
Lower Bounds for Local Search by Quantum Arguments

Scott Aaronson∗

ABSTRACT
The problem of finding a local minimum of a black-box func-
tion is central for understanding local search as well as quan-
tum adiabatic algorithms. For functions on the Boolean

hypercube {0, 1}n, we show a lower bound of Ω
(
2n/4/n

)

on the number of queries needed by a quantum computer to
solve this problem. More surprisingly, our approach, based
on Ambainis’s quantum adversary method, also yields a

lower bound of Ω
(
2n/2/n2

)
on the problem’s classical ran-

domized query complexity. This improves and simplifies a
1983 result of Aldous. Finally, in both the randomized and
quantum cases, we give the first nontrivial lower bounds for
finding local minima on grids of constant dimension d ≥ 3.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation

General Terms
Theory

Keywords
local search, local optima, query complexity (black box, de-
cision tree), quantum computing, PLS

1. INTRODUCTION
This paper deals with the following problem.
Local Search. Given an undirected graph G = (V, E)

and a function f : V → N, find a local minimum of f —that

∗University of California, Berkeley. Email:
aaronson@cs.berkeley.edu. Parts of this work were
done at the Hebrew University (Jerusalem, Israel) and
the Perimeter Institute (Waterloo, Canada). Supported
by an NSF Graduate Fellowship, by NSF ITR Grant
CCR-0121555, and by the Defense Advanced Research
Projects Agency (DARPA).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

is, a vertex v such that f (v) ≤ f (w) for all neighbors w of
v.

We are interested in the number of queries that an algo-
rithm needs to solve this problem, where a query just returns
f (v) given v. We consider deterministic, randomized, and
quantum algorithms. Section 2 motivates the problem the-
oretically and practically; this section explains our results.

We start with some simple observations. If G is the com-
plete graph of size N , then clearly Ω (N) queries are needed

to find a local minimum (or Ω
(√

N
)

with a quantum com-

puter [8]). At the other extreme, if G is a line of length N ,
then even a deterministic algorithm can find a local mini-
mum in O (log N) queries, using binary search: query the
middle two vertices, v and w. If f (v) ≤ f (w), then search
the line of length (N − 2) /2 connected to v; otherwise search
the line connected to w. Continue recursively in this man-
ner until a local minimum is found.

So the interesting case is when G is a graph of ‘interme-
diate’ connectedness: for example, the Boolean hypercube
{0, 1}n, with two vertices adjacent if and only if they have
Hamming distance 1. For this graph, Llewellyn, Tovey, and
Trick [18] showed a Ω (2n/

√
n) lower bound on the num-

ber of queries needed by any deterministic algorithm, using
a simple adversary argument. Intuitively, until the set of
vertices queried so far comprises a vertex cut (that is, splits
the graph into two or more connected components), an ad-
versary is free to return a descending sequence of f -values:
f (v1) = 2n for the first vertex v1 queried by the algorithm,
f (v2) = 2n − 1 for the second vertex queried, and so on.
Moreover, once the set of queried vertices does comprise a
cut, the adversary can choose the largest connected compo-
nent of unqueried vertices, and restrict the problem recur-
sively to that component. So to lower-bound the determin-
istic query complexity, it suffices to lower-bound the size
of any cut that splits the graph into two reasonably large
components.1 For the Boolean hypercube, Llewellyn et al.
showed that the best one can do is essentially to query all
Ω (2n/

√
n) vertices of Hamming weight n/2.

Llewellyn et al.’s argument fails completely in the case
of randomized algorithms. By Yao’s minimax principle,
what we want here is a fixed distribution D over functions
f : {0, 1}n → N, such that any deterministic algorithm needs
many queries to find a local minimum of f , with high prob-
ability if f is drawn from D. Taking D to be uniform will
not do, since a local minimum of a uniform random func-

1Llewellyn et al. actually give a tight characterization of
deterministic query complexity in terms of vertex cuts.

tion is easily found. However, Aldous [3] had the idea of
defining D via a random walk, as follows. Choose a vertex
v0 ∈ {0, 1}n uniformly at random; then perform an unbi-
ased walk2 v0, v1, v2, . . . starting from v0. For each vertex
v, set f (v) equal to the first hitting time of the walk at v—
that is, f (v) = min {t : vt = v}. Clearly any f produced
in this way has a unique local minimum at v0, since for all
t > 0, if vertex vt is visited for the first time at step t then
f (vt) > f (vt−1). Using sophisticated random walk analy-

sis, Aldous managed to show a lower bound of 2n/2−o(n) on
the expected number of queries needed by any randomized
algorithm to find v0.

3 (As we will see in Section 3, this
lower bound is close to tight.) Intuitively, since a random
walk on the hypercube mixes in O (n log n) steps, an algo-

rithm that has not queried a v with f (v) < 2n/2 has almost
no useful information about where the unique minimum v0

is, so its next query will just be a “stab in the dark.”
However, Aldous’s result leaves several questions about

Local Search unanswered. What if the graph G is a 3-D
cube, on which a random walk does not mix very rapidly?
Can we still lower-bound the randomized query complexity
of finding a local minimum? More generally, what param-
eters of G make the problem hard or easy? Also, what is
the quantum query complexity of Local Search?

This paper presents a new approach to Local Search,
which we believe points the way to a complete understand-
ing of its complexity. Our approach is based on the quan-
tum adversary method, introduced by Ambainis [5] to prove
lower bounds on quantum query complexity. Surprisingly,
our approach yields new and simpler lower bounds for the
problem’s classical randomized query complexity, in addi-
tion to quantum lower bounds. Thus, along with recent
work by Kerenidis and de Wolf [16] and by Aharonov and
Regev [2], this paper illustrates how quantum ideas can help
to resolve classical open problems.

Our results are as follows. For the Boolean hypercube
G = {0, 1}n, we show that any quantum algorithm needs

Ω
(
2n/4/n

)
queries to find a local minimum on G, and any

randomized algorithm needs Ω
(
2n/2/n2

)
queries (improv-

ing the 2n/2−o(n) lower bound of Aldous [3]). Our proofs are
elementary and do not require random walk analysis. By

comparison, the best known upper bounds are O
(
2n/3n1/6

)

for a quantum algorithm and O
(
2n/2√n

)
for a randomized

algorithm. If G is a d-dimensional grid of size N 1/d × · · · ×
N1/d, where d ≥ 3 is a constant, then we show that any

quantum algorithm needs Ω
(√

N1/2−1/d/ log N
)

queries to

find a local minimum on G, and any randomized algorithm

needs Ω
(
N1/2−1/d/ log N

)
queries. No nontrivial lower

bounds (randomized or quantum) were previously known in
this case.4

In an earlier version of this paper, we raised as our “most
ambitious” conjecture that the deterministic and quantum
query complexities of local search are polynomially related

2Actually, Aldous used a continuous-time random walk, so
the functions would be from {0, 1}n to R.
3Independently and much later, Droste et al. [12] showed

the weaker bound 2g(n) for any g (n) = o (n).
4A lower bound on deterministic query complexity is known
for such graphs [17].

for every family of graphs. At the time, it was not even
known whether deterministic and randomized query com-
plexities were polynomially related, not even for simple ex-
amples such as the 2-dimensional square grid. Recently
Santha and Szegedy [21] spectacularly resolved our con-
jecture, by showing that the quantum query complexity is
at least the 19th root (!) of the deterministic complexity.
Given that their result generalizes ours to such an extent,
we feel obligated to explain why this paper is still relevant.
First, for specific graphs such as the hypercube, our lower
bounds are close to tight; those of Santha and Szegedy are
not. Second, we give randomized lower bounds that are
quadratically better than our quantum lower bounds; San-
tha and Szegedy give only quantum lower bounds.

In another recent development, Ambainis (personal com-

munication) has improved our Ω
(
2n/4/n

)
quantum lower

bound for local search on the hypercube to 2n/3/nO(1), us-
ing a hybrid argument. Note that Ambainis’ lower bound
matches the upper bound up to a polynomial factor.

The paper is organized as follows. Section 2 motivates
lower bounds on Local Search, pointing out connections
to simulated annealing, quantum adiabatic algorithms, and
the complexity class TFNP of total function problems. Sec-
tion 3 defines notation and reviews basic facts about Local
Search, including upper bounds. In Section 4 we give
an intuitive explanation of Ambainis’s quantum adversary
method, then state and prove a classical analogue of Am-
bainis’s main lower bound theorem. Section 5 introduces
snakes, a construction by which we apply the two adver-
sary methods to Local Search. We show there that to
prove lower bounds for any graph G, it suffices to upper-
bound a combinatorial parameter ε of a ‘snake distribution’
on G. Section 6 applies this framework to specific examples
of graphs: the Boolean hypercube in Section 6.1, and the
d-dimensional grid in Section 6.2.

2. MOTIVATION
Local search is the most effective weapon ever devised

against hard optimization problems. For many real ap-
plications, neither backtrack search, nor approximation al-
gorithms, nor even Grover’s algorithm (assuming we had a
quantum computer) can compare. Furthermore, along with
quantum computing, local search (broadly defined) is one
of the most interesting links between computer science and
Nature. It is related to evolutionary biology via genetic
algorithms, and to the physics of materials via simulated
annealing. Thus it is both practically and scientifically im-
portant to understand its performance.

The conventional wisdom is that, although local search
performs well in practice, its central (indeed defining) flaw is
a tendency to get stuck at local optima. If this were correct,
one corollary would be that the reason local search performs
so well is that the problem it really solves—finding a local
optimum—is intrinsically easy. It would thus be unneces-
sary to seek further explanations for its performance. An-
other corollary would be that, for unimodal functions (which
have no local optima besides the global optimum), the global
optimum would be easily found.

However, the conventional wisdom is false. The results
of Llewellyn et al. [18] and Aldous [3] show that even if f
is unimodal, any classical algorithm that treats f as a black
box needs exponential time to find the global minimum of f

in general. Our results extend this conclusion to quantum
algorithms. In our view, the practical upshot of these results
is that they force us to confront the question: What is it
about ‘real-world’ problems that makes it easy to find a
local optimum? That is, why do exponentially long chains
of descending values, such as those used for lower bounds,
almost never occur in practice (even in functions with large
range sizes)? We do not know a good answer to this.

Our results are also relevant for physics. Many physical
systems, including folding proteins and networks of springs
and pulleys, can be understood as performing ‘local search’
through an energy landscape to reach a locally-minimal en-
ergy configuration. A key question is, how long will the
system take to reach its ground state (that is, a globally-
minimal configuration)? Of course, if there are local op-
tima, the system might never reach its ground state, just
as a rock in a mountain crevice does not roll to the bot-
tom by going up first. But what if the energy landscape is
unimodal? And moreover, what if the physical system is
quantum? Our results show that, for certain energy land-
scapes, even a quantum system would take exponential time
to reach its ground state, regardless of what Hamiltonian is
applied to it. So in particular, the quantum adiabatic algo-
rithm proposed by Farhi et al. [14], which can be seen as a
quantum analogue of simulated annealing, needs exponen-
tial time to find a local minimum in the worst case.

Finally, our results have implications for so-called total
function problems in complexity theory. Megiddo and Pa-
padimitriou [19] defined a complexity class5 TFNP, consist-
ing (informally) of those NP search problems for which a
solution always exists. For example, we might be given a
function f : {0, 1}n → {0, 1}n−1 as a Boolean circuit, and
asked to find any distinct x, y pair such that f (x) = f (y).
This particular problem belongs to a subclass of TFNP called
PPP (Polynomial Pigeonhole Principle). Notice that no
promise is involved: the combinatorial nature of the prob-
lem itself forces a solution to exist, even if we have no idea
how to find it. In a recent talk, Papadimitriou [20] asked
broadly whether such ‘nonconstructive existence problems’
might be good candidates for efficient quantum algorithms.
In the case of PPP problems, the collision lower bound of
Aaronson [1] (improved by Shi [22] and others) implies a neg-
ative answer in the black-box setting. For other subclasses
of TFNP, such as PODN (Polynomial Odd-Degree Node),
a quantum black-box lower bound follows easily from the
optimality of Grover’s search algorithm.

However, there is one important subclass of TFNP for
which no quantum lower bound was previously known. This
is PLS (Polynomial Local Search), defined by Johnson, Pa-
padimitriou, and Yannakakis [15] as a class of optimization
problems whose cost function f and neighborhood function
η (that is, the set of neighbors of a given point) are both
computable in polynomial time. Given such a problem,
the task is to output any local minimum of the cost func-
tion: that is, a v such that f (v) ≤ f (w) for all w ∈ η (v).
The lower bound of Llewellyn et al. [18] yields an oracle A
relative to which FP

A 6= PLS
A, by a standard diagonaliza-

tion argument along the lines of Baker, Gill, and Solovay
[6]. Likewise, the lower bound of Aldous [3] yields an oracle
relative to which PLS * FBPP, where FBPP is simply the
function version of BPP. Our results yield the first ora-

5See www.cs.berkeley.edu/˜aaronson/zoo.html for details
about the complexity classes mentioned in this paper.

cle relative to which PLS * FBQP. In light of this oracle
separation, we raise an admittedly vague question: is there
a nontrivial “combinatorial” subclass of TFNP that we can
show is contained in FBQP?

3. PRELIMINARIES
In the Local Search problem, we are given an undi-

rected graph G = (V, E) with N = |V |, and oracle access to
a function f : V → N. The goal is to find any local minimum
of f , defined as a vertex v ∈ V such that f (v) ≤ f (w) for
all neighbors w of v. Clearly such a local minimum exists.
We want to find one using as few queries as possible, where a
query returns f (v) given v. Queries can be adaptive; that
is, can depend on the outcomes of previous queries. We
assume G is known in advance, so that only f needs to be
queried. Since we care only about query complexity, not
computation time, there is no difficulty in dealing with an
infinite range for f—though for our lower bounds, it will
turn out that a range of size O (|V |) suffices.

Our model of query algorithms is the standard one; see
[10] for a survey. Given a graph G, the deterministic
query complexity of Local Search on G, which we de-
note DLS (G), is minΓ maxf T (Γ, f, G) where the minimum
ranges over all deterministic algorithms Γ, the maximum
ranges over all f , and T (Γ, f, G) is the number of queries
made to f by Γ before it halts and outputs a local minimum
of f (or ∞ if Γ fails to do so). The randomized query com-
plexity RLS (G) is defined similarly, except that now the
algorithm has access to an infinite random string R, and
must only output a local minimum with probability at least
2/3 over R. For simplicity, we assume that the number
of queries T is the same for all R; clearly this assumption
changes the complexity by at most a constant factor.

In the quantum model, an algorithm’s state has the form∑
v,z,s αv,z,s |v, z, s〉, where v is the label of a vertex in G,

and z and s are strings representing the answer register and
workspace respectively. The αv,z,s’s are complex ampli-
tudes satisfying

∑
v,z,s |αv,z,s|2 = 1. Starting from an ar-

bitrary (fixed) initial state, the algorithm proceeds by an
alternating sequence of queries and algorithm steps. A
query maps each |v, z, s〉 to |v, z ⊕ f (v) , s〉, where ⊕ de-
notes bitwise exclusive-OR. An algorithm step multiplies
the vector of αv,z,s’s by an arbitrary unitary matrix that
does not depend on f . Letting Mf denote the set of
local minima of f , the algorithm succeeds if at the end∑

v,z,s : v∈Mf
|αv,z,s|2 ≥ 2

3
. Then the bounded-error quan-

tum query complexity, or QLS (G), is defined as the mini-
mum number of queries used by a quantum algorithm that
succeeds on every f .

It is immediate that QLS (G) ≤ RLS (G) ≤ DLS (G) ≤ N .
Also, letting δ be the maximum degree of G, we have the
following trivial lower bound.

Proposition 1. RLS (G) = Ω (δ) and QLS (G) = Ω
(√

δ
)
.

Proof. Let v be a vertex of G with degree δ. Choose a
neighbor w of v uniformly at random, and let f (w) = 1. Let
f (v) = 2, and f (u) = 3 for all neighbors u of v other than
w. Let S be the neighbor set of v (including v itself); then
for all x /∈ S, let f (x) = 3 + ∆ (x, S) where ∆ (x, S) is the
minimum distance from x to a vertex in S. Clearly f has
a unique local minimum at w. However, finding y requires

exhaustive search among the δ neighbors of v, which takes

Ω
(√

δ
)

quantum queries by Bennett et al. [8].

A corollary of Proposition 1 is that classically, zero-error
randomized query complexity is equivalent to bounded-error
up to a constant factor. For given a candidate local mini-
mum v, one can check using O (δ) queries that v is indeed
a local minimum. Since Ω (δ) queries are needed anyway,
this verification step does not affect the overall complexity.

As pointed out by Aldous [3], a classical randomized algo-
rithm can find a local minimum of f with high probability

in O
(√

Nδ
)

queries. The algorithm just queries
√

Nδ ver-

tices uniformly at random, and lets v0 be a queried vertex
for which f (v) is minimal. It then follows v0 to a local
minimum by steepest descent. That is, for t = 0, 1, 2, . . .,
it queries all neighbors of vt, halts if vt is a local minimum,
and otherwise sets vt+1 to be the neighbor w of vt for which
f (w) is minimal (breaking ties by lexicographic ordering).
A similar idea yields an improved quantum upper bound.

Proposition 2. For any G, QLS (G) = O
(
N1/3δ1/6

)
.

Proof. The algorithm first chooses N2/3δ1/3 vertices of
G uniformly at random, then uses Grover search to find a
chosen vertex v0 for which f (v) is minimal. By a result of
Dürr and Høyer [13], this can be done with high probabil-

ity in O
(
N1/3δ1/6

)
queries. Next, for t = 0, 1, 2, . . ., the

algorithm performs Grover search over all neighbors of vt,
looking for a neighbor w such that f (w) < f (vt). If it finds
such a w, then it sets vt+1 := w and continues to the next
iteration. Otherwise, it repeats the Grover search log (N/δ)
times before finally giving up and returning vt as a claimed
local minimum.

The expected number of u such that f (u) < f (v0) is at

most N/
(
N2/3δ1/3

)
= (N/δ)1/3. Since f (vt+1) < f (vt)

for all t, clearly the number of such u provides an upper
bound on t. Furthermore, assuming there exists a w such
that f (w) < f (vt), the expected number of repetitions of
Grover’s algorithm until such a w is found is O (1). Since

each repetition takes O
(√

δ
)

queries, by linearity of ex-

pectation the total expected number of queries used by the
algorithm is therefore

O
(
N1/3δ1/6 + (N/δ)1/3

√
δ + log (N/δ)

√
δ
)

or O
(
N1/3δ1/6

)
. To see that the algorithm finds a local

minimum with high probability, observe that for each t, the
probability of not finding a w such that f (w) < f (vt), given

that one exists, is at most c− log(N/δ) ≤ (δ/N)1/3 /10 for a
suitable constant c. So by the union bound, the probabil-
ity that the algorithm returns a ‘false positive’ is at most

(N/δ)1/3 · (δ/N)1/3 /10 = 1/10.

4. RELATIONAL ADVERSARY METHOD
We know of essentially two methods for proving lower

bounds on quantum query complexity: the polynomial method
of Beals et al. [7], and the quantum adversary method of
Ambainis [5].6 For a few problems, such as the collision

6We are thinking here of the hybrid method [8] as a cousin
of the adversary method.

problem [1, 22], the polynomial method succeeded where
the adversary method failed. However, for problems that
lack permutation symmetry (such as Local Search), the
adversary method has proven more effective.7

How could a quantum lower bound method possibly be ap-
plied classically? When proving randomized lower bounds,
the tendency is to attack “bare-handed”: fix a distribution
over inputs, and let x1, . . . , xt be the locations queried so far
by the algorithm. Show that for small t, the posterior distri-
bution over inputs, conditioned on x1, . . . , xt, is still ‘hard’
with high probability—so that the algorithm knows almost
nothing even about which location xt+1 to query next. This
is essentially the approach taken by Aldous [3] to prove a

2n/2−o(n) lower bound on RLS ({0, 1}n).
In the quantum case, however, it is unclear how to specify

what an algorithm ‘knows’ after a given number of queries.
So we are almost forced to step back, and identify general
combinatorial properties of input sets that make them hard
to distinguish. Once we have such properties, we can then
try to exhibit them in functions of interest.

We believe this “gloved” attack can be useful for classical
lower bounds as well as quantum ones. In our relational
adversary method, we assume there exists a T -query ran-
domized algorithm for function F . We consider a set A of
0-inputs of F , a set B of 1-inputs, and an arbitrary real-
valued relation function R (A,B) ≥ 0 for A ∈ A and B ∈ B.
Intuitively, R (A, B) should be large if A and B differ in
only a few locations. We then fix a probability distribution
D over inputs; by Yao’s minimax principle, there exists a
T -query deterministic algorithm Γ∗ that succeeds with high
probability on inputs drawn from D. Let WA be the set of
0-inputs and WB the set of 1-inputs on which Γ∗ succeeds.
Using the relation function R, we define a separation mea-
sure S between WA and WB , and show that (1) initially
S = 0, (2) by the end of the computation S must be large,
and (3) S increases by only a small amount as the result of
each query. It follows that T must be large.

Undoubtedly any randomized lower bound proved using
our relational method could also be proved “bare-handed,”
without any quantum intuition. However, our method
makes it easier to focus on what is unique about a prob-
lem, and ignore what is common among many problems.

Our starting point is the “most general” adversary theo-
rem in Ambainis’s original paper (Theorem 6 in [5]), which
he introduced to prove a quantum lower bound for the prob-
lem of inverting a permutation. Here the input is a per-
mutation σ (1) , . . . , σ (N), and the task is to output 0 if
σ−1 (1) ≤ N/2 and 1 otherwise. To lower-bound this prob-
lem’s query complexity, what we would like to say is this:

Given any 0-input σ and any location x, if we choose a
random 1-input τ that is ‘related’ to σ, then the probability
θ (σ, x) over τ that σ (x) does not equal τ (x) is small. In
other words, the algorithm is unlikely to distinguish σ from
a random neighbor τ of σ by querying x.

Unfortunately, the above claim is false. Letting x =
σ−1 (1), we have that σ (x) 6= τ (x) for every 1-input τ ,
and thus θ (σ, x) = 1. Ambainis resolves this difficulty by
letting us take the maximum, over all 0-inputs σ and 1-
inputs τ that are related and differ at x, of the geometric
mean

√
θ (σ, x) θ (τ, x). Even if θ (σ, x) = 1, the geometric

7Indeed, Ambainis [4] has given problems for which the ad-
versary method provably yields a better lower bound than
the polynomial method.

mean is still small provided that θ (τ, x) is small. More
formally:

Theorem 3 (Ambainis). Let A ⊆ F−1 (0) and B ⊆
F−1 (1) be sets of inputs to function F . Let R (A, B) ≥ 0 be
a real-valued function, and for A ∈ A, B ∈ B, and location
x, let

θ (A,x) =

∑
B∗∈B : A(x)6=B∗(x) R (A,B∗)

∑
B∗∈B R (A,B∗)

,

θ (B, x) =

∑
A∗∈A : A∗(x)6=B(x) R (A∗, B)

∑
A∗∈A R (A∗, B)

,

where the denominators are all nonzero. Then the number
of quantum queries needed to evaluate F with at least 9/10
probability is Ω (1/υgeom), where

υgeom = max
A∈A, B∈B, x :

R(A,B)>0, A(x)6=B(x)

√
θ (A,x) θ (B, x).

To illustrate we show the following.

Proposition 4 (Ambainis). The quantum query com-

plexity of inverting a permutation is Ω
(√

N
)
.

Proof. Let A be the set of all permutations σ such that
σ−1 (1) ≤ N/2, and B be the set of permutations τ such that
τ−1 (1) > N/2. Given σ ∈ A and τ ∈ B, let R (σ, τ) = 1
if σ and τ differ only at locations σ−1 (1) and τ−1 (1), and
R (σ, τ) = 0 otherwise. Then given σ, τ with R (σ, τ) =
1, if x 6= σ−1 (1) then θ (σ, x) = 2/N , and if x 6= τ−1 (1)

then θ (τ, x) = 2/N . So maxx : σ(x)6=τ(x)

√
θ (σ, x) θ (τ, x) =√

2/N .

The only difference between Theorem 3 and our relational
adversary theorem is that in the latter, we take the mini-
mum of θ (A, x) and θ (B, x) instead of the geometric mean.
Taking the reciprocal then gives up to a quadratically better
lower bound: for example, we obtain that the randomized
query complexity of inverting a permutation is Ω (N). How-
ever, the proofs of the two theorems are quite different.

Theorem 5. Let A,B, R, θ be as in Theorem 3. Then
the number of randomized queries needed to evaluate F with
at least 9/10 probability is Ω (1/υmin), where

υmin = max
A∈A, B∈B, x :

R(A,B)>0, A(x)6=B(x)

min {θ (A,x) , θ (B, x)} .

Proof. Let Γ be a randomized algorithm that, given an
input A, returns F (A) with at least 9/10 probability. Let
T be the number of queries made by Γ. For all A ∈ A,
B ∈ B, define

M (A) =
∑

B∗∈B

R (A, B∗) ,

M (B) =
∑

A∗∈A

R (A∗, B) ,

M =
∑

A∗∈A

M (A∗) =
∑

B∗∈B

M (B∗) .

Now let DA be the distribution over A ∈ A in which each
A is chosen with probability M (A) /M ; and let DB be the
distribution over B ∈ B in which each B is chosen with
probability M (B) /M . Let D be an equal mixture of DA

and DB . By Yao’s minimax principle, there exists a deter-
ministic algorithm Γ∗ that makes T queries, and succeeds
with at least 9/10 probability given an input drawn from D.
Therefore Γ∗ succeeds with at least 4/5 probability given an
input drawn from DA alone, or from DB alone. In other
words, letting WA be the set of A ∈ A and WB the set of
B ∈ B on which Γ∗ succeeds, we have

∑

A∈WA

M (A) ≥ 4

5
M,

∑

B∈WB

M (B) ≥ 4

5
M.

Define a predicate P (t) (A,B), which is true if Γ∗ has dis-
tinguished A ∈ A from B ∈ B by the tth query and false
otherwise. (To distinguish A from B means to query an
index x for which A (x) 6= B (x), given either A or B as
input.) Also, for all A ∈ A, define a score function

S(t) (A) =
∑

B∗∈B : P (t)(A,B∗)

R (A,B∗) .

This function measures how much “progress” has been made
so far in separating A from B-inputs, where the B-inputs are
weighted by R (A, B). Similarly, for all B ∈ B define

S(t) (B) =
∑

A∗∈A : P (t)(A∗,B)

R (A∗, B) .

It is clear that for all t,
∑

A∈A

S(t) (A) =
∑

B∈B

S(t) (B) .

So we can denote the above sum by S(t) and think of it as a
global progress measure. We will show the following about
S(t):

(i) S(0) = 0 initially.

(ii) S(T) ≥ 3M/5 by the end.

(iii) ∆S(t) ≤ 3υminM for all t, where ∆S(t) = S(t) −S(t−1)

is the amount by which S(t) increases as the result of
a single query.

It follows from (i)-(iii) that

T ≥ 3M/5

3υminM
=

1

5υmin

which establishes the theorem. Part (i) is obvious. For
part (ii), observe that for every pair (A, B) with A ∈ WA

and B ∈ WB, the algorithm Γ∗ must query an x such that
A (x) 6= B (x). Thus

S(T) ≥
∑

A∈WA, B∈WB

R (A, B)

≥
∑

A∈WA

M (A) −
∑

B /∈WB

M (B) ≥ 4

5
M − 1

5
M.

It remains only to show part (iii). Suppose ∆S(t) > 3υminM
for some t; we will obtain a contradiction. Let

∆S(t) (A) = S(t) (A) − S(t−1) (A) ,

and let CA be the set of A ∈ A for which ∆S(t) (A) >
υminM (A). Since

∑

A∈A

∆S(t) (A) = ∆S(t) > 3υminM,

it follows by Markov’s inequality that

∑

A∈CA

∆S(t) (A) ≥ 2

3
∆S(t).

Similarly, if we let CB be the set of B ∈ B for which
∆S(t) (B) > υminM (B), we have

∑

B∈CB

∆S(t) (B) ≥ 2

3
∆S(t).

In other words, at least 2/3 of the increase in S(t) comes
from (A, B) pairs such that A ∈ CA, and at least 2/3 comes
from (A,B) pairs such that B ∈ CB . Hence, by a ‘pigeon-
hole’ argument, there exists an A ∈ CA and B ∈ CB with
R (A,B) > 0 that are distinguished by the tth query. In
other words, there exists an x with A (x) 6= B (x), such that
the tth index queried by Γ∗ is x whether the input is A or
B. Then since A ∈ CA, we have υminM (A) < ∆S(t) (A),
and hence

υmin <
∆S(t) (A)

M (A)
≤
∑

B∗∈B : A(x)6=B∗(x) R (A, B∗)
∑

B∗∈B R (A, B∗)

which equals θ (A, x). Similarly υmin < θ (B, x) since B ∈
CB . This contradicts the definition

υmin = max
A∈A, B∈B, x :

R(A,B)>0, A(x)6=B(x)

min {θ (A,x) , θ (B,x)} ,

and we are done.

5. SNAKES
For our lower bounds, it will be convenient to generalize

random walks to arbitrary distributions over paths, which
we call snakes.

Definition 6. Given a vertex h in G and a positive in-
teger L, a snake distribution Dh,L (parameterized by h and
L) is a probability distribution over paths (x0, . . . , xL−1) in
G, such that each xt is either equal or adjacent to xt+1, and
xL−1 = h. Let Dh,L be the support of Dh,L. Then an ele-
ment of Dh,L is called a snake; the part near x0 is the tail
and the part near xL−1 = h is the head.

Given a snake X and integer t, we use X [t] as shorthand
for {x0, . . . , xt}.

Definition 7. We say a snake X ∈ Dh,L is ε-good if
the following holds. Choose j uniformly at random from
{0, . . . , L − 1}, and let Y = (y0, . . . , yL−1) be a snake drawn
from Dh,L conditioned on xt = yt for all t > j. Then

(i) Letting SX,Y be the set of vertices v in X∩Y such that
min {t : xt = v} = min {t : yt = v}, we have

Pr
j,Y

[X ∩ Y = SX,Y] ≥ 9/10.

(ii) For all vertices v, Prj,Y [v ∈ Y [j]] ≤ ε.

The procedure above—wherein we choose a j uniformly
at random, then draw a Y from Dh,L consistent with X on
all steps later than j—will be important in what follows.
We call it the snake X flicking its tail. Intuitively, a snake
is good if it is spread out fairly evenly in G—so that when
it flicks its tail, (1) with high probability the old and new

4

3
2

1

5
6

7

8

9

10

11

xj+1=yj+1

x0

54

3

2
1

11

y0

Large θ(fX,v)
but small θ(fY,v)

Large θ(fY,v)
but small θ(fX,v)

xL-1=yL-1

Figure 1: For every vertex v such that fX (v) 6= fY (v),
either when snake X flicks its tail v is not hit with

high probability, or when snake Y flicks its tail v is

not hit with high probability.

tails do not intersect, and (2) any particular vertex is hit by
the new tail with probability at most ε.

We now explain our ‘snake method’ for proving lower
bounds for Local Search. Given a snake X, we define an
input fX with a unique local minimum at x0, and f -values
that decrease along X from head to tail. Then, given inputs
fX and fY with X ∩ Y = SX,Y , we let the relation function
R (fX , fY) be proportional to the probability that snake Y
is obtained by X flicking its tail. (If X ∩ Y 6= SX,Y we let
R = 0.) Let fX and gY be inputs with R (fX , gY) > 0,
and let v be a vertex such that fX (v) 6= gY (v). Then if
all snakes were good, there would be two mutually exclusive
cases: (1) v belongs to the tail of X, or (2) v belongs to the
tail of Y . In case (1), v is hit with small probability when Y
flicks its tail, so θ (fY , v) is small. In case (2), v is hit with
small probability when X flicks its tail, so θ (fX , v) is small.

In either case, then, the geometric mean
√

θ (fX , v) θ (fY , v)
and minimum min {θ (fX , v) , θ (fY , v)} are small. So even
though θ (fX , v) or θ (fY , v) could be large individually, The-
orems 3 and 5 yield a good lower bound, as in the case of
inverting a permutation (see Figure 1).

One difficulty is that not all snakes are good; at best,
a large fraction of them are. We could try deleting all
inputs fX such that X is not good, but that might ruin some
remaining inputs, which would then have fewer neighbors.
So we would have to delete those inputs as well, and so on
ad infinitum. What we need is basically a way to replace
“all inputs” by “most inputs” in Theorems 3 and 5.

Fortunately, a simple graph-theoretic lemma can accom-
plish this. The lemma (see Diestel [11, p.6] for example)
says that any graph with average degree at least k contains
an induced subgraph with minimum degree at least k/2.
Here we prove a weighted analogue of the lemma.

Lemma 8. Let p (1) , . . . , p (m) be positive reals summing
to 1. Also let w (i, j) for i, j ∈ {1, . . . , m} be nonnegative re-
als satisfying w (i, j) = w (j, i) and

∑
i,j w (i, j) ≥ r. Then

there exists a nonempty subset U ⊆ {1, . . . , m} such that for
all i ∈ U ,

∑
j∈U w (i, j) ≥ rp (i) /2.

Proof. If r = 0 then the lemma trivially holds, so as-

sume r > 0. We construct U via an iterative procedure.
Let U (0) = {1, . . . , m}. Then for all t, if there exists an
i∗ ∈ U (t) for which

∑

j∈U(t)

w (i∗, j) <
r

2
p (i∗) ,

then set U (t + 1) = U (t)\{i∗}. Otherwise halt and return
U = U (t). To see that the U so constructed is nonempty,
observe that when we remove i∗, the sum

∑
i∈U(t) p (i) de-

creases by p (i∗), while
∑

i,j∈U(t) w (i, j) decreases by at most

∑

j∈U(t)

w (i∗, j) +
∑

j∈U(t)

w (j, i∗) < rp (i∗) .

So since
∑

i,j∈U(t) w (i, j) was positive to begin with, it must

still be positive at the end of the procedure; hence U must
be nonempty.

We can now prove the main result of the section.

Theorem 9. Suppose a snake drawn from Dh,L is ε-good
with probability at least 9/10. Then

RLS (G) = Ω (1/ε) , QLS (G) = Ω
(√

1/ε
)

.

Proof. Given a snake X ∈ Dh,L, we construct an in-
put function fX as follows. For each v ∈ X, let fX (v) =
min {t : xt = v}; and for each v /∈ X, let fX (v) = ∆ (v, h)+
L where ∆ (v, h) is the distance from v to h in G. Clearly
fX so defined has a unique local minimum at x0. To ob-
tain a decision problem, we stipulate that querying x0 re-
veals an answer bit (0 or 1) in addition to fX (x1); the algo-
rithm’s goal is then to return the answer bit. Obviously a
lower bound for the decision problem implies a correspond-
ing lower bound for the search problem. Let us first prove
the theorem in the case that all snakes in Dh,L are ε-good.
Let p (X) be the probability of drawing snake X from Dh,L.
Also, given snakes X, Y and j ∈ {0, . . . , L − 1}, let qj (X, Y)
be the probability that X∗ = Y , if X∗ is drawn from Dh,L

conditioned on agreeing with X on all steps later than j.
Then define

w (X, Y) =
p (X)

L

L−1∑

j=0

qj (X, Y) .

Our first claim is that w is symmetric; that is, w (X, Y) =
w (Y, X). It suffices to show that

p (X) qj (X, Y) = p (Y) qj (Y, X)

for all j. We can assume X agrees with Y on all steps later
than j, since otherwise qj (X, Y) = qj (Y, X) = 0. Given
an X∗ ∈ Dh,L, let A denote the event that X∗ agrees with
X (or equivalently Y) on all steps later than j, and let BX

(resp. BY) denote the event that X∗ agrees with X (resp.
Y) on steps 1 to j. Then

p (X) qj (X, Y) = Pr [A] Pr [BX |A] · Pr [BY |A]

= p (Y) qj (Y, X) .

Now let E (X, Y) denote the event that X ∩ Y = SX,Y ,
where SX,Y is as in Definition 7. Also, let fX be the input
obtained from X that has answer bit 0, and gX be the input
that has answer bit 1. To apply Theorems 3 and 5, take A =
{fX : X ∈ Dh,L} and B = {gX : X ∈ Dh,L}. Then take
R (fX , gY) = w (X, Y) if E (X, Y) holds, and R (fX , gY) = 0

otherwise. Given fX ∈ A and gY ∈ B with R (fX , gY) > 0,
and letting v be a vertex such that fX (v) 6= gY (v), we must
then have either v /∈ X or v /∈ Y . Suppose the former case;
then

∑

fX∗∈A : fX∗ (v)6=gY (v)

R (fX∗ , gY)

≤
∑

fX∗∈A : fX∗ (v)6=gY (v)

p (Y)

L

L−1∑

j=0

qj (Y, X∗) ≤ εp (Y) ,

since Y is ε-good. Thus θ (gY , v) equals
∑

fX∗∈A : fX∗ (v)6=gY (v) R (fX∗ , gY)
∑

fX∗∈A R (fX∗ , gY)
≤ εp (Y)

9p (Y) /10
.

Similarly, if v /∈ Y then θ (fX , v) ≤ 10ε/9 by symmetry.
Hence

υmin = max
fX∈A, gY ∈B, v:

R(fX ,gY)>0,
fX(v)6=gY (v)

min {θ (fX , v) , θ (gY , v)} ≤ ε

9/10
,

υgeom = max
fX∈A, gY ∈B, v:

R(fX ,gY)>0,
fX(v)6=gY (v)

√
θ (fX , v) θ (gY , v) ≤

√
ε

9/10
,

the latter since θ (fX , v) ≤ 1 and θ (gY , v) ≤ 1 for all fX , gY

and v. We now turn to the general case, in which a snake
drawn from Dh,L is ε-good with probability at least 9/10.
Let G (X) denote the event that X is ε-good. Take A∗ =
{fX ∈ A : G (X)} and B∗ = {gY ∈ B : G (Y)}, and take
R (fX , gY) as before. Then since

∑

X,Y : E(X,Y)

w (X, Y) ≥
∑

X

9

10
p (X) ≥ 9

10
,

by the union bound we have
∑

fX∈A∗, gY ∈B∗

R (fX , gY)

≥
∑

X,Y : G(X)∧G(Y)∧E(X,Y)

w (X, Y)

−
∑

X : qG(X)

p (X) −
∑

Y : qG(Y)

p (Y)

≥ 9

10
− 1

10
− 1

10
=

7

10
.

So by Lemma 8, there exist subsets Ã ⊆ A∗ and B̃ ⊆ B∗

such that for all fX ∈ Ã and gY ∈ B̃,

∑

gY ∗∈B̃

R (fX , gY ∗) ≥ 7p (X)

20
,

∑

fX∗∈Ã

R (fX∗ , gY) ≥ 7p (Y)

20
.

So for all fX , gY with R (fX , gY) > 0, and all v such that
fX (v) 6= gY (v), either θ (fX , v) ≤ 20ε/7 or θ (gY , v) ≤
20ε/7. Hence υmin ≤ 20ε/7 and υgeom ≤

√
20ε/7.

6. SPECIFIC GRAPHS
In this section we apply the ‘snake method’ developed

in Section 5 to specific examples of graphs: the Boolean
hypercube in Section 6.1, and the d-dimensional cubic grid
(for d ≥ 3) in Section 6.2.

6.1 Boolean Hypercube
Abusing notation, we let {0, 1}n denote the n-dimensional

Boolean hypercube—that is, the graph whose vertices are n-
bit strings, with two vertices adjacent if and only if they have
Hamming distance 1. Given a vertex v ∈ {0, 1}n, we let

v [0] , . . . , v [n − 1] denote the n bits of v, and let v(i) denote
the neighbor obtained by flipping bit v [i]. In this section
we lower-bound RLS ({0, 1}n) and QLS ({0, 1}n).

Fix a ‘snake head’ h ∈ {0, 1}n and take L = 2n/2/100.
We define the snake distribution Dh,L via what we call a
coordinate loop, as follows. Starting from x0 = h, for each

t take xt+1 = xt with 1/2 probability, and xt+1 = x
(t mod n)
t

with 1/2 probability. The following is a basic fact about
this distribution.

Proposition 10. The coordinate loop mixes completely
in n steps, in the sense that if t∗ ≥ t + n, then xt∗ is a
uniform random vertex conditioned on xt.

We could also use the random walk distribution, follow-
ing Aldous [3]. However, not only is the coordinate loop
distribution easier to work with (since it produces fewer self-
intersections), it also yields a better lower bound (since it
mixes completely in n steps, as opposed to approximately
in n log n steps).

We first upper-bound the probability, over X, j, and Y [j],
that X ∩ Y 6= SX,Y (where SX,Y is as in Definition 7).

Lemma 11. Suppose X is drawn from Dh,L, j is drawn
uniformly from {0, . . . , L − 1}, and Y [j] is drawn from Dxj ,j.
Then PrX,j,Y [j] [X ∩ Y = SX,Y] ≥ 0.9999.

Proof. Call a disagreement a vertex v such that

min {t : xt = v} 6= min {t∗ : yt∗ = v} .

Clearly if there are no disagreements then X ∩ Y = SX,Y .
If v is a disagreement, then by the definition of Dh,L we
cannot have both t > j − n and t∗ > j − n. So by Propo-
sition 10, either yt∗ is uniformly random conditioned on X,
or xt is uniformly random conditioned on Y [j]. Hence
PrX,j,Y [j] [xt = yt∗] = 1/2n. So by the union bound,

Pr
X,j,Y [j]

[X ∩ Y 6= SX,Y] ≤ L2

2n
= 0.0001.

We now argue that, unless X spends a ‘pathological’ amount
of time in one part of the hypercube, the probability of any
vertex v being hit when X flicks its tail is small. To prove
this, we define a notion of sparseness, and then show that (1)
almost all snakes drawn from Dh,L are sparse (Lemma 13),
and (2) sparse snakes are unlikely to hit any given vertex v
(Lemma 14).

Definition 12. Given vertices v, w and i ∈ {0, . . . , n − 1},
let ∆ (x, v, i) be the number of steps needed to reach v from x
by first setting x [i] := v [i], then setting x [i − 1] := v [i − 1],
and so on. (After we set x [0] we wrap around to x [n − 1].)
Then X is sparse if there exists a constant c such that for
all v ∈ {0, 1}n and all k,

|{t : ∆ (xt, v, tmod n) = k}| ≤ cn

(
n +

L

2n−k

)
.

Lemma 13. If X is drawn from Dh,L, then X is sparse
with probability 1 − o (1).

Proof. For each i ∈ {0, . . . , n − 1}, the number of t ∈
{0, . . . , L − 1} such that t ≡ i (mod n) is at most L/n. For

such a t, let E
(v,i,k)
t be the event that ∆ (xt, v, i) ≤ k; then

E
(v,i,k)
t holds if and only if

xt [i] = v [i] , . . . , xt [i − k + 1] = v [i − k + 1]

(where we wrap around to xt [n − 1] after reaching xt [0]).
This occurs with probability 2k/2n over X. Furthermore,

by Proposition 10, the E
(v,i,k)
t events for different t’s are

independent. So let

µk =
L

n
· 2k

2n
;

then for fixed v, i, k, the expected number of t’s for which

E
(v,i,k)
t holds is at most µk. Thus by a Chernoff bound, if

µk ≥ 1 then

Pr
X

[∣∣∣
{

t : E
(v,i,k)
t

}∣∣∣ > cn · µk

]
<

(
ecn−1

(cn)cn

)µk

<
1

22n

for sufficiently large c. Similarly, if µk < 1 then

Pr
X

[∣∣∣
{

t : E
(v,i,k)
t

}∣∣∣ > cn
]

<

(
ecn/µk−1

(cn/µk)cn/µk

)µk

<
1

22n

for sufficiently large c. By the union bound, then,
∣∣∣
{

t : E
(v,i,k)
t

}∣∣∣ ≤ cn · (1 + µk) = c

(
n +

L

2n−k

)

for every v, i, k triple simultaneously with probability at
least 1−n22n/22n = 1−o (1). Summing over all i’s produces
the additional factor of n.

Lemma 14. If X is sparse, then for every v ∈ {0, 1}n,

Pr
j,Y

[v ∈ Y [j]] = O

(
n2

L

)
.

Proof. By assumption, for every k ∈ {0, . . . , n},

Pr
j

[∆ (xj , v, j mod n) = k] ≤ |{t : ∆ (xt, v, tmod n) = k}|
L

≤ cn

L

(
n +

L

2n−k

)
.

Consider the probability that v ∈ Y [j] in the event that
∆ (xj , v, j mod n) = k. Clearly

Pr
Y

[v ∈ {yj−n+1, . . . , yj}] =
1

2k
.

Also, Proposition 10 implies that for every t ≤ j − n, the
probability that yt = v is 2−n. So by the union bound,

Pr
Y

[v ∈ {y0, . . . , yj−n}] ≤ L

2n
.

Then Prj,Y [v ∈ Y [j]] equals

n∑

k=0

(
Prj [∆ (xj , v, j mod n) = k] ·

PrY [v ∈ Y [j] | ∆ (xj , v, j mod n) = k]

)

≤
n∑

k=0

cn

L

(
n +

L

2n−k

)(
1

2k
+

L

2n

)
= O

(
cn2

L

)

as can be verified by breaking the sum into cases and doing
some manipulations.

Figure 2: In d = 3 dimensions, a snake drawn from

Dh,L moves a random distance left or right, then a

random distance up or down, then a random dis-

tance inward or outward, etc.

The main result follows easily:

Theorem 15.

RLS ({0, 1}n) = Ω

(
2n/2

n2

)
, QLS ({0, 1}n) = Ω

(
2n/4

n

)
.

Proof. Take ε = n2/2n/2. Then by Theorem 9, it suf-
fices to show that a snake X drawn from Dh,L is O (ε)-good
with probability at least 9/10. First, since

Pr
X,j,Y [j]

[X ∩ Y = SX,Y] ≥ 0.9999

by Lemma 11, Markov’s inequality shows that

Pr
X

[
Pr

j,Y [j]
[X ∩ Y = SX,Y] ≥ 9

10

]
≥ 19

20
.

Second, by Lemma 13, X is sparse with probability 1−o (1),
and by Lemma 14, if X is sparse then

Pr
j,Y

[v ∈ Y [j]] = O

(
n2

L

)
= O (ε)

for every v. So both requirements of Definition 7 hold si-
multaneously with probability at least 9/10.

6.2 Constant-Dimensional Grid Graph
In the Boolean hypercube case, we defined Dh,L by a ‘co-

ordinate loop’ instead of the usual random walk mainly for
convenience. When we move to the d-dimensional grid,
though, the drawbacks of random walks become more seri-
ous: first, the mixing time is too long, and second, there are
too many self-intersections, particularly if d ≤ 4. Our snake
distribution will instead use straight lines of randomly cho-
sen lengths attached at the endpoints, as in Figure 2. Let
Gd,N be a d-dimensional grid graph with d ≥ 3. That is,
Gd,N has N vertices of the form v = (v [0] , . . . , v [d − 1]),

where each v [i] is in
{
1, . . . , N1/d

}
(we assume for simplic-

ity that N is a dth power). Vertices v and w are adjacent if
and only if |v [i] − w [i]| = 1 for some i ∈ {0, . . . , d − 1}, and
v [j] = w [j] for all j 6= i (so Gd,N does not wrap around at
the boundaries).

We take L =
√

N/100, and define the snake distribution
Dh,L as follows. Starting from x0 = h, for each T we take

xN1/d(T+1) identical to xN1/dT , but with the (T mod d)th

coordinate xN1/d(T+1) [T mod d] replaced by a uniform ran-

dom value in
{
1, . . . , N1/d

}
. We then take the vertices

xN1/dT+1, . . . , xN1/dT+N1/d−1 to lie along the shortest path
from xN1/dT to xN1/d(T+1), ‘stalling’ at xN1/d(T+1) once
that vertex has been reached. We call

ΦT =
(
xN1/dT , . . . , xN1/dT+N1/d−1

)

a line of vertices, whose direction is T mod d. As in the
Boolean hypercube case, we have:

Proposition 16. Dh,L mixes completely in dN1/d steps,
in the sense that if T ∗ ≥ T + d, then xN1/dT∗ is a uniform
random vertex conditioned on xN1/dT .

Lemma 11 in Section 6.1 goes through essentially without
change.

Definition 17. Letting ∆ (x, v, i) be as before, we say X
is sparse if there exists a constant c (possibly dependent on
d) such that for all vertices v and all k,

∣∣∣
{

t : ∆
(
xt, v,

⌊
t/N1/d

⌋
mod d

)
= k

}∣∣∣

≤ (c log N)

(
N1/d +

L

N1−k/d

)
.

Lemma 18. If X is drawn from Dh,L, then X is sparse
with probability 1 − o (1).

Proof. Similar to Lemma 13. Let ΦT be a line of ver-
tices with direction i = T mod d, and notice that ∆ (xt, v, i)

is the same for every vertex xt in ΦT . Let E
(v,i,k)
T denote the

event that ∆ (xt, v, i) ≤ k for the xt’s in ΦT . Then E
(v,i,k)
T

occurs with probability N (k−1)/d/N over X. Furthermore,

if |T − T ∗| ≥ d then E
(v,i,k)
T and E

(v,i,k)
T∗ are independent

events. So let

µk = L · N (k−1)/d

N
;

then for fixed v, i, k, the expected number of lines for which

E
(v,i,k)
T holds is at most µk. Thus, by a Chernoff bound, if

µk ≥ 1 then

Pr
X

[∣∣∣
{

T : E
(v,i,k)
T

}∣∣∣ > c log N · µk

]
<

(
ec log N−1

(c log N)c log N

)µk

which is at most 1/N2 for sufficiently large c. Similarly, if
µk < 1 then letting m = (c log N) /µk,

Pr
X

[∣∣∣
{

T : E
(v,i,k)
T

}∣∣∣ > c log N
]

<

(
em−1

mm

)µk

<
1

N2

for sufficiently large c. So with probability 1−o (1) it holds

that for all v, k, letting it =
⌊
t/N1/d

⌋
mod d,

|{t : ∆ (xt, v, it) = k}| ≤ c log N · (1 + µk) · N1/d

= (c log N)

(
N1/d +

L

N1−k/d

)
.

Lemma 19. If X is sparse, then for every v ∈ Gd,N ,

Pr
j,Y

[v ∈ Y [j]] = O

(
N1/d log N

L

)
,

where the big-O hides a constant dependent on d.

Proof. As in Lemma 14, setting ij =
⌊
j/N1/d

⌋
mod d

we obtain that Prj,Y [v ∈ Y [j]] equals

d∑

k=1

Pr
j

[∆ (xj , v, ij) = k] Pr
Y

[v ∈ Y [j] | ∆(xj , v, ij) = k]

≤
d∑

k=1

c log N

L

(
N1/d +

L

N1−k/d

)(
1

N (k−1)/d
+

L

N

)

= O

(
N1/d log N

L

)
.

Taking ε = (log N) /N1/2−1/d we get, by the same proof as
for Theorem 15:

Theorem 20. Neglecting a constant dependent on d, for
all d ≥ 3

RLS (Gd,N) = Ω

(
N1/2−1/d

log N

)
,

QLS (Gd,N) = Ω

√

N1/2−1/d

log N

 .

7. ACKNOWLEDGMENTS
I thank Andris Ambainis for suggesting an improvement

to Proposition 2; David Aldous, Christos Papadimitriou,
Yuval Peres, and Umesh Vazirani for discussions during the
early stages of this work; and Ronald de Wolf and the anony-
mous reviewers for helpful comments.

8. REFERENCES
[1] S. Aaronson. Quantum lower bound for the collision

problem, Proc. ACM STOC, pp. 635–642, 2002.
quant-ph/0111102.

[2] D. Aharonov and O. Regev. Approximating the
shortest and closest vector in a lattice to within

√
n are

in NP ∩ coNP, unpublished.

[3] D. Aldous. Minimization algorithms and random walk
on the d-cube, Annals of Probability 11(2):403–413,
1983.

[4] A. Ambainis. Polynomial degree vs. quantum query
complexity, Proc. IEEE FOCS, pp. 230–239, 2003.
quant-ph/0305028.

[5] A. Ambainis. Quantum lower bounds by quantum
arguments, J. Comput. Sys. Sci. 64:750–767, 2002.
Earlier version in STOC 2000. quant-ph/0002066.

[6] T. Baker, J. Gill, and R. Solovay. Relativizations of the
P=?NP question, SIAM J. Comput. 4:431–442, 1975.

[7] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de
Wolf. Quantum lower bounds by polynomials, J. ACM
48(4):778–797, 2001. Earlier version in FOCS 1998.
quant-ph/9802049.

[8] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani.
Strengths and weaknesses of quantum computing,
SIAM J. Comput. 26(5):1510–1523, 1997.
quant-ph/9701001.

[9] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka.
Bounds for small-error and zero-error quantum
algorithms, Proc. IEEE FOCS, pp. 358–368, 1999.
cs.CC/9904019.

[10] H. Buhrman and R. de Wolf. Complexity measures
and decision tree complexity: a survey, Theoretical
Comput. Sci. 288:21–43, 2002.

[11] R. Diestel. Graph Theory (2nd edition),
Springer-Verlag, 2000.

[12] S. Droste, T. Jansen, and I. Wegener. Upper and
lower bounds for randomized search heuristics in
black-box optimization, ECCC TR03-048, 2003.

[13] C. Dürr and P. Høyer. A quantum algorithm for
finding the minimum, 1996. quant-ph/9607014.

[14] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A.
Lundgren, and D. Preda. A quantum adiabatic
evolution algorithm applied to random instances of an
NP-complete problem, Science 292:472–476, 2001.
quant-ph/0104129.

[15] D. S. Johnson, C. H. Papadimitriou, and M.
Yannakakis. How easy is local search?, J. Comput. Sys.
Sci. 37:79–100, 1988.

[16] I. Kerenidis and R. de Wolf. Exponential lower bound
for 2-query locally decodable codes via a quantum
argument, Proc. ACM STOC, pp. 106–115, 2003.
quant-ph/0208062.

[17] D. C. Llewellyn and C. Tovey. Dividing and
conquering the square, Discrete Appl. Math
43:131–153, 1993.

[18] D. C. Llewellyn, C. Tovey, and M. Trick. Local
optimization on graphs, Discrete Appl. Math
23:157–178, 1989. Erratum: 46:93–94, 1993.

[19] N. Megiddo and C. H. Papadimitriou. On total
functions, existence theorems, and computational
complexity, Theoret. Comp. Sci. 81:317–324, 1991.

[20] C. H. Papadimitriou. Talk at UC Berkeley, February
6, 2003.

[21] M. Santha and M. Szegedy. Quantum and classical
query complexities of local search are polynomially
related, this Proceedings, 2004.

[22] Y. Shi. Quantum lower bounds for the collision and
the element distinctness problems, Proc. IEEE FOCS,
pp. 513–519, 2002. quant-ph/0112086.

