebesgue measure of B would simply be
the product of the measures ε1ε2, since x1 and x2 are orthogonal coordinates. Since the surfaces
have slight curvature, and the coordinates xi are not truly orthogonal, the above calculation has
to be changed slightly. Specifically, for sufficiently small ε the Lebesgue measure of B can be
approximated by gε1ε2, where g is the square root of the metric at λint. This quantity is strictly
positive since each εi > 0 by the definition of r, the metric g is strictly positive, and µφ and µφ
are absolutely continuous with respect to the Lebesgue measure. Hence B has positive Lesbesgue
measure.

Corollary 1. If |ψ〉 and |φ〉 are orthogonal, then rψ + rφ ≤ 1.

Proof. If 〈ψ|φ〉 = 0, then ||ψ − φ|| = 1. Since any orthogonal |ψ〉 and |φ〉 have trivial overlap,
Lemma 4 implies that rψ + rφ ≤ 1.

Lemma 5. Given any maximally nontrivial and symmetric theory in d ≥ 3, for any state |ψ〉 ∈ Hd,
we have rψ = 1

2 .

|ψ�

|��

|�’�

|ψ�

|ψ’�

½ ½½

Figure 2: From left to right: pictorial representations of the proof that rψ ≤ 1
2 in dimension 3,

the proof that rψ = 1
2 , and the form of the µψ’s that we ultimately deduce (with rψ = 1

2 for all
|ψ〉 ∈ Hd). The shaded regions are the supports of the respective probability distributions.

Proof. We first show that rψ ≤ 1
2 for all |ψ〉 ∈ Hd, which we illustrate in the left side of Figure 2

for the case where d = 3. Suppose there exists |ψ〉 such that rψ = 1
2 + ε for some ε > 0. From

Corollary 1, for all |φ〉 orthogonal to |ψ〉, we have rφ ≤ 1
2 − ε. In dimension d ≥ 3, there exist

non-orthogonal states |φ〉, |φ′〉 such that 〈ψ|φ〉 = 〈ψ|φ′〉 = 0, and |φ〉 6= |φ′〉. Then rφ+rφ′ ≤ 1−2ε.
If we choose |φ〉, |φ′〉 such that 1 − 2ε < ||φ − φ′|| < 1, then from Lemma 4, we have that µφ and
µφ′ have trivial overlap even though 〈φ|φ′〉 6= 0. This contradicts the theory being maximally
nontrivial.

We now show that rψ ≥ 1
2 for all |ψ〉 ∈ Hd, as illustrated in the center of Figure 2. Suppose

there exists |ψ〉 such that rψ = 1
2 − ε for some ε > 0. Since rψ′ ≤ 1

2 for all |ψ′〉 ∈ Hd, thus
rψ+rψ′ ≤ 1−ε. If we choose |ψ〉, |ψ′〉 such that 1−ε < ||ψ−ψ′|| < 1, then µψ and µψ′ have trivial
overlap from Lemma 4 even though 〈ψ|ψ′〉 6= 0. This again contradicts maximum nontriviality.

This immediately implies the following:

Corollary 2. In dimensions d ≥ 3, a symmetric ψ-epistemic theory is maximally nontrivial if and
only if for any state |ψ〉 and for all δ > 0 the measure µψ integrated over the following region is
nonzero:

{

λ :
1

2
≤ |〈ψ|λ〉|2 ≤

1

2
+ δ

}

(15)
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Moreover, Supp(µψ) has measure zero on the set of λ such that |〈ψ|λ〉|2 < 1
2 .

Proof. By Lemma 5, for any state |ψ〉 we have rψ = 1
2 . By rewriting the distance between states

in terms of their inner product, the corollary follows from the definition of rψ in Equation 14.

In Lemma 5, we showed that the radius rψ of every state ψ in a maximally nontrivial symmetric
theory is 1

2 . We now use this to show that a certain set of ontic states is deficient. Recall that we
say a set S is deficient for measurement M if S is not in Supp(µφi) for any φi ∈M .

Corollary 3. Given any symmetric, maximally nontrivial ψ-epistemic theory in d ≥ 3, for any
measurement basis M = {φi}

d
i=1, the region

RM =

{

λ : |〈φi|λ〉|
2 <

1

2
, i = 1, . . . , d

}

is deficient except on a set of measure zero. (Note that, by elementary geometry, RM has positive
measure if and only if d ≥ 3.)

Proof. By Corollary 2, for all i = 1, . . . , d, the set Supp(φi) must have measure zero over the region
RM . However, Equation 2 implies that any λ ∈ RM must be in Nonzero(ξi,M ) for some i even if it
is not in Supp(φi). This means that RM is deficient except possibly on a set of measure zero.

In general, deficiency occurs in any theory in d ≥ 3 even without the symmetry assumption, as
proved by Harrigan and Rudolph [11] using the Kochen-Specker theorem [2]. In Corollary 3, we
showed that symmetry implies a specific type of deficiency.

To show that no strongly symmetric, maximally nontrivial theory exists, we first prove two
simple results for ψ-epistemic theories in general. These results will help us to derive a contradiction
for strongly symmetric, maximally nontrivial theories.

Lemma 6. Given any two orthogonal states |φ〉 and |ψ〉, the set Supp(µφ) ∩ Nonzero(ξψ,M ) has
measure zero for all measurements M that contain ψ.

Proof. Suppose to the contrary that Supp(µφ) ∩ Nonzero(ξψ,M ) has positive measure for some
measurement M containing ψ. Then by definition, if the state |φ〉 is measured using M , the
outcome corresponding to |ψ〉 is returned with nonzero probability. But since |〈ψ|φ〉|2 = 0, this
contradicts the Born rule (Equation (1)).

Lemma 7. For any α ∈ Λ, let Bε(α) = {λ : ||λ− α|| < ε} be an ε-ball around α, for some ε > 0.
Given a measurement basis M = {φi}

d
i=1, there exists some j such that

∫

Bε(α)
ξj,M(λ) dλ > 0. (16)

Proof. For any such α ∈ Λ the following holds,

∫

Bε(α)

d
∑

i=1

ξi,M (λ) dλ =

∫

Bε(α)
1 dλ > 0.

This then implies that there exists some j such that

∫

Bε(α)
ξj,M(λ) dλ > 0.
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|α�

|�1�

|�2� |�3�

RM

Figure 3: Pictorial representation of the deficiency region for d = 3. The shaded regions are the
supports of the respective probability measures, and the middle unshaded region RM is deficient.

Using these two results, we can now prove that in dimension d ≥ 3, there exists no strongly
symmetric, maximally nontrivial ψ-epistemic theory.

Theorem 1. There exists no strongly symmetric, maximally nontrivial ψ-epistemic theory in di-
mension d ≥ 3.

Proof. Suppose we have a symmetric, maximally nontrivial theory in dimension d ≥ 3, and we fix
a measurement basis M = {φi}

d
i=1. From Corollary 3, there exists a deficiency region given by

RM =

{

λ : |〈φi|λ〉|
2 <

1

2
, i = 1, . . . , d

}

,

perhaps minus a set of measure zero. This is illustrated in Figure 3 for the case where d = 3.
Consider |α〉 = 1√

d
(|φ1〉+ · · · + |φd〉), which is contained in the deficiency region. Given ε > 0,

let Bε(α) = {λ : ||λ− α|| < ε} be the ε-ball around |α〉. We choose ε such that Bε(α) is contained
in RM . From Lemma 7, there exists some j such that B := Bε(α) ∩ Nonzero(ξj,M) has nonzero
measure. Without loss of generality, we assume that j = 1.

Let ν be the measure obtained by averaging µψ over all states |ψ〉 orthogonal to |φ1〉, and let
A be the set of all λ such that |〈φ1|λ〉|

2 < 1
2 . Since the theory is strongly symmetric, ν must be

a function only of |〈φ1|λ〉|
2. Moreover, each of the measures µψ assigns positive measure to the

region of states λ such that |〈ψ|λ〉|2 is close to 1
2 , hence the averaged measure ν assigns positive

measure to every open subset of A, and therefore in particular to B. This contradicts Lemma 6,
which implies that each of the averaged measures µψ must assign zero measure to Nonzero(ξ1,M )
and hence B.

3.1 Proof of Generalized No-Go Theorem

We now generalize our proof of Theorem 1 to the “merely” symmetric case, where the probability
distributions µψ can vary with ψ. First note that our previous proof does not immediately carry
over. Since the probability distributions can vary as ψ changes, it is possible that the distributions
for states orthogonal to φ1 might be able to “evade” the set B in the proof of Theorem 1 which
returns answer φ1 under measurement M , while maintaining some density near their outer radii.

To see how this might occur, consider the following one dimensional example: Let Λ = R be the
real line. Construct B ⊆ [0, 1] to be a “fat Cantor set” on [0, 1] as follows. Initially set B = [0, 1].
In step 1, remove the middle 1/4 of this interval, so that B = [0, 38 ]∪ [58 , 1]. At the ith step, remove
the middle 1

22i
of each of the 2i remaining intervals. Continue indefinitely. The resulting set B
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is called a “fat Cantor set” because it is nowhere dense (so contains no intervals), yet has positive
Lebesgue measure on [0, 1].

For each point x ∈ R, let µx be the uniform distribution on [x−1, x+1] with B removed. Then
µx is absolutely continuous with respect to the Lebesgue measure for all x ∈ R, and furthermore
has positive measure on [1 + x − ε, 1 + x] for all ε > 0. However, despite the fact that B has
positive measure, the distributions µx never intersect B. The worry is that our distributions in
CPd−1 could likewise evade the set B in our proof, foiling our contradiction. This worry is related
to a variant of the Kakeya/Besicovitch problem, as we discuss in Section 4.

We can extend Theorem 1 without solving a Kakeya-like problem, but to do so we will need
a result about the differential geometry of CPd−1. Interestingly, we will use the fact that we are
working in a complex Hilbert space; we believe the proof could be adapted to a real Hilbert space,
but it would be much less convenient.

Discussing the differential geometry of CPd−1 is easiest if we first to pick a gauge for CPd−1,
that is, if we pick a representative from each equivalence class of vectors which differ only by a
global phase. We use the following gauge: let |α〉 = 1√

d
(|φ1〉+ · · ·+ |φd〉). For each equivalence

class, we pick a representative u such that 〈α|u〉 is real and positive. This uniquely identifies
representatives for all equivalence classes of states, except those orthogonal to α. Moreover, this
way of choosing a gauge is continuous and smooth near α; more precisely, equivalence classes which
are close to one another have representatives which are also close to one another. This allows us
to integrate over the manifold near α using these representatives. Using this gauge, we now prove
the following.

Lemma 8. Let M be a measurement basis {φi}, let |α〉 be defined as above, and let d ≥ 3. Then
there exist d vectors u1 . . . ud in CPd−1 such that

• 〈ui|φi〉 = 0 for all i.

• 〈ui|α〉 =
1√
2
for all i.

• The tangent vectors ti to the geodesics from ui to α are linearly independent at α when the
tangent space is viewed as a real vector space.

Proof. Let a =
√

d
2(d−1)2 and b =

√

d−2
4(d−1) . Then we define u1, ...ud−2 as follows:

ui =





∑

j 6=i
a|φj〉



+ ib|φi+1〉 − ib|φi+2〉 ,

For the last two vectors, we set

ud−1 =





∑

j 6=d−1

a|φj〉



+ ib|φd〉 − ib|φ1〉 ,

ud =





∑

j 6=d
a|φj〉



+ b|φ1〉 − b|φ2〉 .

Note that the coefficients in ud are all real, unlike for the other d−1 vectors. It is straightforward to
verify that 〈ui|φi〉 = 0 and 〈ui|α〉 =

1√
2
for all i. Furthermore, we can compute the tangent vectors

ti as follows. The geodesics from |ui〉 to |α〉 in the Fubini-Study metric can be parameterized by

γ(t) = cos(t)|vi〉+ sin(t)|α〉

12



where vi is the normalized component of ui orthogonal to α, that is vi = k (ui − 〈α|ui〉α) for some
real normalization constant k. These geodesics lie entirely within our choice of gauge. Therefore
ti is the projection of γ′(t)|t=π/2 onto the plane orthogonal to α, which is

ti = ui − 〈α|ui〉α

Since ti is in the tangent space, its normalization is irrelevant. Also, since our gauge is fixed,
there is no ambiguity that ui or ti could be multiplied by a global phase.

We now verify that the ti’s are linearly independent. Suppose that c1t1+ ...+ cdtd = 0, with ci
real. Note that 〈α|ui〉α has all real coefficients, so a coefficient of ti is imaginary if and only if the
corresponding coefficient of ui is imaginary. Since c1t1 + ...+ cdtd = 0, in particular the imaginary
terms in |φi〉 must sum to zero for all i. For i = 3 . . . d, only the terms ci−2ti−2 and ci−1ti−1

contain imaginary multiples of |φi〉. Hence this constraint implies ci−2 = ci−1. Additionally, c1t1
is the only term containing an imaginary multiple of |φ2〉, so we must have c1 = 0. Therefore
c1 = c2 = . . . = cd−2 = 0. Since cd−1td−1 is the only term containing an imaginary multiple of |φ1〉,
we must have cd−1 = 0, and hence cd = 0 as well. Therefore the ti’s are linearly independent.

Note that in a real Hilbert space, the analogous statement to Lemma 8 is false because the
dimension of the tangent space at α is only d− 1. In a complex Hilbert space the dimension of the
tangent space is 2d − 2, so the tangent space can contain d linearly independent vectors assuming
d ≥ 2.

We now show that Lemma 8 implies the existence of a set B of positive measure, on which
every µui is “equivalent” to the Lebesgue measure, in the sense that if S ⊆ B has positive Lebesgue
measure, then S has positive measure under each µui .

Lemma 9. Let ui and |α〉 be as defined in Lemma 8. Then there exists a set B in the neighborhood
of |α〉, of positive Lebesgue measure, such that the µui are equivalent to the Lebesgue measure on
B.

Proof. Consider
B = Nε(|α〉) ∩ Supp(µu1) ∩ Supp(µu2) ∩ . . . ∩ Supp(µud)

where Nε(|α〉) denotes the ε-neighborhood of α. For sufficiently small ε, B can be shown to have
the desired properties using the same techniques as the proof of Lemma 4.

From these two lemmas, the proof of our main theorem follows, because the orthogonality of
each ui to φi and the Born rule implies the set B cannot give any outcome with positive probability
under measurement, which contradicts the fact that each element in B must give some outcome
under measurement.

Theorem 2. There exists no symmetric, maximally nontrivial ψ-epistemic theory in dimension
d ≥ 3.

Proof. By Lemmas 8 and 9 there is a measurement basis M = {φ1, . . . , φd} and vectors u1, . . . , ud
such that each ui is orthogonal to φi.

Furthermore, there is a set B of positive measure such that each µui is equivalent to the Lebesgue
measure on B. Therefore by the Born rule, for each i we must have

∫

B
µui(λ)ξi,M (λ)dλ = 0

Since each µui is equivalent to the Lebesgue measure on B, this implies

∫

B
ξi,M(λ)dλ = 0
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But also, since for each state λ, σiξi,M(λ) = 1, we have that

∑

i

∫

B
ξi,M(λ)dλ =

∫

B
dλ > 0

which is a contradiction.

4 Conclusions and Open Problems

In this paper, we gave a construction of a maximally nontrivial theory in arbitrary finite dimensions.
However, the theory we constructed is not symmetric and is rather unnatural. We then proved that
symmetric, maximally nontrivial ψ-epistemic theories do not exist in dimensions d ≥ 3 (in contrast
to the d = 2 case, where the Kochen-Specker theory provides an example). Our impossibility
proof made heavy use of the symmetry assumption. As for the assumption d ≥ 3, we used that
in two places: firstly and most importantly, to get a nonempty deficiency region (in Corollary 3),
and secondly, to prove that rψ = 1

2 in Lemma 5.
It might be possible to relax our symmetry assumption and to consider different ontic spaces,

since deficiency holds for any ψ-epistemic theory in d ≥ 3 even without a symmetry assumption.
It would be particularly interesting to consider ontic spaces Λ that are larger than CPd−1, but that
are still acted on by the d-dimensional unitary group U(d).

Also, in our proof, we did not use the specific form of the Born rule, only the fact that projection
of |ψ〉 onto |φ〉 must occur with probability 0 if 〈ψ|φ〉 = 0. Additional properties of the Born rule
might place further constraints on ψ-epistemic theories.

Interestingly, trying to generalize the proof of Theorem 1 directly to obtain a proof of Theorem
2 gives rise to a variant of the Kakeya/Besicovitch problem. Recall that to prove Theorem 1, we
showed that ontic states in a set B in the neighborhood of α returned value j under measurement,
and yet the average measure of states orthogonal to j had nontrivial support on B. Now if the
measures µψ = fψ(|〈ψ|λ〉|

2) vary with ψ, it remains open whether or not the measures of states
orthogonal to j must have support on B, or if instead it is possible for them to “evade” B to avoid
contradicting the Born rule.

Placing this problem in the plane rather than in CPd−1, we obtain a clean Kakeya-like problem
as follows. Let S be a subset of R2 with the following property. For all x ∈ R2 and ε > 0,
S contains a set of circles, centered at x, that has positive Lebesgue measure within the annulus
{y : |y−x| ∈ [1−ε, 1]}. Can the complement of S have positive Lebesgue measure? This question
has been discussed on MathOverflow [12] but remains open.

Here are some additional open problems.

• An obvious problem is whether symmetric and nontrivial (but not necessarily maximally
nontrivial) theories exist in dimensions d ≥ 3.

• How does the size of the deficiency region scale as the dimension d increases?

• In the maximally nontrivial theory we constructed, the overlap between any two non-orthogonal
states |ψ〉, |φ〉 is vanishingly small: like (ε/d)O(d) as a function of the dimension d and inner
product ε = |〈ψ|φ〉|. Is it possible to construct a theory with substantially higher overlaps –
say, (ε/d)O(1)? (Note that if d ≥ 3, then the result of Leifer and Maroney [5] says that the
overlap cannot achieve its “maximum” value of ε2.)

• Can we construct ψ-epistemic theories with the property that an ontic state λ, in the support
of an ontic distribution µψ, can never be used to recover the quantum state ψ uniquely?
(This question was previously asked by Leifer and Maroney [5], as well as by A. Montina on
MathOverflow [9].)
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• What can be said about the case of infinite-dimensional Hilbert spaces?
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