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Abstract: We give new evidence that quantum computers—moreover, rudimentary quantum
computers built entirely out of linear-optical elements—cannot be efficiently simulated by
classical computers. In particular, we define a model of computation in which identical
photons are generated, sent through a linear-optical network, then nonadaptively measured
to count the number of photons in each mode. This model is not known or believed to be
universal for quantum computation, and indeed, we discuss the prospects for realizing the
model using current technology. On the other hand, we prove that the model is able to
solve sampling problems and search problems that are classically intractable under plausible
assumptions. Our first result says that, if there exists a polynomial-time classical algorithm
that samples from the same probability distribution as a linear-optical network, then P#P =
BPPNP, and hence the polynomial hierarchy collapses to the third level. Unfortunately,
this result assumes an extremely accurate simulation. Our main result suggests that even an
approximate or noisy classical simulation would already imply a collapse of the polynomial
hierarchy. For this, we need two unproven conjectures: the Permanent-of-Gaussians
Conjecture, which says that it is #P-hard to approximate the permanent of a matrix A of
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independent N (0,1) Gaussian entries, with high probability over A; and the Permanent Anti-
Concentration Conjecture, which says that |Per(A)| ≥

√
n!/poly(n) with high probability

over A. We present evidence for these conjectures, both of which seem interesting even apart
from our application. This paper does not assume knowledge of quantum optics. Indeed,
part of its goal is to develop the beautiful theory of noninteracting bosons underlying our
model, and its connection to the permanent function, in a self-contained way accessible to
theoretical computer scientists.

Note: This is not yet the “official” published version of the paper, though it uses the ToC
style file for convenience.
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1 Introduction

The Extended Church-Turing Thesis says that all computational problems that are efficiently solvable by
realistic physical devices, are efficiently solvable by a probabilistic Turing machine. Ever since Shor’s
algorithm [57], we have known that this thesis is in severe tension with the currently-accepted laws of
physics. One way to state Shor’s discovery is this:

Predicting the results of a given quantum-mechanical experiment, to finite accuracy, cannot
be done by a classical computer in probabilistic polynomial time, unless factoring integers
can as well.

As the above formulation makes clear, Shor’s result is not merely about some hypothetical future
in which large-scale quantum computers are built. It is also a hardness result for a practical problem.
For simulating quantum systems is one of the central computational problems of modern science, with
applications from drug design to nanofabrication to nuclear physics. It has long been a major application
of high-performance computing, and Nobel Prizes have been awarded for methods (such as the Density
Functional Theory) to handle special cases. What Shor’s result shows is that, if we had an efficient,
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general-purpose solution to the quantum simulation problem, then we could also break widely-used
cryptosystems such as RSA.

However, as evidence against the Extended Church-Turing Thesis, Shor’s algorithm has two significant
drawbacks. The first is that, even by the conjecture-happy standards of complexity theory, it is no means
settled that factoring is classically hard. Yes, we believe this enough to base modern cryptography on it—
but as far as anyone knows, factoring could be in BPP without causing any collapse of complexity classes
or other disastrous theoretical consequences. Also, of course, there are subexponential-time factoring
algorithms (such as the number field sieve), and few would express confidence that they cannot be further
improved. And thus, ever since Bernstein and Vazirani [11] defined the class BQP of quantumly feasible
problems, it has been a dream of quantum computing theory to show (for example) that, if BPP = BQP,
then the polynomial hierarchy would collapse, or some other “generic, foundational” assumption of
theoretical computer science would fail. In this paper, we do not quite achieve that dream, but we come
closer than one might have thought possible.

The second, even more obvious drawback of Shor’s algorithm is that implementing it scalably is
well beyond current technology. To run Shor’s algorithm, one needs to be able to perform arithmetic
(including modular exponentiation) on a coherent superposition of integers encoded in binary. This
does not seem much easier than building a universal quantum computer.1 In particular, it appears one
first needs to solve the problem of fault-tolerant quantum computation, which is known to be possible
in principle if quantum mechanics is valid [7, 41], but might require decoherence rates that are several
orders of magnitude below what is achievable today.

Thus, one might suspect that proving a quantum system’s computational power by having it factor
integers is a bit like proving a dolphin’s intelligence by teaching it to solve arithmetic problems. Yes,
with heroic effort, we can probably do this, and perhaps we have good reasons to. However, if we just
watched the dolphin in its natural habitat, then we might see it display equal intelligence with no special
training at all.

Following this analogy, we can ask: are there more “natural” quantum systems that already provide
evidence against the Extended Church-Turing Thesis? Indeed, there are countless quantum systems
accessible to current experiments—including high-temperature superconductors, Bose-Einstein conden-
sates, and even just large nuclei and molecules—that seem intractable to simulate on a classical computer,
and largely for the reason a theoretical computer scientist would expect: namely, that the dimension of a
quantum state increases exponentially with the number of particles. The difficulty is that it is not clear
how to interpret these systems as solving computational problems. For example, what is the “input” to a
Bose-Einstein condensate? In other words, while these systems might be hard to simulate, we would not
know how to justify that conclusion using the one formal tool (reductions) that is currently available to us.

So perhaps the real question is this: do there exist quantum systems that are “intermediate” between
Shor’s algorithm and a Bose-Einstein condensate—in the sense that

(1) they are significantly closer to experimental reality than universal quantum computers, but

(2) they can be proved, under plausible complexity assumptions (the more “generic” the better), to be

1One caveat is a result of Cleve and Watrous [17], that Shor’s algorithm can be implemented using log-depth quantum
circuits (that is, in BPPBQNC). But even here, fault-tolerance will presumably be needed, among other reasons because one
still has polynomial latency (the log-depth circuit does not obey spatial locality constraints).

THEORY OF COMPUTING 4

http://dx.doi.org/10.4086/toc


THE COMPUTATIONAL COMPLEXITY OF LINEAR OPTICS

Figure 1: Galton’s board, a simple “computer” to output samples from the binomial distribution. From
MathWorld, http://mathworld.wolfram.com/GaltonBoard.html

intractable to simulate classically?

In this paper, we will argue that the answer is yes.

1.1 Our Model

We define and study a formal model of quantum computation with noninteracting bosons. Physically,
our model could be implemented using a linear-optical network, in which n identical photons pass
through a collection of simple optical elements (beamsplitters and phaseshifters), and are then measured
to determine the number of photons in each location (or “mode”). In Section 3, we give a detailed
exposition of the model that does not presuppose any physics knowledge. For now, though, it is helpful
to imagine a rudimentary “computer” consisting of n identical balls, which are dropped one by one into a
vertical lattice of pegs, each of which randomly scatters each incoming ball onto one of two other pegs.
Such an arrangement—called Galton’s board—is sometimes used in science museums to illustrate the
binomial distribution (see Figure 1). The “input” to the computer is the exact arrangement A of the pegs,
while the “output” is the number of balls that have landed at each location on the bottom (or rather, a
sample from the joint distribution DA over these numbers). There is no interaction between pairs of balls.

Our model is essentially the same as that shown in Figure 1, except that instead of identical balls, we
use identical bosons governed by quantum statistics. Other minor differences are that, in our model, the
“balls” are each dropped from different starting locations, rather than a single location; and the “pegs,”
rather than being arranged in a regular lattice, can be arranged arbitrarily to encode a problem of interest.

Our model does not require any explicit interaction between pairs of bosons. It therefore bypasses
what has long been seen as one of the central technological obstacles to building a scalable quantum
computer: namely, how to make arbitrary pairs of particles “talk to each other” (e.g., via two-qubit gates).
At first, this aspect of our model might seem paradoxical: if there are no interactions, how can we ever
generate entanglement between pairs of bosons? And if there is no entanglement, how can there be
any possibility of a quantum speedup? The resolution of this puzzle lies in the way boson statistics
work, which we explain in Section 3. Briefly, the Hilbert space for n identical bosons is not the tensor
product of n single-boson Hilbert spaces, but a slightly less-familiar object known to mathematicians
as the symmetric product. And because of the peculiarities of the symmetric product, an n-boson state
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|ψ〉 can look entangled when expanded out in various natural ways, even if the bosons in |ψ〉 were never
actually subject to entangling interactions. We discuss this subtlety in more detail in Appendix 11, for
readers who are interested. For now, though, it suffices to say that the “apparent,” “effective,” or “illusory”
entanglement produced by noninteracting bosons—whatever one wants to call it!—is the only kind of
“entanglement” that our computational model ever assumes or needs.

Mathematically, the key point about our model is that, to find the probability of any particular output
of the computer, one needs to calculate the permanent of an n×n matrix. This can be seen even in the
classical case: suppose there are n balls and n final locations, and ball i has probability ai j of landing at
location j. Then the probability of one ball landing in each of the n locations is

Per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i), (1.1)

where A = (ai j)i, j∈[n]. Of course, in the classical case, the ai j’s are nonnegative real numbers—which
means that we can approximate Per(A) in probabilistic polynomial time, by using the celebrated algorithm
of Jerrum, Sinclair, and Vigoda [34]. In the quantum case, by contrast, the ai j’s are complex numbers.
And it is not hard to show that, given a general matrix A ∈ Cn×n, even approximating Per(A) to within a
constant factor is #P-complete. This fundamental difference between nonnegative and complex matrices
is the starting point for everything we do in this paper.

It is not hard to show that a boson computer can be simulated by a “standard” quantum computer
(that is, in BQP). But the other direction seems extremely unlikely—indeed, it even seems unlikely that
a boson computer can do universal classical computation! Nor do we have any evidence that a boson
computer could factor integers, or solve any other decision or promise problem not in BPP. However, if
we broaden the notion of a computational problem to encompass sampling and search problems, then the
situation is quite different.

1.2 Our Results

In this paper we study BOSONSAMPLING: the problem of sampling, either exactly or approximately,
from the output distribution of a boson computer. Our goal is to give evidence that this problem is hard
for a classical computer. Our main results fall into three categories:

(1) Hardness results for exact BOSONSAMPLING, which give an essentially complete picture of that
case.

(2) Hardness results for approximate BOSONSAMPLING, which depend on plausible conjectures about
the permanents of i.i.d. Gaussian matrices.

(3) A program aimed at understanding and proving the conjectures.

We now discuss these in turn.
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1.2.1 The Exact Case

Our first result, proved in Section 4, says the following.

Theorem 1.1. The exact BOSONSAMPLING problem is not efficiently solvable by a classical computer,
unless P#P = BPPNP and the polynomial hierarchy collapses to the third level. More generally, let O be
any oracle that “simulates boson computers,” in the sense that O takes as input a random string r (which
O uses as its only source of randomness) and a description of a boson computer A, and returns a sample
OA (r) from the probability distribution DA over possible outputs of A. Then P#P ⊆ BPPNPO

.

Recently, and independently of us, Bremner, Jozsa, and Shepherd [12] proved a lovely result directly
analogous to Theorem 1.1, but for a different weak quantum computing model (based on commuting
Hamiltonians rather than bosons). As we discuss later, our original proof of Theorem 1.1 is quite different
from Bremner et al.’s, but for completeness, we will also give a proof of Theorem 1.1 along Bremner et
al.’s lines. The main respect in which this work goes further than Bremner et al.’s is not in Theorem 1.1,
but rather in our treatment of the approximate case (to be discussed in Section 1.2.2).

For now, let us focus on Theorem 1.1 and try to understand what it means. At least for a computer
scientist, it is tempting to interpret Theorem 1.1 as saying that “the exact BOSONSAMPLING problem is
#P-hard under BPPNP-reductions.” Notice that this would have a shocking implication: that quantum
computers (indeed, quantum computers of a particularly simple kind) could efficiently solve a #P-hard
problem!

There is a catch, though, arising from the fact that BOSONSAMPLING is a sampling problem rather
than a decision problem. Namely, if O is an oracle for sampling from the boson distribution DA, then
Theorem 1.1 shows that P#P ⊆ BPPNPO

—but only if the BPPNP machine gets to fix the random bits used
by O. This condition is clearly met if O is a classical randomized algorithm, since we can always interpret
a randomized algorithm as just a deterministic algorithm that takes a random string r as part of its input.
On the other hand, the condition would not be met if we implemented O (for example) using the boson
computer itself. In other words, our “reduction” from #P-complete problems to BOSONSAMPLING

makes essential use of the hypothesis that we have a classical BOSONSAMPLING algorithm.
Note that, even if the exact BOSONSAMPLING problem were solvable by a polynomial-time classical

algorithm with an oracle for a PH problem, Theorem 1.1 would still imply that P#P ⊆ BPPPH—and
therefore that the polynomial hierarchy would collapse, by Toda’s Theorem [65]. This provides evidence
that quantum computers have capabilities outside the entire polynomial hierarchy, complementing the
recent evidence of Aaronson [3] and Fefferman and Umans [22].

Another point worth mentioning is that, even if the exact BOSONSAMPLING problem were solvable
by a polynomial-time nonuniform sampling algorithm—that is, by an algorithm that could be different for
each boson computer A—we would still get the conclusion P#P ⊆ BPPNP/poly, whence the polynomial
hierarchy would collapse. This is a consequence of the existence of a “universal BOSONSAMPLING

instance,” which we point out in Section 4.3.
We will give two proofs of Theorem 1.1. In the first, we consider the probability p of some particular

basis state when a boson computer is measured. We then prove two facts:

(1) Even approximating p to within a multiplicative constant is a #P-hard problem.
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(2) If we had a polynomial-time classical algorithm for exact BOSONSAMPLING, then we could
approximate p to within a multiplicative constant in the class BPPNP, by using a standard technique
called universal hashing.

Combining facts (1) and (2), we find that, if the classical BOSONSAMPLING algorithm exists, then
P#P = BPPNP, and therefore the polynomial hierarchy collapses.

Our second proof was inspired by the independent work of Bremner et al. [12]. Here we start with a
result of Knill, Laflamme, and Milburn [40], which says that linear optics with adaptive measurements is
universal for BQP. A straightforward modification of their construction shows that linear optics with
postselected measurements is universal for PostBQP (that is, quantum polynomial-time with postselection
on possibly exponentially-unlikely measurement outcomes). Furthermore, Aaronson [2] showed that
PostBQP = PP. On the other hand, if a classical BOSONSAMPLING algorithm existed, then we will
show that we could simulate postselected linear optics in PostBPP (that is, classical polynomial-time
with postselection, also called BPPpath). We would therefore get

BPPpath = PostBPP = PostBQP = PP, (1.2)

which is known to imply a collapse of the polynomial hierarchy.
Despite the simplicity of the above arguments, there is something conceptually striking about them.

Namely, starting from an algorithm to simulate quantum mechanics, we get an algorithm2 to solve
#P-complete problems—even though solving #P-complete problems is believed to be well beyond what a
quantum computer itself can do! Of course, one price we pay is that we need to talk about sampling
problems rather than decision problems. If we do so, though, then we get to base our belief in the
power of quantum computers on P#P 6= BPPNP, which is a much more “generic” (many would say safer)
assumption than FACTORING/∈ BPP.

As we see it, the central drawback of Theorem 1.1 is that it only addresses the consequences of a fast
classical algorithm that exactly samples the boson distribution DA. One can relax this condition slightly:
if the oracle O samples from some distribution D′A whose probabilities are all multiplicatively close to
those in DA, then we still get the conclusion that P#P ⊆ BPPNPO

. In our view, though, multiplicative
closeness is already too strong an assumption. At a minimum, given as input an error parameter ε > 0,
we ought to let our simulation algorithm sample from some distribution D′A such that ‖D′A−DA‖ ≤ ε

(where ‖·‖ represents total variation distance), using poly(n,1/ε) time.
Why are we so worried about this issue? One obvious reason is that noise, decoherence, photon

losses, etc. will be unavoidable features in any real implementation of a boson computer. As a result, not
even the boson computer itself can sample exactly from the distribution DA! So it seems arbitrary and
unfair to require this of a classical simulation algorithm.

A second, more technical reason to allow error is that later, we would like to show that a boson
computer can solve classically-intractable search problems, in addition to sampling problems. However,
while Aaronson [4] proved an extremely general connection between search problems and sampling
problems, that connection only works for approximate sampling, not exact sampling.

The third, most fundamental reason to allow error is that the connection we are claiming, between
quantum computing and #P-complete problems, is so counterintuitive. One’s first urge is to dismiss

2Admittedly, a BPPNP algorithm.

THEORY OF COMPUTING 8

http://dx.doi.org/10.4086/toc


THE COMPUTATIONAL COMPLEXITY OF LINEAR OPTICS

this connection as an artifact of poor modeling choices. So the burden is on us to demonstrate the
connection’s robustness.

Unfortunately, the proof of Theorem 1.1 fails completely when we consider approximate sam-
pling algorithms. The reason is that the proof hinges on the #P-completeness of estimating a single,
exponentially-small probability p. Thus, if a sampler “knew” which p we wanted to estimate, then it
could adversarially choose to corrupt that p. It would still be a perfectly good approximate sampler, but
would no longer reveal the solution to the #P-complete instance that we were trying to solve.

1.2.2 The Approximate Case

To get around the above problem, we need to argue that a boson computer can sample from a distribution
D that “robustly” encodes the solution to a #P-complete problem. This means intuitively that, even if
a sampler was badly wrong about any ε fraction of the probabilities in D, the remaining 1− ε fraction
would still allow the #P-complete problem to be solved.

It is well-known that there exist #P-complete problems with worst-case/average-case equivalence,
and that one example of such a problem is the permanent, at least over finite fields. This is a reason for
optimism that the sort of robust encoding we need might be possible. Indeed, it was precisely our desire
to encode the “robustly #P-complete” permanent function into a quantum computer’s amplitudes that led
us to study the noninteracting-boson model in the first place. That this model also has great experimental
interest simply came as a bonus.

In this paper, our main technical contribution is to prove a connection between the ability of classical
computers to solve the approximate BOSONSAMPLING problem and their ability to approximate the
permanent. This connection “almost” shows that even approximate classical simulation of boson
computers would imply a collapse of the polynomial hierarchy. There is still a gap in the argument, but it
has nothing to do with quantum computing. The gap is simply that it is not known, at present, how to
extend the worst-case/average-case equivalence of the permanent from finite fields to suitably analogous
statements over the reals or complex numbers. We will show that, if this gap can be bridged, then there
exist search problems and approximate sampling problems that are solvable in polynomial time by a
boson computer, but not by a BPP machine unless P#P = BPPNP.

More concretely, consider the following problem, where the GPE stands for GAUSSIAN PERMANENT

ESTIMATION:

Problem 1.2 (|GPE|2±). Given as input a matrix X ∼N (0,1)n×n
C of i.i.d. Gaussians, together with error

bounds ε,δ > 0, estimate |Per(X)|2 to within additive error ±ε ·n!, with probability at least 1−δ over
X , in poly(n,1/ε,1/δ ) time.

Then our main result is the following.

Theorem 1.3 (Main Result). Let DA be the probability distribution sampled by a boson computer A.
Suppose there exists a classical algorithm C that takes as input a description of A as well as an error
bound ε , and that samples from a probability distribution D′A such that ‖D′A−DA‖ ≤ ε in poly(|A| ,1/ε)
time. Then the |GPE|2± problem is solvable in BPPNP. Indeed, if we treat C as a black box, then

|GPE|2± ∈ BPPNPC
.
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Theorem 1.3 is proved in Section 5. The key idea of the proof is to “smuggle” the |GPE|2± instance
X that we want to solve into the probability of a random output of a boson computer A. That way,
even if the classical sampling algorithm C is adversarial, it will not know which of the exponentially
many probabilities in DA is the one we care about. And therefore, provided C correctly approximates
most probabilities in DA, with high probability it will correctly approximate “our” probability, and will
therefore allow |Per(X)|2 to be estimated in BPPNP.

Incidentally, the reason why we are so interested here in the permanents of Gaussian matrices X , rather
than Bernoulli matrices or other well-studied random matrix ensembles, is that taking small submatrices
of Haar-random unitary matrices leads in an extremely natural way to matrices of (approximately) i.i.d.
Gaussian entries. This fact was already known in random matrix theory, but we provide a self-contained
proof for completeness.

In our view, Theorem 1.3 already shows that fast, approximate classical simulation of boson computers
would have a surprising complexity consequence. For notice that, if X ∼ N (0,1)n×n

C is a complex
Gaussian matrix, then Per(X) is a sum of n! complex terms, almost all of which usually cancel each other
out, leaving only a tiny residue exponentially smaller than n!. A priori, there seems to be little reason to
expect that residue to be approximable in the polynomial hierarchy, let alone in BPPNP.

1.2.3 The Permanents of Gaussian Matrices

One could go further, though, and speculate that estimating Per(X) for Gaussian X is actually #P-hard.
We call this the Permanent-of-Gaussians Conjecture, or PGC.3 We prefer to state the PGC using a more
“natural” variant of the GAUSSIAN PERMANENT ESTIMATION problem than |GPE|2±. The more natural
variant talks about estimating Per(X) itself, rather than |Per(X)|2, and also asks for a multiplicative rather
than additive approximation.

Problem 1.4 (GPE×). Given as input a matrix X ∼N (0,1)n×n
C of i.i.d. Gaussians, together with error

bounds ε,δ > 0, estimate Per(X) to within error ±ε · |Per(X)|, with probability at least 1−δ over X , in
poly(n,1/ε,1/δ ) time.

Then the main complexity-theoretic challenge we offer is to prove or disprove the following:

Conjecture 1.5 (Permanent-of-Gaussians Conjecture or PGC). GPE× is #P-hard. In other words, if O
is any oracle that solves GPE×, then P#P ⊆ BPPO.

Of course, a question arises as to whether one can bridge the gap between the |GPE|2± problem that
appears in Theorem 1.3, and the more “natural” GPE× problem used in Conjecture 1.5. We are able
to do so assuming another conjecture, this one an extremely plausible anti-concentration bound for the
permanents of Gaussian random matrices.

Conjecture 1.6 (Permanent Anti-Concentration Conjecture). There exists a polynomial p such that for
all n and δ > 0,

Pr
X∼N(0,1)n×n

C

[
|Per(X)|<

√
n!

p(n,1/δ )

]
< δ . (1.3)

3The name is a pun on the well-known Unique Games Conjecture (UGC) [37], which says that a certain approximation
problem that “ought” to be NP-hard really is NP-hard.
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Figure 2: Summary of our hardness argument (modulo conjectures). If there exists a polynomial-time
classical algorithm for approximate BOSONSAMPLING, then Theorem 1.3 says that |GPE|2± ∈ BPPNP.
Assuming Conjecture 1.6 (the PACC), Theorem 1.7 says that this is equivalent to GPE× ∈ BPPNP.
Assuming Conjecture 1.5 (the PGC), this is in turn equivalent to P#P = BPPNP, which collapses the
polynomial hierarchy by Toda’s Theorem [65].

In Section 7, we give a complicated reduction that proves the following:

Theorem 1.7. Suppose the Permanent Anti-Concentration Conjecture holds. Then |GPE|2± and GPE×
are polynomial-time equivalent (under nonadaptive reductions).

Figure 2 summarizes the overall structure of our hardness argument for approximate BOSONSAM-
PLING.

The rest of the body of the paper aims at a better understanding of Conjectures 1.5 and 1.6.
First, in Section 8, we summarize the considerable evidence for the Permanent Anti-Concentration

Conjecture. This includes numerical results; a weaker anti-concentration bound for the permanent
recently proved by Tao and Vu [62]; another weaker bound that we prove; and the analogue of Conjecture
1.6 for the determinant.

Next, in Section 9, we discuss the less certain state of affairs regarding the Permanent-of-Gaussians
Conjecture. On the one hand, we extend the random self-reducibility of permanents over finite fields
proved by Lipton [44], to show that exactly computing the permanent of most Gaussian matrices X ∼
N (0,1)n×n

C is #P-hard. On the other hand, we also show that extending this result further, to show
that approximating Per(X) for Gaussian X is #P-hard, will require going beyond Lipton’s polynomial
interpolation technique in a fundamental way.

Two appendices give some additional results. First, in Appendix 12, we present two remarkable
algorithms due to Gurvits [31] (with Gurvits’s kind permission) for solving certain problems related
to linear-optical networks in classical polynomial time. We also explain why these algorithms do not
conflict with our hardness conjecture. Second, in Appendix 13, we bring out a useful fact that was
implicit in our proof of Theorem 1.3, but seems to deserve its own treatment. This is that, if we have n
identical bosons scattered among m� n2 locations, with no two bosons in the same location, and if we
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apply a Haar-random m×m unitary transformation U and then measure the number of bosons in each
location, with high probability we will still not find two bosons in the same location. In other words,
at least asymptotically, the birthday paradox works the same way for identical bosons as for classical
particles, in spite of bosons’ well-known tendency to cluster in the same state.

1.3 Experimental Implications

An important motivation for our results is that they immediately suggest a linear-optics experiment, which
would use simple optical elements (beamsplitters and phaseshifters) to induce a Haar-random m×m
unitary transformation U on an input state of n photons, and would then check that the probabilities of
various final states of the photons correspond to the permanents of n×n submatrices of U , as predicted
by quantum mechanics. Were such an experiment successfully scaled to large values of n, Theorem 1.3
asserts that no polynomial-time classical algorithm could simulate the experiment even approximately,
unless |GPE|2± ∈ BPPNP.

Of course, the question arises of how large n has to be before one can draw interesting conclusions.
An obvious difficulty is that no finite experiment can hope to render a decisive verdict on the Extended
Church-Turing Thesis, since the ECT is a statement about the asymptotic limit as n→ ∞. Indeed, this
problem is actually worse for us than for (say) Shor’s algorithm, since unlike with FACTORING, we do
not believe there is any NP witness for BOSONSAMPLING. In other words, if n is large enough that a
classical computer cannot solve BOSONSAMPLING, then n is probably also large enough that a classical
computer cannot even verify that a quantum computer is solving BOSONSAMPLING correctly.

Yet while this sounds discouraging, it is not really an issue from the perspective of near-term
experiments. For the foreseeable future, n being too large is likely to be the least of one’s problems!
If one could implement our experiment with (say) 20 ≤ n ≤ 30, then certainly a classical computer
could verify the answers—but at the same time, one would be getting direct evidence that a quantum
computer could efficiently solve an “interestingly difficult” problem, one for which the best-known
classical algorithms require many millions of operations. While disproving the Extended Church-Turing
Thesis is formally impossible, such an experiment would arguably constitute the strongest evidence
against the ECT to date.

Section 6 goes into more detail about the physical resource requirements for our proposed experiment,
as well as how one would interpret the results. In Section 6, we also show that the size and depth of the
linear-optical network needed for our experiment can both be improved by polynomial factors over the
naı̈ve bounds. Complexity theorists who are not interested in the “practical side” of boson computation
can safely skip Section 6, while experimentalists who are only interested the practical side can skip
everything else.

While most further discussion of experimental issues is deferred to Section 6, there is one question
we need to address now. Namely: what, if any, are the advantages of doing our experiment, as opposed
simply to building a somewhat larger “conventional” quantum computer, able (for example) to factor
10-digit numbers using Shor’s algorithm? While a full answer to this question will need to await detailed
analysis by experimentalists, perhaps the most important advantage was already discussed in Section 1.1:
our model does not require any explicit coupling between pairs of photons. Let us mention three other
aspects of BOSONSAMPLING that might make it attractive for quantum computing experiments.
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(1) Photons traveling through linear-optical networks are known to have some of the best coherence
properties of any quantum system accessible to current experiments. From a “traditional” quantum
computing standpoint, the disadvantages of photons are that they have no direct coupling to one
another, and also that they are extremely difficult to store (they are, after all, traveling at the speed
of light). There have been ingenious proposals for working around these problems, including the
schemes of Knill, Laflamme, and Milburn [40] and Gottesman, Kitaev, and Preskill [30], both of
which require the additional resource of adaptive measurements. By contrast, rather than trying
to remedy photons’ disadvantages as qubits, our proposal simply never uses photons as qubits
at all, and thereby gets the coherence advantages of linear optics without having to address the
disadvantages.

(2) To implement Shor’s algorithm, one needs to perform modular arithmetic on a coherent superpo-
sition of integers encoded in binary. Unfortunately, this requirement causes significant constant
blowups, and helps to explain why the “world record” for implementations of Shor’s algorithm
is still the factoring of 15 into 3× 5, first demonstrated in 2001 [69]. By contrast, because
the BOSONSAMPLING problem is so close to the “native physics” of linear-optical networks,
an n-photon experiment corresponds directly to a problem instance of size n, which involves the
permanents of n×n matrices. This raises the hope that, using current technology, one could sample
quantum-mechanically from a distribution in which the probabilities depended (for example) on
the permanents of 10×10 matrices of complex numbers.

(3) The resources that our experiment does demand—including reliable single-photon sources and
photodetector arrays—are ones that experimentalists, for their own reasons, have devoted large
and successful efforts to improving within the past decade. We see every reason to expect further
improvements.

In implementing our experiment, the central difficulty is likely to be getting a reasonably-large
probability of an n-photon coincidence: that is, of all n photons arriving at the photodetectors at the same
time (or rather, within a short enough time interval that interference is seen). If the photons arrive at
different times, then they effectively become distinguishable particles, and the experiment no longer
solves the BOSONSAMPLING problem. Of course, one solution is simply to repeat the experiment
many times, then postselect on the n-photon coincidences. However, if the probability of an n-photon
coincidence decreases exponentially with n, then this “solution” has obvious scalability problems.

If one could scale our experiment to moderately large values of n (say, 10 or 20), without the
probability of an n-photon coincidence falling off dramatically, then our experiment would raise the
exciting possibility of doing an interestingly-large quantum computation without any need for explicit
quantum error-correction. Whether or not this is feasible is the main open problem we leave for
experimentalists.

1.4 Related Work

By necessity, this paper brings together many ideas from quantum computing, optical physics, and
computational complexity. In this section, we try to survey the large relevant literature, organizing it into
eight categories.
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Quantum computing with linear optics. There is a huge body of work, both experimental and
theoretical, on quantum computing with linear optics. Much of that work builds on a seminal 2001 result
of Knill, Laflamme, and Milburn [40], showing that linear optics combined with adaptive measurements
is universal for quantum computation. It is largely because of that result—as well as an alternative
scheme due to Gottesman, Kitaev, and Preskill [30]—that linear optics is considered a viable proposal for
building a universal quantum computer.4

In the opposite direction, several interesting classes of linear-optics experiments are known to be
efficiently simulable on a classical computer. First, it is easy to show that a linear-optical network
with coherent-state inputs, and possibly-adaptive demolition measurements in the photon-number basis,
can be simulated in classical polynomial time. Intuitively, a coherent state—the output of a standard
laser—is a superposition over different numbers of photons that behaves essentially like a classical wave.
Also, a demolition measurement is one that only returns the classical measurement outcome, and not the
post-measurement quantum state.

Second, Bartlett and Sanders [9] showed that a linear-optical network with Gaussian-state inputs and
possibly-adaptive Gaussian nondemolition measurements can be simulated in classical polynomial time.
Here a Gaussian state is an entangled generalization of a coherent state, and is also relatively easy to
produce experimentally. A Gaussian nondemolition measurement is a measurement of a Gaussian state
whose outcome is also Gaussian. This result of Bartlett and Sanders can be seen as the linear-optical
analogue of the Gottesman-Knill Theorem (see [5]).

Third, Gurvits [31] showed that, in any n-photon linear-optical experiment, the probability of mea-
suring a particular basis state can be estimated to within ±ε additive error in poly(n,1/ε) time.5 He
also showed that the marginal distribution over any k photon modes can be computed deterministically in
nO(k) time. We discuss Gurvits’s results in detail in Appendix 12.

Our model seems to be intermediate between the extremes of quantum universality and classical
simulability. Unlike Knill et al. [40], we do not allow adaptive measurements, and as a result, our model is
probably not BQP-complete. On the other hand, unlike Bartlett and Sanders, we do allow single-photon
inputs and (nonadaptive) photon-number measurements; and unlike Gurvits [31], we consider sampling
from the joint distribution over all poly(n) photon modes. Our main result gives evidence that the
resulting model, while possibly easier to implement than a universal quantum computer, is still intractable
to simulate classically.

The table below summarizes what is known about the power of linear-optical quantum computers,
with various combinations of physical resources, in light of this paper’s results. The columns show
what is achievable if the inputs are (respectively) coherent states, Gaussian states, or single-photon Fock
states. The first four rows show what is achievable using measurements in the photon-number basis;
such measurements might be either adaptive or nonadaptive (that is, one might or might not be able
to condition future operations on the classical measurement outcomes), and also either nondemolition
or demolition (that is, the post-measurement quantum state might or might not be available after the

4An earlier proposal for building a universal optical quantum computer was to use nonlinear optics: in other words, explicit
entangling interactions between pairs of photons. (See Nielsen and Chuang [47] for discussion.) The problem is that, at least at
low energies, photons have no direct coupling to one another. It is therefore necessary to use other particles as intermediaries,
which greatly increases decoherence, and negates many of the advantages of using photons in the first place.

5While beautiful, this result is of limited use in practice—since in a typical linear-optics experiment, the probability p of
measuring any specific basis state is so small that 0 is a good additive estimate to p.
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measurement). The fifth row shows what is achievable using measurements in the Gaussian basis, for
any combination of adaptive/nonadaptive and demolition/nondemolition (we do not know of results that
work for some combinations but not others). A ‘P’ entry means that a given combination of resources is
known to be simulable in classical polynomial time, while a ‘BQP’ entry means it is known to suffice
for universal quantum computation. ‘Exact sampling hard’ means that our hardness results for the
exact case go through: using these resources, one can sample from a probability distribution that is not
samplable in classical polynomial time unless P#P = BPPNP. ‘Apx. sampling hard?’ means that our
hardness results for the approximate case go through as well: using these resources, one can sample from
a probability distribution that is not even approximately samplable in classical polynomial time unless
|GPE|2± ∈ BPPNP.

Available input states
Available measurements Coherent states Gaussian states Single photons
Adaptive, nondemolition BQP [40] BQP [40] BQP [40]
Adaptive, demolition P (trivial) BQP [40] BQP [40]
Nonadaptive, nondemolition Exact sampling hard Exact sampling hard Apx. sampling hard?
Nonadaptive, demolition P (trivial) Exact sampling hard Apx. sampling hard?
Gaussian basis only P [9] P [9] ?

Intermediate models of quantum computation. By now, several interesting models of quantum
computation have been proposed that are neither known to be universal for BQP, nor simulable in
classical polynomial time. A few examples, besides the ones mentioned elsewhere in the paper, are
the “one-clean-qubit” model of Knill and Laflamme [39]; the permutational quantum computing model
of Jordan [36]; and stabilizer circuits with non-stabilizer initial states (such as cos π

8 |0〉+ sin π

8 |1〉) and
nonadaptive measurements [5]. The noninteracting-boson model is another addition to this list.

The Hong-Ou-Mandel dip. In 1987, Hong, Ou, and Mandel [33] performed a now-standard
experiment that, in essence, directly confirms that two-photon amplitudes correspond to 2×2 permanents
in the way predicted by quantum mechanics. From an experimental perspective, what we are asking for
could be seen as a generalization of the so-called “Hong-Ou-Mandel dip” to the n-photon case, where
n is as large as possible. Lim and Beige [43] previously proposed an n-photon generalization of the
Hong-Ou-Mandel dip, but without the computational complexity motivation.

Bosons and the permanent. Bosons are one of the two basic types of particle in the universe; they
include photons and the carriers of nuclear forces. It has been known since work by Caianiello [15] in
1953 (if not earlier) that the amplitudes for n-boson processes can be written as the permanents of n×n
matrices. Meanwhile, Valiant [67] proved in 1979 that the permanent is #P-complete. Interestingly,
according to Valiant (personal communication), he and others put these two facts together immediately,
and wondered what they might mean for the computational complexity of simulating bosonic systems.
To our knowledge, however, the first authors to discuss this question in print were Troyansky and Tishby
[66] in 1996. Given an arbitrary matrix A ∈ Cn×n, these authors showed how to construct a quantum
observable with expectation value equal to Per(A). However, they correctly pointed out that this did not
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imply a polynomial-time quantum algorithm to calculate Per(A), since the variance of their observable
was large enough that exponentially many samples would be needed. (In this paper, we sidestep the issue
raised by Troyansky and Tishby by not even trying to calculate Per(A) for a given A, settling instead for
sampling from a probability distribution in which the probabilities depend on permanents of various n×n
matrices. Our main result gives evidence that this sampling task is already classically intractable.)

Later, Scheel [54] explained how permanents arise as amplitudes in linear-optical networks, and
noted that calculations involving linear-optical networks might be intractable because the permanent is
#P-complete.

Fermions and the determinant. Besides bosons, the other basic particles in the universe are
fermions; these include matter particles such as quarks and electrons. Remarkably, the amplitudes for
n-fermion processes are given not by permanents but by determinants of n×n matrices. Despite the
similarity of their definitions, it is well-known that the permanent and determinant differ dramatically in
their computational properties; the former is #P-complete while the latter is in P. In a lecture in 2000,
Wigderson called attention to this striking connection between the boson-fermion dichotomy of physics
and the permanent-determinant dichotomy of computer science. He joked that, between bosons and
fermions, “the bosons got the harder job.” One could view this paper as a formalization of Wigderson’s
joke.

To be fair, half the work of formalizing Wigderson’s joke has already been carried out. In 2002,
Valiant [68] defined a beautiful subclass of quantum circuits called matchgate circuits, and showed that
these circuits could be efficiently simulated classically, via a nontrivial algorithm that ultimately relied on
computing determinants.6 Shortly afterward, Terhal and DiVincenzo [63] (see also Knill [38]) pointed
out that matchgate circuits were equivalent to systems of noninteracting fermions7: in that sense, one
could say Valiant had “rediscovered fermions”! Indeed, Valiant’s matchgate model can be seen as
the direct counterpart of the model studied in this paper, but with noninteracting fermions in place of
noninteracting bosons.8,9 At a very high level, Valiant’s model is easy to simulate classically because the
determinant is in P, whereas our model is hard to simulate because the permanent is #P-complete.

Ironically, when the quantum Monte Carlo method [16] is used to approximate the ground states of
many-body systems, the computational situation regarding bosons and fermions is reversed. Bosonic
ground states tend to be easy to approximate because one can exploit non-negativity, while fermionic
ground states tend to be hard to approximate because of cancellations between positive and negative
terms, what physicists call “the sign problem.”

Quantum computing and #P-complete problems. Since amplitudes in quantum mechanics are the
sums of exponentially many complex numbers, it is natural to look for some formal connection between

6Or rather, a closely-related matrix function called the Pfaffian.
7Strictly speaking, unitary matchgate circuits are equivalent to noninteracting fermions (Valiant also studied matchgates that

violated unitarity).
8However, the noninteracting-boson model is somewhat more complicated to define, since one can have multiple bosons

occupying the same mode, whereas fermions are prohibited from this by the Pauli exclusion principle. This is why the basis
states in our model are lists of nonnegative integers, whereas the basis states in Valiant’s model are binary strings.

9Interestingly, Beenakker et al. [10] have shown that, if we augment the noninteracting-fermion model by adaptive charge
measurements (which reveal whether 0, 1, or 2 of the two spin states at a given spatial location are occupied by an electron),
then the model becomes universal for quantum computation.
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quantum computing and the class #P of counting problems. In 1993, Bernstein and Vazirani [11] proved
that BQP⊆ P#P.10 However, this result says only that #P is an upper bound on the power of quantum
computation, so the question arises of whether solving #P-complete problems is in any sense necessary
for simulating quantum mechanics.

To be clear, we do not expect that BQP = P#P; indeed, it would be a scientific revolution even if BQP
were found to contain NP. However, already in 1999, Fenner, Green, Homer, and Pruim [23] noticed
that, if we ask more refined questions about a quantum circuit than

“does this circuit accept with probability greater than 1− ε or less than ε , promised that
one of those is true?,”

then we can quickly encounter #P-completeness. In particular, Fenner et al. showed that deciding whether
a quantum circuit accepts with nonzero or zero probability is complete for the complexity class coC=P.
Since P#P ⊆ NPcoC=P, this means that the problem is #P-hard under nondeterministic reductions.

Later, Aaronson [2] defined the class PostBQP, or quantum polynomial-time with postselection
on possibly exponentially-unlikely measurement outcomes. He showed that PostBQP is equal to the
classical class PP. Since PPP = P#P, this says that quantum computers with postselection can already
solve #P-complete problems. Following [12], in Section 4.2 we will use the PostBQP = PP theorem
to give an alternative proof of Theorem 1.1, which does not require using the #P-completeness of the
permanent.

Quantum speedups for sampling and search problems. Ultimately, we want a hardness result for
simulating real quantum experiments, rather than postselected ones. To achieve that, a crucial step in this
paper will be to switch attention from decision problems to sampling and search problems. The value of
that step in a quantum computing context was recognized in several previous works.

In 2008, Shepherd and Bremner [55] defined and studied a fascinating subclass of quantum com-
putations, which they called “commuting” or “temporally-unstructured.” Their model is probably not
universal for BQP, and there is no known example of a decision problem solvable by their model that is
not also in BPP. However, if we consider sampling problems or interactive protocols, then Shepherd
and Bremner plausibly argued (without formal evidence) that their model might be hard to simulate
classically.

Recently, and independently of us, Bremner, Jozsa, and Shepherd [12] showed that commuting quan-
tum computers can sample from probability distributions that cannot be efficiently sampled classically,
unless PP = BPPpath and hence the polynomial hierarchy collapses to the third level. This is analogous
to our Theorem 1.1, except with commuting quantum computations instead of noninteracting-boson ones.

Previously, in 2002, Terhal and DiVincenzo [64] showed that constant-depth quantum circuits can
sample from probability distributions that cannot be efficiently sampled by a classical computer, unless
BQP ⊆ AM. By using our arguments and Bremner et al.’s [12], it is not hard to strengthen Terhal
and DiVincenzo’s conclusion, to show that exact classical simulation of their model would also imply
PP = PostBQP = BPPpath, and hence that the polynomial hierarchy collapses.

However, all of these results (including our Theorem 1.1) have the drawback that they only address
sampling from exactly the same distribution D as the quantum algorithm—or at least, from some

10See also Rudolph [53] for a direct encoding of quantum computations by matrix permanents.
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distribution in which all the probabilities are multiplicatively close to the ideal ones. Indeed, in these
results, everything hinges on the #P-completeness of estimating a single, exponentially-small probability
p. For this reason, such results might be considered “cheats”: presumably not even the quantum device
itself can sample perfectly from the ideal distribution D! What if we allow “realistic noise,” so that
one only needs to sample from some probability distribution D′ that is 1/poly(n)-close to D in total
variation distance? Is that still a classically-intractable problem? This is the question we took as our
starting point.

Oracle results. We know of one previous work that addressed the hardness of sampling approxi-
mately from a quantum computer’s output distribution. In 2010, Aaronson [3] showed that, relative to
a random oracle A, quantum computers can sample from probability distributions D that are not even
approximately samplable in BPPPHA

(that is, by classical computers with oracles for the polynomial
hierarchy). Relative to a random oracle A, quantum computers can also solve search problems not in
BPPPHA

. The point of these results was to give the first formal evidence that quantum computers have
“capabilities outside PH.”

For us, though, what is more relevant is a striking feature of the proofs of these results. Namely, they
showed that, if the sampling and search problems in question were in BPPPHA

, then (via a nonuniform,
nondeterministic reduction) one could extract small constant-depth circuits for the 2n-bit MAJORITY

function, thereby violating the celebrated circuit lower bounds of Håstad [59] and others. What made
this surprising was that the 2n-bit MAJORITY function is #P-complete.11 In other words, even though
there is no evidence that quantum computers can solve #P-complete problems, somehow we managed to
prove the hardness of simulating a BQP machine by using the hardness of #P.

Of course, a drawback of Aaronson’s results [3] is that they were relative to an oracle. However, just
like Simon’s oracle algorithm [58] led shortly afterward to Shor’s algorithm [57], so too in this case one
could hope to “reify the oracle”: that is, find a real, unrelativized problem with the same behavior that the
oracle problem illustrated more abstractly. That is what we do here.

2 Preliminaries

Throughout this paper, we use G to denote N (0,1)C, the complex Gaussian distribution with mean 0 and

variance Ez∼G

[
|z|2
]
= 1. (We often use the word “distribution” for continuous probability measures, as

well as for discrete distributions.) We will be especially interested in Gn×n, the distribution over n×n
matrices with i.i.d. Gaussian entries.

For m ≥ n, we use Um,n to denote the set of matrices A ∈ Cm×n whose columns are orthonormal
vectors—so in particular, Um,m is the set of m×m unitary matrices. We also use Hm,n to denote the
Haar measure over Um,n. Informally, Haar measure just means the “continuous analogue of the uniform
distribution”: for example, to draw a matrix A from Hm,n, we set the first column equal to a random unit
vector in Cm, the second column equal to a random unit vector orthogonal to the first column, and so

11Here we are abusing terminology (but only slightly) by speaking about the #P-completeness of an oracle problem. Also,
strictly speaking we mean PP-complete—but since PPP = P#P, the distinction is unimportant here.
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on. Formally, one can define Hm,n by starting from the Haar measure over Um,m (defined as the unique
measure invariant under the action of the m×m unitary group), and then restricting to the first n columns.

We use α to denote the complex conjugate of α . We denote the set {1, . . . ,n} by [n]. Let v ∈Cn and

A ∈ Cn×n. Then ‖v‖ :=
√
|v1|2 + · · ·+ |vn|2, and ‖A‖ := max‖v‖=1 ‖Av‖. Equivalently, ‖A‖= σmax (A)

is the largest singular value of A.
We generally omit floor and ceiling signs, when it is clear that the relevant quantities can be rounded

to integers without changing the asymptotic complexity. Likewise, we will talk about a polynomial-time
algorithm receiving as input a matrix A ∈ Cn×n, often drawn from the Gaussian distribution Gn×n. Here
it is understood that the entries of A are rounded to p(n) bits of precision, for some polynomial p. In all
such cases, it will be straightforward to verify that there exists a fixed polynomial p, such that none of the
relevant calculations are affected by precision issues.

2.1 Complexity Classes

We assume familiarity with standard computational complexity classes such as BQP (Bounded-Error
Quantum Polynomial-Time) and PH (the Polynomial Hierarchy).12 We now define some other complexity
classes that will be important in this work.

Definition 2.1 (PostBPP and PostBQP). Say the algorithm A “succeeds” if its first output bit is measured
to be 1 and “fails” otherwise; conditioned on succeeding, say A “accepts” if its second output bit is
measured to be 1 and “rejects” otherwise. Then PostBPP is the class of languages L⊆ {0,1}∗ for which
there exists a probabilistic polynomial-time algorithm A such that, for all inputs x:

(i) Pr [A(x) succeeds]> 0.

(ii) If x ∈ L then Pr [A(x) accepts | A(x) succeeds]≥ 2
3 .

(iii) If x /∈ L then Pr [A(x) accepts | A(x) succeeds]≤ 1
3 .

PostBQP is defined the same way, except that A is a quantum algorithm rather than a classical one.

PostBPP is easily seen to equal a complexity class called BPPpath, which was defined by Han,
Hemaspaandra, and Thierauf [32]. In particular, it follows from Han et al.’s results that

MA⊆ PostBPP⊆ BPPNP. (2.1)

As for PostBQP, we have the following result of Aaronson [2], which characterizes PostBQP in terms
of the classical complexity class PP (Probabilistic Polynomial-Time).

Theorem 2.2 (Aaronson [2]). PostBQP = PP.

It is well-known that PPP = P#P—and thus, Theorem 2.2 has the surprising implication that BQP
with postselection is as powerful as an oracle for counting problems. Aaronson [2] also observed
that, just as intermediate measurements do not affect the power of BQP, so intermediate postselected
measurements do not affect the power of PostBQP.

All the results mentioned above are easily seen to hold relative to any oracle.
12See the Complexity Zoo, www.complexityzoo.com, for definitions of these and other classes.
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2.2 Sampling and Search Problems

In this work, a central role is played not only by decision problems, but also by sampling and search
problems. By a sampling problem S, we mean a collection of probability distributions (Dx)x∈{0,1}∗ , one

for each input string x ∈ {0,1}n. Here Dx is a distribution over {0,1}p(n), for some fixed polynomial
p. To “solve” S means to sample from Dx, given x as input, while to solve S approximately means
(informally) to sample from some distribution that is 1/poly(n)-close to Dx in variation distance. In this
paper, we will be interested in both notions, but especially approximate sampling.

We now define the classes SampP and SampBQP, consisting of those sampling problems that are
approximately solvable by polynomial-time classical and quantum algorithms respectively.

Definition 2.3 (SampP and SampBQP). SampP is the class of sampling problems S = (Dx)x∈{0,1}∗ for
which there exists a probabilistic polynomial-time algorithm A that, given

〈
x,01/ε

〉
as input,13 samples

from a probability distribution D′x such that ‖D′x−Dx‖ ≤ ε . SampBQP is defined the same way, except
that A is a quantum algorithm rather than a classical one.

Another class of problems that will interest us are search problems (also confusingly called “relation
problems” or “function problems”). In a search problem, there is always at least one valid solution,
and the problem is to find a solution: a famous example is finding a Nash equilibrium of a game, the
problem shown to be PPAD-complete by Daskalakis et al. [19]. More formally, a search problem R is a
collection of nonempty sets (Bx)x∈{0,1}∗ , one for each input x ∈ {0,1}n. Here Bx ⊆ {0,1}p(n) for some
fixed polynomial p. To solve R means to output an element of Bx, given x as input.

We now define the complexity classes FBPP and FBQP, consisting of those search problems that are
solvable by BPP and BQP machines respectively.

Definition 2.4 (FBPP and FBQP). FBPP is the class of search problems R = (Bx)x∈{0,1}∗ for which
there exists a probabilistic polynomial-time algorithm A that, given

〈
x,01/ε

〉
as input, produces an output

y such that Pr [y ∈ Bx]≥ 1− ε, where the probability is over A’s internal randomness. FBQP is defined
the same way, except that A is a quantum algorithm rather than a classical one.

Recently, and directly motivated by the present work, Aaronson [4] proved a general connection
between sampling problems and search problems.

Theorem 2.5 (Sampling/Searching Equivalence Theorem [4]). Let S = (Dx)x∈{0,1}∗ be any approximate
sampling problem. Then there exists a search problem RS = (Bx)x∈{0,1}∗ that is “equivalent” to S in the
following two senses.

(i) Let O be any oracle that, given
〈
x,01/ε ,r

〉
as input, outputs a sample from a distribution Cx such

that ‖Cx−Dx‖ ≤ ε , as we vary the random string r. Then RS ∈ FBPPO.

(ii) Let M be any probabilistic Turing machine that, given
〈
x,01/δ

〉
as input, outputs an element Y ∈ Bx

with probability at least 1−δ . Then S ∈ SampPM.

13Giving
〈

x,01/ε

〉
as input (where 01/ε represents 1/ε encoded in unary) is a standard trick for forcing an algorithm’s

running time to be polynomial in n as well as 1/ε .
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Briefly, Theorem 2.5 is proved by using the notion of a “universal randomness test” from algorithmic
information theory. Intuitively, given a sampling problem S, we define an “equivalent” search problem RS

as follows: “output a collection of strings Y = (y1, . . . ,yT ) in the support of Dx, most of which have large
probability in Dx and which also, conditioned on that, have close-to-maximal Kolmogorov complexity.”
Certainly, if we can sample from Dx, then we can solve this search problem as well. But the converse
also holds: if a probabilistic Turing machine is solving the search problem RS, it can only be doing so by
sampling approximately from Dx. For otherwise, the strings y1, . . . ,yT would have short Turing machine
descriptions, contrary to assumption.

In particular, Theorem 2.5 implies that S ∈ SampP if and only if RS ∈ FBPP, S ∈ SampBQP if and
only if RS ∈ FBQP, and so on. We therefore obtain the following consequence:

Theorem 2.6 ([4]). SampP = SampBQP if and only if FBPP = FBQP.

3 The Noninteracting-Boson Model of Computation

In this section, we develop a formal model of computation based on identical, noninteracting bosons:
as a concrete example, a linear-optical network with single-photon inputs and nonadaptive photon-
number measurements. As far as we know, this model is incapable of universal quantum computing
(or even universal classical computing, for that matter!), although a universal quantum computer can
certainly simulate it. The surprise is that this rudimentary model can already solve certain sampling and
search problems that, under plausible assumptions, cannot be solved efficiently by a classical computer.
The ideas behind the model have been the basis for optical physics for almost a century. To our
knowledge, however, this is the first time the model has been presented from a theoretical computer
science perspective.

Like quantum mechanics itself, the noninteracting-boson model possesses a mathematical beauty
that can be appreciated even independently of its physical origins. In an attempt to convey that beauty,
we will define the model in three ways, and also prove those ways to be equivalent. The first definition,
in Section 3.1, is directly in terms of physical devices (beamsplitters and phaseshifters) and the unitary
transformations that they induce. This definition should be easy to understand for those already
comfortable with quantum computing, and makes it apparent why our model can be simulated on a
standard quantum computer. The second definition, in Section 3.2, is in terms of multivariate polynomials
with an unusual inner product. This definition, which we learned from Gurvits [31], is the nicest one
mathematically, and makes it easy to prove many statements (for example, that the probabilities sum to 1)
that would otherwise require tedious calculation. The third definition is in terms of permanents of n×n
matrices, and is what lets us connect our model to the hardness of the permanent. The second and third
definitions do not use any quantum formalism.

Finally, Section 3.4 defines BOSONSAMPLING, the basic computational problem considered in this
paper, as well as the complexity class BosonFP of search problems solvable using a BOSONSAMPLING

oracle. It also proves the simple but important fact that BosonFP ⊆ FBQP: in other words, boson
computers can be simulated efficiently by standard quantum computers.

THEORY OF COMPUTING 21

http://dx.doi.org/10.4086/toc


SCOTT AARONSON AND ALEX ARKHIPOV

3.1 Physical Definition

The model that we are going to define involves a quantum system of n identical photons14 and m
modes (intuitively, places that a photon can be in). We will usually be interested in the case where
n≤ m≤ poly(n), though the model makes sense for arbitrary n and m.15 Each computational basis state
of this system has the form |S〉= |s1, . . . ,sm〉, where si represents the number of photons in the ith mode
(si is also called the ith occupation number). Here the si’s can be any nonnegative integers summing to n;
in particular, the si’s can be greater than 1. This corresponds to the fact that photons are bosons, and
(unlike with fermions) an unlimited number of bosons can be in the same mode at the same time.

During a computation, photons are never created or destroyed, but are only moved from one mode
to another. Mathematically, this means that the basis states |S〉 of our computer will always satisfy
S ∈Φm,n, where Φm,n is the set of tuples S = (s1, . . . ,sm) satisfying s1, . . . ,sm ≥ 0 and s1 + · · ·+ sm = n.
Let M = |Φm,n| be the total number of basis states; then one can easily check that M =

(m+n−1
n

)
.

Since this is quantum mechanics, a general state of the computer has the form

|ψ〉= ∑
S∈Φm,n

αS |S〉 , (3.1)

where the αS’s are complex numbers satisfying ∑S∈Φm,n
|αS|2 = 1. In other words, |ψ〉 is a unit vector in

the M-dimensional complex Hilbert space spanned by elements of Φm,n. Call this Hilbert space Hm,n.
Just like in standard quantum computing, the Hilbert space Hm,n is exponentially large (as a function

of m+ n), which means that we can only hope to explore a tiny fraction of it using polynomial-size
circuits. On the other hand, one difference from standard quantum computing is that Hm,n is not built up
as the tensor product of smaller Hilbert spaces.

Throughout this paper, we will assume that our computer starts in the state

|1n〉 := |1, . . . ,1,0, . . . ,0〉 , (3.2)

where the first n modes contain one photon each, and the remaining m−n modes are unoccupied. We
call |1n〉 the standard initial state.

We will also assume that measurement only occurs at the end of the computation, and that what
is measured is the number of photons in each mode. In other words, a measurement of the state
|ψ〉= ∑S∈Φm,n αS |S〉 returns an element S of Φm,n, with probability equal to

Pr [S] = |αS|2 = |〈ψ|S〉|2 . (3.3)

But which unitary transformations can we perform on the state |ψ〉, after the initialization and before
the final measurement? For simplicity, let us consider the special case where there is only one photon;
later we will generalize to n photons. In the one-photon case, the Hilbert space Hm,1 has dimension
M = m, and the computational basis states (|1,0, . . . ,0〉, |0,1,0, . . . ,0〉, etc.) simply record which mode

14For concreteness, we will often talk about photons in a linear-optical network, but the mathematics would be the same with
any other system of identical, noninteracting bosons (for example, bosonic excitations in solid-state).

15The one caveat is that our “standard initial state,” which consists of one photon in each of the first n modes, is only defined
if n≤ m.
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the photon is in. Thus, a general state |ψ〉 is just a unit vector in Cm: that is, a superposition over the
modes. An m×m unitary transformation U acts on this unit vector in exactly the way one would expect:
namely, the vector is left-multiplied by U .

However, this still leaves the question of how an arbitrary m×m unitary transformation U is imple-
mented within this model. In standard quantum computing, we know that any unitary transformation on
n qubits can be decomposed as a product of gates, each of which acts nontrivially on at most two qubits,
and is the identity on the other qubits. Likewise, in the linear-optics model, any unitary transformation
on m modes can be decomposed into a product of optical elements, each of which acts nontrivially on at
most two modes, and is the identity on the other m−2 modes. The two best-known optical elements are
called phaseshifters and beamsplitters. A phaseshifter multiplies a single amplitude αS by eiθ , for some
specified angle θ , and acts as the identity on the other m−1 amplitudes. A beamsplitter modifies two
amplitudes αS and αT as follows, for some specified angle θ :(

α ′S
α ′T

)
:=
(

cosθ −sinθ

sinθ cosθ

)(
αS

αT

)
. (3.4)

It acts as the identity on the other m−2 amplitudes. It is easy to see that beamsplitters and phaseshifters
generate all optical elements (that is, all 2×2 unitaries). Moreover, the optical elements generate all
m×m unitaries, as shown by the following lemma of Reck et al. [51]:

Lemma 3.1 (Reck et al. [51]). Let U be any m×m unitary matrix. Then one can decompose U as a
product U =UT · · ·U1, where each Ut is an optical element (that is, a unitary matrix that acts nontrivially
on at most 2 modes and as the identity on the remaining m−2 modes). Furthermore, this decomposition
has size T = O

(
m2
)
, and can be found in time polynomial in m.

Proof Sketch. The task is to produce U starting from the identity matrix—or equivalently, to produce I
starting from U—by successively multiplying by block-diagonal unitary matrices, each of which contains
a single 2×2 block and m−2 blocks consisting of 1.16 To do so, we use a procedure similar to Gaussian
elimination, which zeroes out the m2−m off-diagonal entries of U one by one. Then, once U has been
reduced to a diagonal matrix, we use m phaseshifters to produce the identity matrix.

We now come to the more interesting part: how do we describe the action of the unitary transformation
U on a state with multiple photons? As it turns out, there is a natural homomorphism ϕ , which maps
an m×m unitary transformation U acting on a single photon to the corresponding M×M unitary
transformation ϕ (U) acting on n photons. Since ϕ is a homomorphism, Lemma 3.1 implies that we
can specify ϕ merely by describing its behavior on 2×2 unitaries. For given an arbitrary m×m unitary
matrix U , we can write ϕ (U) as

ϕ (UT · · ·U1) = ϕ (UT ) · · ·ϕ (U1) , (3.5)

where each Ut is an optical element (that is, a block-diagonal unitary that acts nontrivially on at most 2
modes).

In the case of a phaseshifter (that is, a 1× 1 unitary), it is relatively obvious what should happen.
Namely, the phaseshifter should be applied once for each photon in the mode to which it is applied. In

16Such matrices are the generalizations of the so-called Givens rotations to the complex numbers.
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other words, suppose U is an m×m diagonal matrix such that uii = eiθ and u j j = 1 for all j 6= i. Then
we ought to have

ϕ (U) |s1, . . . ,sm〉= eiθsi |s1, . . . ,sm〉 . (3.6)

However, it is less obvious how to describe the action of a beamsplitter on multiple photons. Let

U =

(
a b
c d

)
(3.7)

be any 2×2 unitary matrix, which acts on the Hilbert space H2,1 spanned by |1,0〉 and |0,1〉. Then since
ϕ (U) preserves photon number, we know it must be a block-diagonal matrix that satisfies

〈s, t|ϕ (U) |u,v〉= 0 (3.8)

whenever s+ t 6= u+ v. But what about when s+ t = u+ v? Here the formula for the appropriate entry
of ϕ (U) is

〈s, t|ϕ (U) |u,v〉=
√

u!v!
s!t! ∑

k+`=u, k≤s, `≤t

(
s
k

)(
t
`

)
akbs−kc`dt−`. (3.9)

One can verify by calculation that ϕ (U) is unitary; however, a much more elegant proof of unitarity will
follow from the results in Section 3.2.

One more piece of notation: let DU be the probability distribution over S ∈ Φm,n obtained by
measuring the state ϕ (U) |1n〉 in the computational basis. That is,

Pr
DU

[S] = |〈1n|ϕ (U) |S〉|2 . (3.10)

Notice that DU depends only on the first n columns of U . Therefore, instead of writing DU it will be
better to write DA, where A ∈ Um,n is the m×n matrix corresponding to the first n columns of U .

3.2 Polynomial Definition

In this section, we present a beautiful alternative interpretation of the noninteracting-boson model, in
which the “states” are multivariate polynomials, the “operations” are unitary changes of variable, and a
“measurement” samples from a probability distribution over monomials weighted by their coefficients.
We also prove that this model is well-defined (i.e. that in any measurement, the probabilities of the various
outcomes sum to 1), and that it is indeed equivalent to the model from Section 3.1. Combining these
facts yields the simplest proof we know that the model from Section 3.1 is well-defined.

Let m ≥ n. Then the “state” of our computer, at any time, will be represented by a multivariate
complex-valued polynomial p(x1, . . . .xm) of degree n. Here the xi’s can be thought of as just formal
variables.17 The standard initial state |1n〉 corresponds to the degree-n polynomial Jm,n (x1, . . . ,xm) :=
x1 · · ·xn, where x1, . . . ,xn are the first n variables. To transform the state, we can apply any m×m unitary
transformation U we like to the vector of xi’s: x′1

...
x′m

=

 u11 · · · u1m
...

. . .
...

um1 · · · umm


 x1

...
xm

 . (3.11)

17For physicists, they are “creation operators.”
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The new state of our computer is then equal to

U [Jm,n] (x1, . . . .xm) = Jm,n
(
x′1, . . . .x

′
m
)
=

n

∏
i=1

(ui1x1 + · · ·+uimxm) . (3.12)

Here and throughout, we let L [p] be the polynomial obtained by starting with p and then applying the
m×m linear transformation L to the variables.

After applying one or more unitary transformations to the xi’s, we then get a single opportunity to
measure the computer’s state. Let the polynomial p at the time of measurement be

p(x1, . . . .xm) = ∑
S=(s1,...,sm)

aSxs1
1 · · ·x

sm
m , (3.13)

where S ranges over Φm,n (i.e., lists of nonnegative integers such that s1 + · · ·+ sm = n). Then the
measurement returns the monomial xs1

1 · · ·xsm
m (or equivalently, the list of integers S = (s1, . . . ,sm)) with

probability equal to
Pr [S] := |aS|2 s1! · · ·sm!. (3.14)

From now on, we will use x as shorthand for x1, . . . .xm, and xS as shorthand for the monomial
xs1

1 · · ·xsm
m . Given two polynomials

p(x) = ∑
S∈Φm,n

aSxS, (3.15)

q(x) = ∑
S∈Φm,n

bSxS, (3.16)

we can define an inner product between them—called the Fock-space inner product—as follows:

〈p,q〉 := ∑
S=(s1,...,sm)∈Φm,n

aSbSs1! · · ·sm!. (3.17)

The following key result gives a more intuitive interpretation of the Fock-space inner product.

Lemma 3.2 (Interpretation of Fock Inner Product). 〈p,q〉= Ex∼Gm [p(x)q(x)], where G is the Gaussian
distribution N (0,1)C.

Proof. Since inner product and expectation are linear, it suffices to consider the case where p and q are
monomials. Suppose p(x) = xR and q(x) = xS, for some R = (r1, . . . ,rm) and S = (s1, . . . ,sm) in Φm,n.
Then

E
x∼Gm

[p(x)q(x)] = E
x∼Gm

[
xRxS] . (3.18)

If p 6= q—that is, if there exists an i such that ri 6= si—then the above expectation is clearly 0, since the
Gaussian distribution is uniform over phases. If p = q, on the other hand, then the expectation equals

E
x∼Gm

[
|x1|2s1 · · · |xm|2sm

]
= E

x1∼G

[
|x1|2s1

]
· · · E

xm∼G

[
|xm|2sm

]
(3.19)

= s1! · · ·sm! (3.20)
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We conclude that
E

x∼Gm
[p(x)q(x)] = ∑

S=(s1,...,sm)∈Φm,n

aSbSs1! · · ·sm! (3.21)

as desired.

Recall that U [p] denotes the polynomial p(Ux), obtained by applying the m×m linear transformation
U to the variables x = (x1, . . . ,xm) of p. Then Lemma 3.2 has the following important consequence.

Theorem 3.3 (Unitary Invariance of Fock Inner Product). 〈p,q〉= 〈U [p] ,U [q]〉 for all polynomials p,q
and all unitary transformations U.

Proof. We have

〈U [p] ,U [q]〉= E
x∼Gm

[
U [p] (x)U [q] (x)

]
(3.22)

= E
x∼Gm

[p(Ux)q(Ux)] (3.23)

= E
x∼Gm

[p(x)q(x)] (3.24)

= 〈p,q〉 , (3.25)

where line (3.24) follows from the rotational invariance of the Gaussian distribution.

Indeed, we have a more general result:

Theorem 3.4. 〈p,L [q]〉=
〈
L† [p] ,q

〉
for all polynomials p,q and all linear transformations L. (So in

particular, if L is invertible, then 〈p,q〉=
〈(

L−1
)†
[p] ,L [q]

〉
.)

Proof. Let p(x) = ∑S∈Φm,n aSxS and q(x) = ∑S∈Φm,n bSxS. First suppose L is a diagonal matrix, i.e.
L = diag(λ ) for some λ = (λ1, . . . ,λm). Then

〈p,L [q]〉= ∑
S=(s1,...,sm)∈Φm,n

aS
(
bSλ

S)s1! · · ·sm! (3.26)

= ∑
S=(s1,...,sm)∈Φm,n

(
aSλ

S
)

bSs1! · · ·sm! (3.27)

=
〈
L† [p] ,q

〉
. (3.28)

Now note that we can decompose an arbitrary L as UΛV , where Λ is diagonal and U,V are unitary. So

〈p,L [q]〉= 〈p,UΛV [q]〉 (3.29)

=
〈
U† [p] ,ΛV [q]

〉
(3.30)

=
〈
Λ

†U† [p] ,V [q]
〉

(3.31)

=
〈
V †

Λ
†U† [p] ,q

〉
(3.32)

=
〈
L† [p] ,q

〉
(3.33)

where lines (3.30) and (3.32) follow from Theorem 3.3.
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We can also define a Fock-space norm as follows:

‖p‖2
Fock = 〈p, p〉= ∑

S=(s1,...,sm)

|aS|2 s1! · · ·sm!. (3.34)

Clearly ‖p‖2
Fock ≥ 0 for all p. We also have the following:

Corollary 3.5. ‖U [Jm,n]‖2
Fock = 1 for all unitary matrices U.

Proof. By Theorem 3.3,

‖U [Jm,n]‖2
Fock = 〈U [Jm,n] ,U [Jm,n]〉=

〈
UU† [Jm,n] ,Jm,n

〉
= 〈Jm,n,Jm,n〉= 1. (3.35)

Corollary 3.5 implies, in particular, that our model of computation based on multivariate polyno-
mials is well-defined: that is, the probabilities of the various measurement outcomes always sum to
‖U [Jm,n]‖2

Fock = 1. We now show that the polynomial-based model of this section is equivalent to the
linear-optics model of Section 3.1. As an immediate consequence, this implies that probabilities sum to
1 in the linear-optics model as well.

Given any pure state
|ψ〉= ∑

S∈Φm,n

αS |S〉 (3.36)

in Hm,n, let P|ψ〉 be the multivariate polynomial defined by

P|ψ〉 (x) := ∑
S=(s1,...,sm)∈Φm,n

αSxS
√

s1! · · ·sm!
. (3.37)

In particular, for any computational basis state |S〉, we have

P|S〉 (x) =
xS

√
s1! · · ·sm!

. (3.38)

Theorem 3.6 (Equivalence of Physical and Polynomial Definitions). |ψ〉 ←→ P|ψ〉 defines an isomor-
phism between quantum states and polynomials, which commutes with inner products and unitary
transformations in the following senses:

〈ψ|φ〉=
〈
P|ψ〉,P|φ〉

〉
, (3.39)

Pϕ(U)|ψ〉 =U
[
P|ψ〉
]
. (3.40)

Proof. That 〈ψ|φ〉=
〈
P|ψ〉,P|φ〉

〉
follows immediately from the definitions of P|ψ〉 and the Fock-space

inner product. For Pϕ(U)|ψ〉 =U
[
Pψ

]
, notice that

U
[
P|ψ〉
]
=U

[
∑

S=(s1,...,sm)∈Φm,n

αSxS
√

s1! · · ·sm!

]
(3.41)

= ∑
S=(s1,...,sm)∈Φm,n

αS√
s1! · · ·sm!

m

∏
i=1

(ui1x1 + · · ·+uimxm)
si . (3.42)
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So in particular, transforming P|ψ〉 to U
[
P|ψ〉
]

simply effects a linear transformation on the coefficients
on P|ψ〉. This means that there must be some M×M linear transformation ϕ (U), depending on U , such
that U

[
P|ψ〉
]
= Pϕ(U)|ψ〉. Thus, in defining the homomorphism U → ϕ (U) in equation (3.9), we simply

chose it to yield that linear transformation. This can be checked by explicit computation. By Lemma 3.1,
we can restrict attention to a 2×2 unitary matrix

U =

(
a b
c d

)
. (3.43)

By linearity, we can also restrict attention to the action of ϕ (U) on a computational basis state |s, t〉 (or in
the polynomial formalism, the action of U on a monomial xsyt). Then

U
[
xsyt]= (ax+by)s (cx+dy)t (3.44)

=
s

∑
k=0

t

∑
`=0

(
s
k

)(
t
`

)
akbs−kc`dt−`xk+`ys+t−k−` (3.45)

= ∑
u+v=s+t

∑
k+`=u, k≤s, `≤t

(
s
k

)(
t
`

)
akbs−kc`dt−`xuyv. (3.46)

Thus, inserting normalization,

U
[

xsyt
√

s!t!

]
= ∑

u+v=s+t

(√
u!v!
s!t! ∑

k+`=u, k≤s, `≤t

(
s
k

)(
t
`

)
akbs−kc`dt−`

)
xuyv
√

u!v!
, (3.47)

which yields precisely the definition of ϕ (U) from equation (3.9).

As promised in Section 3.1, we can also show that ϕ (U) is unitary.

Corollary 3.7. ϕ (U) is unitary.

Proof. One definition of a unitary matrix is that it preserves inner products. Let us check that this is the
case for ϕ (U). For all U , we have

〈ψ|φ〉=
〈
P|ψ〉,P|φ〉

〉
(3.48)

=
〈
U
[
P|ψ〉
]
,U
[
P|φ〉
]〉

(3.49)

=
〈
Pϕ(U)|ψ〉,Pϕ(U)|φ〉

〉
(3.50)

= 〈ψ|ϕ (U)†
ϕ (U) |φ〉 (3.51)

where line (3.49) follows from Theorem 3.3, and all other lines from Theorem 3.6.

3.3 Permanent Definition

This section gives a third interpretation of the noninteracting-boson model, which makes clear its
connection to the permanent. Given an n×n matrix A = (ai j) ∈ Cn×n, recall that the permanent is

Per(A) = ∑
σ∈Sn

n

∏
i=1

ai,σ(i). (3.52)
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Also, given an m×m matrix V , let Vn,n be the top-left n×n submatrix of V . Then the following lemma
establishes a direct connection between Per(Vn,n) and the Fock-space inner product defined in Section
3.2.

Lemma 3.8. Per(Vn,n) = 〈Jm,n,V [Jm,n]〉 for any m×m matrix V .

Proof. By definition,

V [Jm,n] =
n

∏
i=1

(vi1x1 + · · ·+ vimxm) . (3.53)

Then 〈Jm,n,V [Jm,n]〉 is just the coefficient of Jm,n = x1 · · ·xn in the above polynomial. This coefficient
can be calculated as

∑
σ∈Sn

n

∏
i=1

vi,σ(i) = Per(Vn,n) . (3.54)

Combining Lemma 3.8 with Theorem 3.4, we immediately obtain the following:

Corollary 3.9. Per
((

V †W
)

n,n

)
= 〈V [Jm,n] ,W [Jm,n]〉 for any two matrices V,W ∈ Cm×m.

Proof.
Per
((

V †W
)

n,n

)
=
〈
Jm,n,V †W [Jm,n]

〉
= 〈V [Jm,n] ,W [Jm,n]〉 . (3.55)

Now let U be any m×m unitary matrix, and let S = (s1, . . . ,sm) and T = (t1, . . . , tm) be any two
computational basis states (that is, elements of Φm,n). Then we define an n× n matrix US,T in the
following manner. First form an m×n matrix UT by taking t j copies of the jth column of U , for each
j ∈ [m]. Then form the n×n matrix US,T by taking si copies of the ith row of UT , for each i ∈ [m]. As an
example, suppose

U =

 0 1 0
1 0 0
0 0 −1

 (3.56)

and S = T = (0,1,2). Then

US,T =

 0 0 0
0 −1 −1
0 −1 −1

 . (3.57)

Note that if the si’s and t j’s are all 0 or 1, then US,T is simply an n×n submatrix of U . If some si’s or t j’s
are greater than 1, then US,T is like a submatrix of U , but with repeated rows and/or columns.

Here is an alternative way to define US,T . Given any S ∈ Φm,n, let IS be a linear substitution of
variables, which maps the variables x1, . . . ,xs1 to x1, the variables xs1+1, . . . ,xs1+s2 to x2, and so on, so that
IS [x1 · · ·xn] = xs1

1 · · ·xsm
m . (If i > n, then IS [xi] = 0.) Then one can check that

US,T =
(

I†
SUIT

)
n,n

. (3.58)

(Note also that ϕ (IS) |1n〉= |S〉.)
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Theorem 3.10 (Equivalence of All Three Definitions). For all m×m unitaries U and basis states
S,T ∈Φm,n,

Per(US,T ) =
〈
xS,U

[
xT ]〉= 〈S|ϕ (U) |T 〉

√
s1! · · ·sm!t1! · · · tm! (3.59)

Proof. For the first equality, from Corollary 3.9 we have〈
xS,U

[
xT ]〉= 〈IS [Jm,n] ,UIT [Jm,n]〉 (3.60)

= Per
((

I†
SUIT

)
n,n

)
(3.61)

= Per(US,T ) . (3.62)

For the second equality, from Theorem 3.6 we have

〈S|ϕ (U) |T 〉=
〈
P|S〉,Pϕ(U)|T 〉

〉
(3.63)

=
〈
P|S〉,U

[
P|T 〉
]〉

(3.64)

=

〈
xS,U

[
xT
]〉

√
s1! · · ·sm!t1! · · · tm!

. (3.65)

3.4 Bosonic Complexity Theory

Having presented the noninteracting-boson model from three perspectives, we are finally ready to define
BOSONSAMPLING, the central computational problem considered in this work. The input to the problem
will be an m×n column-orthonormal matrix A ∈ Um,n.18 Given A, together with a basis state S ∈Φm,n—
that is, a list S = (s1, . . . ,sm) of nonnegative integers, satisfying s1 + · · ·+ sm = n—let AS be the n×n
matrix obtained by taking si copies of the ith row of A, for all i ∈ [m]. Then let DA be the probability
distribution over Φm,n defined as follows:

Pr
DA

[S] =
|Per(AS)|2

s1! · · ·sm!
. (3.66)

(Theorem 3.10 implies that DA is indeed a probability distribution, for every A ∈ Um,n.) The goal of
BOSONSAMPLING is to sample either exactly or approximately from DA, given A as input.

Of course, we also could have defined DA as the distribution over Φm,n obtained by first completing
A to any m×m unitary matrix U , then measuring the quantum state ϕ (U) |1n〉 in the computational basis.
Or we could have defined DA as the distribution obtained by first applying the linear change of variables

18Here we assume each entry of A is represented in binary, so that it has the form (x+ yi)/2p(n), where x and y are integers
and p is some fixed polynomial. As a consequence, A might not be exactly column-orthonormal—but as long as A†A is
exponentially close to the identity, A can easily be “corrected” to an element of Um,n using Gram-Schmidt orthogonalization.
Furthermore, it is not hard to show that every element of Um,n can be approximated in this manner. See for example Aaronson
[1] for a detailed error analysis.
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U to the polynomial x1 · · ·xn (where again U is any m×m unitary completion of A), to obtain a new
m-variable polynomial

U [x1 · · ·xn] = ∑
S∈Φm,n

αSxS, (3.67)

and then letting

Pr
DA

[S] = |αS|2 s1! · · ·sm! =

∣∣〈xS,U [x1 · · ·xn]
〉∣∣2

s1! · · ·sm!
. (3.68)

For most of the paper, though, we will find it most convenient to use the definition of DA in terms of
permanents.

Besides the BOSONSAMPLING problem, we will also need the concept of an exact or approximate
BOSONSAMPLING oracle. Intuitively, a BOSONSAMPLING oracle is simply an oracle O that solves the
BOSONSAMPLING problem: that is, O takes as input a matrix A ∈ Um,n, and outputs a sample from DA.
However, there is a subtlety, arising from the fact that O is an oracle for a sampling problem. Namely, it
is essential that O’s only source of randomness be a string r ∈ {0,1}poly(n) that is also given to O as input.
In other words, if we fix r, then O(A,r) must be deterministic, just like a conventional oracle that decides
a language. Of course, if O were implemented by a classical algorithm, this requirement would be trivial
to satisfy.

More formally:

Definition 3.11 (BOSONSAMPLING oracle). Let O be an oracle that takes as input a string r∈{0,1}poly(n),
an m×n matrix A∈Um,n, and an error bound ε > 0 encoded as 01/ε . Also, let DO (A,ε) be the distribution
over outputs of O if A and ε are fixed but r is uniformly random. We call O an exact BOSONSAMPLING

oracle if DO (A,ε) =DA for all A ∈ Um,n. Also, we call O an approximate BOSONSAMPLING oracle if
‖DO (A,ε)−DA‖ ≤ ε for all A ∈ Um,n and ε > 0.

If we like, we can define the complexity class BosonFP, to be the set of search problems R =
(Bx)x∈{0,1}∗ that are in FBPPO for every exact BOSONSAMPLING oracle O. We can also define BosonFPε

to be the set of search problems that are in FBPPO for every approximate BOSONSAMPLING oracle O.
We then have the following basic inclusions:

Theorem 3.12. FBPP⊆ BosonFPε = BosonFP⊆ FBQP.

Proof. For FBPP⊆ BosonFPε , just ignore the BOSONSAMPLING oracle. For BosonFPε ⊆ BosonFP,
note that any exact BOSONSAMPLING oracle is also an ε-approximate one for every ε . For the other
direction, BosonFP ⊆ BosonFPε , let M be a BosonFP machine, and let O be M’s exact BOSONSAM-
PLING oracle. Since M has to work for every O, we can assume without loss of generality that O is
chosen uniformly at random, consistent with the requirement that DO (A) =DA for every A. We claim
that we can simulate O to sufficient accuracy using an approximate BOSONSAMPLING oracle. To do so,
we simply choose ε � δ/p(n), where p(n) is an upper bound on the number of queries to O made by
M, and δ is the desired failure probability of M. For BosonFP⊆ FBQP, we use an old observation of
Feynman [24] and Abrams and Lloyd [6]: that fermionic and bosonic systems can be simulated efficiently
on a standard quantum computer. In more detail, our quantum computer’s state at any time step will have
the form

|ψ〉= ∑
(s1,...,sm)∈Φm,n

αs1,...,sm |s1, . . . ,sm〉 . (3.69)
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That is, we simply encode each occupation number 0≤ si ≤ n in binary using dlog2 ne qubits. (Thus,
the total number of qubits in our simulation is mdlog2 ne.) To initialize, we prepare the state |1n〉 =
|1, . . . ,1,0, . . . ,0〉; to measure, we measure in the computational basis. As for simulating an optical
element: recall that such an element acts nontrivially only on two modes i and j, and hence on 2dlog2 ne
qubits. So we can describe an optical element by an O

(
n2
)
×O

(
n2
)

unitary matrix U—and furthermore,
we gave an explicit formula (3.9) for the entries of U . It follows immediately, from the Solovay-Kitaev
Theorem (see [47]), that we can simulate U with error ε , using poly(n, log1/ε) qubit gates. Therefore
an FBQP machine can simulate each call that a BosonFP machine makes to the BOSONSAMPLING

oracle.

4 Efficient Classical Simulation of Linear Optics Collapses PH

In this section we prove Theorem 1.1, our hardness result for exact BOSONSAMPLING. First, in Section
4.1, we prove that P#P ⊆ BPPNPO

, where O is any exact BOSONSAMPLING oracle. In particular, this
implies that, if there exists a polynomial-time classical algorithm for exact BOSONSAMPLING, then
P#P = BPPNP and hence the polynomial hierarchy collapses to the third level. The proof in Section
4.1 directly exploits the fact that boson amplitudes are given by the permanents of complex matrices
X ∈ Cn×n, and that approximating Per(X) given such an X is #P-complete. The main lemma we need
to prove is simply that approximating |Per(X)|2 is also #P-complete. Next, in Section 4.2, we give
a completely different proof of Theorem 1.1. This proof repurposes two existing results in quantum
computation: the scheme for universal quantum computing with adaptive linear optics due to Knill,
Laflamme, and Milburn [40], and the PostBQP = PP theorem of Aaronson [2]. Finally, in Section 4.3,
we observe two improvements to the basic result.

4.1 Basic Result

First, we will need a classic result of Stockmeyer [60].

Theorem 4.1 (Stockmeyer [60]). Given a Boolean function f : {0,1}n→{0,1}, let

p = Pr
x∈{0,1}n

[ f (x) = 1] =
1
2n ∑

x∈{0,1}n
f (x) . (4.1)

Then for all g≥ 1+ 1
poly(n) , there exists an FBPPNP f

machine that approximates p to within a multiplica-
tive factor of g.

Intuitively, Theorem 4.1 says that a BPPNP machine can always estimate the probability p that a
polynomial-time randomized algorithm accepts to within a 1/poly(n) multiplicative factor, even if p
is exponentially small. Note that Theorem 4.1 does not generalize to estimating the probability that a
quantum algorithm accepts, since the randomness is “built in” to a quantum algorithm, and the BPPNP

machine does not get to choose or control it.
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Another interpretation of Theorem 4.1 is that any counting problem that involves estimating the sum
of 2n nonnegative real numbers19 can be approximately solved in BPPNP.

By contrast, if a counting problem involves estimating a sum of both positive and negative numbers—
for example, if one wanted to approximate Ex∈{0,1}n [ f (x)], for some function f : {0,1}n→{−1,1}—then
the situation is completely different. In that case, it is easy to show that even multiplicative approximation
is #P-hard, and hence unlikely to be in FBPPNP.

We will show this phenomenon in the special case of the permanent. If X is a non-negative matrix,
then Jerrum, Sinclair, and Vigoda [34] famously showed that one can approximate Per(X) to within
multiplicative error ε in poly(n,1/ε) time (which improves on Theorem 4.1 by getting rid of the NP
oracle). On the other hand, let X ∈ Rn×n be an arbitrary real matrix, with both positive and negative
entries. Then we will show that multiplicatively approximating Per(X)2 = |Per(X)|2 is #P-hard. The
reason why we are interested in |Per(X)|2, rather than Per(X) itself, is that measurement probabilities in
the noninteracting-boson model are the absolute squares of permanents.

Our starting point is a famous result of Valiant [67]:

Theorem 4.2 (Valiant [67]). The following problem is #P-complete: given a matrix X ∈ {0,1}n×n,
compute Per(X).

We now show that Per(X)2 is #P-hard to approximate.

Theorem 4.3 (Hardness of Approximating Per(X)2). The following problem is #P-hard, for any g ∈
[1,poly(n)]: given a real matrix X ∈ Rn×n, approximate Per(X)2 to within a multiplicative factor of g.

Proof. Let O be an oracle that, given a matrix M ∈ Rn×n, outputs a nonnegative real number O(M) such
that

Per(M)2

g
≤ O(M)≤ gPer(M)2 . (4.2)

Also, let X = (xi j) ∈ {0,1}n×n be an input matrix, which we assume for simplicity consists only of 0s
and 1s. Then we will show how to compute Per(X) exactly, in polynomial time and using O

(
gn2 logn

)
adaptive queries to O. Since Per(X) is #P-complete by Theorem 4.2, this will immediately imply the
lemma. Since X is non-negative, we can check in polynomial time whether Per(X) = 0. If Per(X) = 0 we
are done, so assume Per(X)≥ 1. Then there exists a permutation σ such that x1,σ(1) = · · ·= xn,σ(n) = 1.
Moreover, we can find such a σ in polynomial time; indeed, this is equivalent to the standard problem
of finding a perfect matching in a bipartite graph. By permuting the rows and columns, we can assume
without loss of generality that x11 = · · ·= xnn = 1. Our reduction will use recursion on n. Let Y = (yi j)
be the bottom-right (n−1)× (n−1) submatrix of X . Then we will assume inductively that we already
know Per(Y ). We will use that knowledge, together with O(gn logn) queries to O, to find Per(X). Given
a real number r, let X [r] ∈ Rn×n be a matrix identical to X , except that the top-left entry is x11− r instead
of x11. Then it is not hard to see that

Per
(

X [r]
)
= Per(X)− r Per(Y ) . (4.3)

19Strictly speaking, Theorem 4.1 talks about estimating the sum of 2n binary ({0,1}-valued) numbers, but it is easy to
generalize to arbitrary nonnegative reals.
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Note that y11 = · · ·= y(n−1),(n−1) = 1, so Per(Y )≥ 1. Hence there must be a unique value r = r∗ such
that Per

(
X [r∗]

)
= 0. Furthermore, if we can find that r∗, then we are done, since Per(X) = r∗Per(Y ). To

find

r∗ =
Per(X)

Per(Y )
, (4.4)

we will use a procedure based on binary search. Let r (0) := 0 be our “initial guess”; then we will
repeatedly improve this guess to r (1), r (2), etc. The invariant we want to maintain is that

O
(

X [r(t+1)]
)
≤

O
(
X [r(t)]

)
2

(4.5)

for all t. To find r (t +1) starting from r (t): first observe that

|r (t)− r∗|= |r (t)Per(Y )−Per(X)|
Per(Y )

(4.6)

=

∣∣Per
(
X [r(t)]

)∣∣
Per(Y )

(4.7)

≤

√
g ·O

(
X [r(t)]

)
Per(Y )

, (4.8)

where line (4.8) follows from Per(M)2 /g≤ O(M). So setting

β :=

√
g ·O

(
X [r(t)]

)
Per(Y )

, (4.9)

we find that r∗ is somewhere in the interval I := [r (t)−β ,r (t)+β ]. Divide I into L equal segments (for
some L to be determined later), and let s(1) , . . . ,s(L) be their left endpoints. Then the procedure is to
evaluate O

(
X [s(i)]

)
for each i ∈ [L], and set r (t +1) equal to the s(i) for which O

(
X [s(i)]

)
is minimized

(breaking ties arbitrarily). Clearly there exists an i ∈ [L] such that |s(i)− r∗| ≤ β/L—and for that
particular choice of i, we have

O
(

X [s(i)]
)
≤ gPer

(
X [s(i)]

)2
(4.10)

= g(Per(X)− s(i)Per(Y ))2 (4.11)

= g(Per(X)− (s(i)− r∗)Per(Y )− r∗Per(Y ))2 (4.12)

= g(s(i)− r∗)2 Per(Y )2 (4.13)

≤ g
β 2

L2 Per(Y )2 (4.14)

=
g2

L2O
(

X [r(t)]
)
. (4.15)
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Therefore, so long as we choose L≥
√

2g, we find that

O
(

X [r(t+1)]
)
≤ O

(
X [s(i)]

)
≤

O
(
X [r(t)]

)
2

, (4.16)

which is what we wanted. Now observe that

O
(

X [r(0)]
)
= O(X)≤ gPer(X)2 ≤ g(n!)2 . (4.17)

So for some T = O(n logn),

O
(

X [r(T )]
)
≤

O
(
X [r(0)]

)
2T ≤ g(n!)2

2T � 1
4g

. (4.18)

By lines (4.6)-(4.8), this in turn implies that

|r (T )− r∗| ≤

√
g ·O

(
X [r(T )]

)
Per(Y )

� 1
2Per(Y )

. (4.19)

But this means that we can find r∗ exactly, since r∗ equals a rational number Per(X)
Per(Y ) , where Per(X) and

Per(Y ) are both positive integers and Per(Y ) is known.

Let us remark that one can improve Theorem 4.3, to ensure that the entries of X are all at most
poly(n) in absolute value. We do not pursue that here, since it will not be needed for our application.

Lemma 4.4. Let X ∈ Cn×n. Then for all m≥ 2n and ε ≤ 1/‖X‖, there exists an m×m unitary matrix
U that contains εX as a submatrix. Furthermore, U can be computed in polynomial time given X.

Proof. Let Y = εX . Then it suffices to show how to construct a 2n×n matrix W whose columns are
orthonormal vectors, and that contains Y as its top n×n submatrix. For such a W can easily be completed
to an m×n matrix whose columns are orthonormal (by filling the bottom m−2n rows with zeroes), which
can in turn be completed to an m×m unitary matrix in O

(
m3
)

time. Since ‖Y‖ ≤ ε ‖X‖ ≤ 1, we have
Y †Y � I in the semidefinite ordering. Hence I−Y †Y is positive semidefinite. So I−Y †Y has a Cholesky

decomposition I−Y †Y = Z†Z, for some Z ∈Cn×n. Let us set W :=
(

Y
Z

)
. Then W †W =Y †Y +Z†Z = I,

so the columns of W are orthonormal as desired.

We are now ready to prove Theorem 1.1: that P#P ⊆BPPNPO

for any exact BOSONSAMPLING oracle
O.

Proof of Theorem 1.1. Given a matrix X ∈ Rn×n and a parameter g ∈
[
1+ 1

poly(n) ,poly(n)
]
, we know

from Theorem 4.3 that it is #P-hard to approximate Per(X)2 to within a multiplicative factor of g. So
to prove the theorem, it suffices to show how to approximate Per(X)2 in FBPPNPO

. Set m := 2n and
ε := 1/‖X‖≥ 2−poly(n). Then by Lemma 4.4, we can efficiently construct an m×m unitary matrix U with
Un,n = εX as its top-left n×n submatrix. Let A be the m×n column-orthonormal matrix corresponding
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to the first n columns of U . Let us feed A as input to O, and consider the probability pA that O outputs 1n.
We have

pA = Pr
r
[O(A,r) = 1n] (4.20)

= |〈1n|ϕ (U) |1n〉|2 (4.21)

= |Per(Un,n)|2 (4.22)

= ε
2n |Per(X)|2 , (4.23)

where line (4.22) follows from Theorem 3.10. But by Theorem 4.1, we can approximate pA to within
a multiplicative factor of g in FBPPNPO

. It follows that we can approximate |Per(X)|2 = Per(X)2 in
FBPPNPO

as well.

The main fact that we wanted to prove is an immediate corollary of Theorem 1.1:

Corollary 4.5. Suppose exact BOSONSAMPLING can be done in classical polynomial time. Then
P#P = BPPNP, and hence the polynomial hierarchy collapses to the third level.

Proof. Combining the assumption with Theorem 1.1, we get that P#P ⊆ BPPNP, which by Toda’s
Theorem [65] implies that P#P = PH = ΣP

3 = BPPNP.

Likewise, even if exact BOSONSAMPLING can be done in BPPPH (that is, using an oracle for some
fixed level of the polynomial hierarchy), we still get that

P#P ⊆ BPPNPPH

= BPPPH = PH, (4.24)

and hence PH collapses.
As another application of Theorem 1.1, suppose exact BOSONSAMPLING can be done in BPPPromiseBQP:

that is, using an oracle for BQP decision problems. Then we get the containment

P#P ⊆ BPPNP
PromiseBQP

. (4.25)

Such a containment seems unlikely (though we admit to lacking a strong intuition here), thereby providing
possible evidence for a separation between BQP sampling problems and BQP decision problems.

4.2 Alternate Proof Using KLM

Inspired by recent work of Bremner et al. [12], in this section we give a different proof of Theorem
1.1. This proof makes no use of permanents or approximate counting; instead, it invokes two previous
quantum computing results—the KLM Theorem [40] and the PostBQP = PP theorem [2]—as black
boxes. Compared to the first proof, the second one has the advantage of being shorter and completely
free of calculations; also, it easily generalizes to many other quantum computing models, besides
noninteracting bosons. The disadvantage is that, to those unfamiliar with [40, 2], the second proof gives
less intuition about why Theorem 1.1 is true. Also, we do not know how to generalize the second proof
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to say anything about the hardness of approximate sampling. For that, it seems essential to talk about the
PERMANENT or some other concrete #P-complete problem.

Our starting point is the KLM Theorem, which says informally that linear optics augmented with
single-photon inputs, as well as adaptive demolition measurements in the photon-number basis, is
universal for quantum computation. A bit more formally, let BosonPadap be the class of languages that
are decidable in BPP (that is, classical probabilistic polynomial-time), augmented with the ability to:

(1) Prepare single-photon Fock states in any of m = poly(n) modes.

(2) Apply arbitrary optical elements to pairs of modes.

(3) Measure the photon number of any mode at any time (in a way that destroys the photons in that
mode).

(4) Condition future optical elements and classical computations on the outcomes of the measurements.

From Theorem 3.12, it is not hard to see that BosonPadap ⊆ BQP. The amazing discovery of Knill et
al. [40] was that the other direction holds as well:

Theorem 4.6 (KLM Theorem [40]). BosonPadap = BQP.

In the proof of Theorem 4.6, a key step is to consider a model of linear optics with postselected
demolition measurements. This is similar to the model with adaptive measurements described above,
except that here we guess the outcomes of all the photon-number measurements at the very beginning,
and then only proceed with the computation if the guesses turn out to be correct. In general, the resulting
computation will only succeed with exponentially-small probability, but we know when it does succeed.

Notice that, in this model, there is never any need to condition later computational steps on the
outcomes of measurements—since if the computation succeeds, then we know in advance what all the
measurement outcomes are anyway! One consequence is that, without loss of generality, we can postpone
all measurements until the end of the computation.20

Along the way to proving Theorem 4.6, Knill et al. [40] showed how to simulate any postselected
quantum computation using a postselected linear-optics computation.21 To formalize the “Postselected
KLM Theorem,” we now define the complexity class PostBosonP, which consists of all problems solvable
in polynomial time using linear optics with postselected demolition measurements.

Definition 4.7 (PostBosonP). PostBosonP is the class of languages L ⊆ {0,1}∗ for which there exist
deterministic polynomial-time algorithms V,A,B such that for all inputs x ∈ {0,1}N :

(i) The output of V is an m×n matrix V (x) ∈ Um,n (for some m,n = poly(N)), corresponding to a
linear-optical network that samples from the probability distribution DV (x).

20For this argument to work, it was essential that the measurements were demolition measurements. Nondemolition
measurements—even if they are nonadaptive—cannot generally be postponed to the end of the computation, since for them the
post-measurement quantum state matters as well.

21Terhal and DiVincenzo [64] later elaborated on their result, using the term “nonadaptive quantum computation” (or QCnad)
for what we call postselection.
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(ii) Pry∼DV (x)
[A(y) accepts]> 0.

(iii) If x ∈ L then Pry∼DV (x)
[B(y) accepts | A(y) accepts]≥ 2

3 .

(iv) If x /∈ L then Pry∼DV (x)
[B(y) accepts | A(y) accepts]≤ 1

3 .

In our terminology, Knill et al. [40] showed that PostBosonP captures the full power of postselected
quantum computation—in other words, of the class PostBQP defined in Section 2. We now sketch a
proof for completeness.

Theorem 4.8 (Postselected KLM Theorem [40]). PostBosonP = PostBQP.

Proof Sketch. For PostBosonP⊆ PostBQP, use the procedure from Theorem 3.12, to create an ordinary
quantum circuit C that simulates a given linear-optical network U . Note that the algorithms A and B

from Definition 4.7 can simply be “folded” into C, so that A(y) accepting corresponds to the first qubit
of C’s output being measured to be |1〉, and B(y) accepting corresponds to the second qubit of C’s output
being measured to be |1〉. The more interesting direction is PostBQP⊆ PostBosonP. To simulate BQP
in PostBosonP, the basic idea of KLM is to use “nondeterministic gates,” which consist of sequences
of beamsplitters and phaseshifters followed by postselected demolition measurements in the photon-
number basis. If the measurements return a particular outcome, then the effect of the beamsplitters
and phaseshifters is to implement (perfectly) a 2-qubit gate that is known to be universal for standard
quantum computation. We refer the reader to [40] for the details of how such gates are constructed; for
now, assume we have them. Then for any BQP machine M, it is easy to create a PostBosonP machine
M′ that simulates M. But once we have BQP, we also get PostBQP essentially “free of charge.” This
is because the simulating machine M′ can postselect, not only on its nondeterministic gates working
correctly, but also (say) on M reaching a final configuration whose first qubit is |1〉.

We can now complete our alternative proof of Theorem 1.1, that P#P ⊆ BPPNPO

for any exact
BOSONSAMPLING oracle O.

Proof of Theorem 1.1. Let O be an exact BOSONSAMPLING oracle. Then we claim that PostBosonP⊆
PostBPPO. To see this, let V,A,B be the polynomial-time Turing machines from Definition 4.7. Then
we can create a PostBPPO machine that, given an input x and random string r:

(i) “Succeeds” if A(O(V (x) ,r)) accepts, and “fails” otherwise.

(ii) Conditioned on succeeding, accepts if B(O(V (x) ,r)) accepts and rejects otherwise.

Hence

PP = PostBQP (4.26)

= PostBosonP (4.27)

⊆ PostBPPO (4.28)

⊆ BPPNPO

. (4.29)

Here line (4.26) comes from Theorem 2.2, line (4.27) from Theorem 4.8, line (4.28) from the claim, and
line (4.29) from equation (2.1). Therefore P#P = PPP is contained in BPPNPO

as well.
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4.3 Strengthening the Result

In this section, we make two simple but interesting improvements to Theorem 1.1.
The first improvement is this: instead of considering a whole collection of distributions, we can give

a fixed distribution Dn (depending only on the input size n) that can be sampled by a boson computer,
but that cannot be efficiently sampled classically unless the polynomial hierarchy collapses. This Dn

will effectively be a “complete distribution” for the noninteracting-boson model under nondeterministic
reductions. Let us discuss how to construct such a Dn, using the approach of Section 4.2.

Let p(n) be some fixed polynomial (say n2), and let C be the set of all quantum circuits on n qubits
with at most p(n) gates (over some finite universal basis, such as {HADAMARD,TOFFOLI} [56]). Then
consider the following PostBQP algorithm A, which takes as input a description of a circuit C∗ ∈ C.
First, generate a uniform superposition

|C〉= 1√
|C| ∑C∈C

|C〉 (4.30)

over descriptions of all circuits C ∈ C. Then measure |C〉 in the standard basis, and postselect on the
outcome being |C∗〉. Finally, assuming |C∗〉 was obtained, take some fixed universal circuit U with the
property that

Pr [U (|C〉) accepts]≈ Pr [C (0n) accepts] (4.31)

for all C ∈ C, and run U on input |C∗〉. Now, since PostBQP = PostBosonP by Theorem 4.8, it is clear
that A can be “compiled” into a postselected linear-optical network A′. Let DA′ be the probability
distribution sampled by A′ if we ignore the postselection steps. Then DA′ is our desired universal
distribution Dn.

More concretely, we claim that, if Dn can be sampled in FBPP, then P#P = PH = BPPNP. To
see this, let O(r) be a polynomial-time classical algorithm that outputs a sample from Dn, given as
input a random string r ∈ {0,1}poly(n). Then, as in the proof of Theorem 1.1 in Section 4.2, we have
PostBosonP⊆ PostBPP. For let V,A,B be the polynomial-time algorithms from Definition 4.7. Then
we can create a PostBPP machine that, given an input x and random string r:

(1) Postselects on O(r) containing an encoding of the linear-optical network V (x).

(2) Assuming |V (x)〉 is observed, simulates the PostBosonP algorithm: that is, “succeeds” if A(O(r))
accepts and fails otherwise, and “accepts” if B(O(r)) accepts and rejects otherwise.

Our second improvement to Theorem 1.1 weakens the physical resource requirements needed to
sample from a hard distribution. Recall that we assumed our boson computer began in the “standard
initial state” |1n〉 := |1, . . . ,1,0, . . . ,0〉, in which the first n modes were occupied by a single boson each.
Unfortunately, in the optical setting, it is notoriously difficult to produce a single photon on demand (see
Section 6 for more about this). Using a standard laser, it is much easier to produce so-called coherent
states, which have the form

|α〉 := e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 (4.32)
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for some complex number α . (Here |n〉 represents a state of n photons.) However, we now observe that
the KLM-based proof of Theorem 1.1 goes through almost without change, if the inputs are coherent
states rather than single-photon Fock states, and nondemolition measurements are available. The reason
is that, in the PostBosonP model, we can first prepare a coherent state (say |α = 1〉), then measure it
and postselect on getting a single photon. In this way, we can use postselection to generate the standard
initial state |1n〉, then run the rest of the computation as before.

Summarizing the improvements:

Theorem 4.9. There exists a family of distributions {Dn}n≥1, depending only on n, such that:

(i) For all n, a boson computer with single-photon inputs and demolition measurements, or coherent-
state inputs and nondemolition measurements, can sample from Dn in poly(n) time.

(ii) Let O be any oracle that takes as input a random string r (which O uses as its only source of
randomness) together with n, and that outputs a sample On (r) from Dn. Then P#P ⊆ BPPNPO

.

5 Main Result

We now move on to prove our main result: that even approximate classical simulation of boson computa-
tions would have surprising complexity consequences.

5.1 Truncations of Haar-Random Unitaries

In this section, for completeness, we prove a statement we will need from random matrix theory. Namely:
any m1/6×m1/6 submatrix of an m×m Haar-random unitary matrix is close, in variation distance,
to a matrix of i.i.d. Gaussians. It is easy to see that any individual entry of a Haar unitary matrix is
approximately Gaussian. Thus, our result just says that any small enough set of entries is approximately
independent—and that here, “small enough” can mean not only a constant number of entries, but even
mΩ(1) of them. This is not surprising: it simply means that one needs to examine a significant fraction of
the entries before one “notices” the unitarity constraint.

Given m≥ n, recall from Section 2 that Um,n is the set of m×n complex matrices whose columns are
orthonormal vectors, and Hm,n is the Haar measure over Um,n. Define Sm,n to be the distribution over
n×n matrices obtained by first drawing a unitary U from Hm,m, and then outputting

√
mUn,n where Un,n

is the top-left n×n submatrix of U . In other words, Sm,n is the distribution over n×n truncations of
m×m Haar unitary matrices, where the entries have been scaled up by a factor of

√
m so that they have

mean 0 and variance 1. Also, recall that Gn×n is the probability distribution over n×n complex matrices
whose entries are independent Gaussians with mean 0 and variance 1. Then our main result states that
Sm,n is close in variation distance to Gn×n:

Theorem 5.1. Let m≥ n5

δ
log2 n

δ
, for any δ > 0. Then ‖Sm,n−Gn×n‖= O(δ ).

The bound m≥ n5

δ
log2 n

δ
is almost certainly not tight. For our purposes, however, what is important

is simply that m is polynomial in n and 1/δ . We strongly conjecture that the bound can be improved
to m≥ n2+ε/δ . Indeed, right before this paper’s publication, we learned of a paper by Jiang [35], who
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essentially shows that m = ω
(
n2
)

suffices for the analogous problem with real orthogonal matrices
instead of unitary matrices. More precisely, Jiang shows that when m = ω

(
n2
)
, the variation distance

between an n× n real Gaussian matrix and an n× n truncation of an m×m scaled Haar-random real
orthogonal matrix tends to 0 as n→ ∞. (On the other hand, Jiang does not bound the rate at which the
variation distance goes to 0, which we do and which is needed for our application.) Jiang also proves his
bound to be tight, in the sense that m = O

(
n2
)

no longer suffices. We conjecture both that his results
should carry over to the complex case, and that the variation distance should tend to 0 sufficiently rapidly.

Let pG, pS : Cn×n → R+ be the probability density functions of Gn×n and Sm,n respectively (for
convenience, we drop the subscripts m and n). Then for our application, we will actually need the
following stronger version of Theorem 5.1:

Theorem 5.2 (Haar-Unitary Hiding Theorem). Let m≥ n5

δ
log2 n

δ
. Then

pS (X)≤ (1+O(δ )) pG (X) (5.1)

for all X ∈ Cn×n.

Fortunately, Theorem 5.2 will follow fairly easily from our proof of Theorem 5.1.
Truncations of Haar unitary matrices have been studied in detail, but our specific results in Theorems

5.1 and 5.2 bound the asymptotics of convergence in a different way that what seems to have appeared
in the random matrix theory literature. Petz and Réffy [49] showed that the truncated Haar-unitary
distribution Sm,n converges to the Gaussian distribution, when n is fixed and m→ ∞. (Mastrodonato
and Tumulka [46] later gave an elementary proof of this fact.) In a followup paper, Petz and Réffy [50]
proved a large deviation bound for the empirical eigenvalue density of matrices drawn from Sm,n (see
also Réffy’s PhD thesis [52]). We will use some observations from those papers, especially an explicit
formula in [52] for the probability density function of Sm,n.

We now give an overview of the proof of Theorem 5.1. Our goal is to prove that

∆(pG, pS) :=
∫

X∈Cn×n
|pG (X)− pS (X)|dX (5.2)

is small, where the integral (like all others in this section) is with respect to the Lebesgue measure over
the entries of X .

The first crucial observation is that the probability distributions Gn×n and Sm,n are both invariant
under left-multiplication or right-multiplication by a unitary matrix. It follows that pG (X) and pS (X)
both depend only on the list of singular values of X . For we can always write X = (xi j) as UDV ,
where U,V are unitary and D = (di j) is a diagonal matrix of singular values; then pG (X) = pG (D) and
pS (X) = pS (D). Let λi := d2

ii be the square of the ith singular value of X . Then from the identity

∑
i, j∈[n]

∣∣xi j
∣∣2 = ∑

i∈[n]
λi, (5.3)

we get the following formula for pG:

pG (X) = ∏
i, j∈[n]

1
π

e−|xi j|2 = 1
πn2 ∏

i∈[n]
e−λi . (5.4)
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Also, Réffy [52, p. 61] has shown that, provided m≥ 2n, we have

pS (X) = cm,n ∏
i∈[n]

(
1− λi

m

)m−2n

Iλi≤m (5.5)

for some constant cm,n, where Iλi≤m equals 1 if λi ≤ m and 0 otherwise. Here and throughout, the λi’s
should be understood as functions λi (X) of X .

Let λmax := maxi λi be the greatest squared spectral value of X . Then we can divide the space Cn×n

of matrices into two parts: the head Rhead, consisting of matrices X such that λmax ≤ k, and the tail Rtail,
consisting of matrices X such that λmax > k, for a value k ≤ m

2n2 that we will set later. At a high level, our
strategy for upper-bounding ∆(pG, pS) will be to show that the head distributions are close and the tail
distributions are small. More formally, define

ghead :=
∫

X∈Rhead

pG (X)dX , (5.6)

shead :=
∫

X∈Rhead

pS (X)dX , (5.7)

∆head :=
∫

X∈Rhead

|pG (X)− pS (X)|dX , (5.8)

and define gtail, stail, and ∆tail similarly with integrals over Rtail. Note that ghead +gtail = shead + stail = 1
by normalization. Also, by the triangle inequality,

∆(pG, pS) = ∆head +∆tail ≤ ∆head +gtail + stail. (5.9)

So to upper-bound ∆(pG, pS), it suffices to upper-bound gtail, stail, and ∆head separately, which we now
proceed to do in that order.

Lemma 5.3. gtail ≤ n2e−k/n2
.

Proof. We have

gtail = Pr
X∼Gn×n

[λmax > k] (5.10)

≤ Pr
X∼Gn×n

[
∑i, j∈[n]

∣∣xi j
∣∣2 > k

]
(5.11)

≤ ∑
i, j∈[n]

Pr
X∼Gn×n

[∣∣xi j
∣∣2 > k

n2

]
(5.12)

= n2e−k/n2
, (5.13)

where line (5.11) uses the identity (5.3) and line (5.12) uses the union bound.

Lemma 5.4. stail ≤ n2e−k/(2n2).
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Proof. Recall that Hm,m is the Haar measure over m×m unitary matrices. Then for a single entry (say
u11) of a matrix U = (ui j) drawn from Hm,m,

Pr
U∼Hm.m

[
|u11|2 ≥ r

]
= (1− r)m−1 (5.14)

for all r ∈ [0,1], which can be calculated from the density function given by Réffy [52] for the case n = 1.
So as in Lemma 5.3,

stail = Pr
X∼Sm,n

[λmax > k] (5.15)

≤ Pr
X∼Sm,n

[
∑i, j∈[n]

∣∣xi j
∣∣2 > k

]
(5.16)

≤ ∑
i, j∈[n]

Pr
X∼Sm,n

[∣∣xi j
∣∣2 > k

n2

]
(5.17)

= n2 Pr
U∼Hm,m

[
|u11|2 >

k
mn2

]
(5.18)

= n2
(

1− k
mn2

)m−1

(5.19)

< n2e−k(1−1/m)/n2
(5.20)

< n2e−k/(2n2). (5.21)

The rest of the proof is devoted to upper-bounding ∆head, the distance between the two head distribu-
tions. Recall that Réffy’s formula for the density function pS (X) (equation (5.5)) involved a multiplicative
constant cm,n. Since it is difficult to compute the value of cm,n explicitly, we will instead define

ζ :=
(1/π)n2

cm,n
, (5.22)

and consider the scaled density function

p̃S (X) := ζ · pS (X) =
1

πn2 ∏
i∈[n]

(
1− λi

m

)m−2n

Iλi≤m. (5.23)

We will first show that pG and p̃S are close on Rhead. We will then deduce from that result, together with
the fact that gtail and stail are small, that pG and pS must be close on Rhead, which is what we wanted to
show. Strangely, nowhere in this argument do we ever bound ζ directly. After proving Theorem 5.1,
however, we will then need to go back and show that ζ is close to 1, on the way to proving Theorem 5.2.

Let
∆̃head :=

∫
X∈Rhead

|pG (X)− p̃S (X)|dX . (5.24)

Then our first claim is the following.
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Lemma 5.5. ∆̃head ≤ 4nk(n+k)
m .

Proof. As a first observation, when we restrict to Rhead, we have λi ≤ k ≤ m
2n2 < m for all i ∈ [n] by

assumption. So we can simplify the expression for p̃S (X) by removing the indicator variable Iλi≤m:

p̃S (X) =
1

πn2 ∏
i∈[n]

(
1− λi

m

)m−2n

. (5.25)

Now let us rewrite equation (5.24) in the form

∆̃head =
∫

X∈Rhead

pG (X)

∣∣∣∣1− p̃S (X)

pG (X)

∣∣∣∣dX . (5.26)

Then plugging in the expressions for p̃S (X) and pG (X) respectively gives the ratio

p̃S (X)

pG (X)
=

π−n2
∏i∈[n] (1−λi/m)m−2n

π−n2
∏i∈[n] e−λi

(5.27)

= exp

(
∑

i∈[n]
f (λi)

)
, (5.28)

where

f (λi) = ln
(1−λi/m)m−2n

e−λi
(5.29)

= λi− (m−2n)(− ln(1−λi/m)) . (5.30)

Since 0≤ λi < m, we may use the Taylor expansion

− ln(1−λi/m) =
λi

m
+

1
2

λ 2
i

m2 +
1
3

λ 3
i

m3 + · · · (5.31)

So we can upper-bound f (λi) by

f (λi)≤ λi− (m−2n)
λi

m
(5.32)

=
2nλi

m
(5.33)

≤ 2nk
m

, (5.34)
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and can lower-bound f (λi) by

f (λi)≥ λi− (m−2n)
(

λi

m
+

1
2

λ 2
i

m2 +
1
3

λ 3
i

m3 + · · ·
)

(5.35)

> λi− (m−2n)
(

λi

m
+

λ 2
i

m2 +
λ 3

i
m3 + · · ·

)
(5.36)

= λi−
(m−2n)λi

m(1−λi/m)
(5.37)

> λi−
λi

1−λi/m
(5.38)

=− λ 2
i

m−λi
(5.39)

≥−2k2

m
. (5.40)

Here line (5.40) used the fact that λi ≤ k ≤ m
2n2 <

m
2 , since X ∈ Rhead. It follows that

− 2nk2

m
≤ ∑

i∈[n]
f (λi)≤

2n2k
m

. (5.41)

So

∣∣∣∣1− p̃S (X)

pG (X)

∣∣∣∣=
∣∣∣∣∣1− exp

(
∑

i∈[n]
f (λi)

)∣∣∣∣∣ (5.42)

≤max
{

1− exp
(
−2nk2

m

)
,exp

(
2n2k

m

)
−1
}

(5.43)

≤max
{

2nk2

m
,
4n2k

m

}
(5.44)

≤ 4nk (n+ k)
m

(5.45)

where line (5.44) used the fact that eδ −1 < 2δ for all δ ≤ 1. To conclude,

∆̃head ≤
∫

X∈Rhead

pG (X)

[
4nk (n+ k)

m

]
dX (5.46)

≤ 4nk (n+ k)
m

. (5.47)
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Combining Lemmas 5.3, 5.4, and 5.5, and making repeated use of the triangle inequality, we find that

∆head =
∫

X∈Rhead

|pG (X)− pS (X)|dX (5.48)

≤ ∆̃head +
∫

X∈Rhead

|p̃S (X)− pS (X)|dX (5.49)

= ∆̃head + |ζ shead− shead| (5.50)

≤ ∆̃head + |ζ shead−ghead|+ |ghead−1|+ |1− shead| (5.51)

≤ 2∆̃head +gtail + stail (5.52)

≤ 8nk (n+ k)
m

+n2e−k/n2
+n2e−k/(2n2). (5.53)

Therefore

∆(pG, pS)≤ ∆head +gtail + stail (5.54)

≤ 8nk (n+ k)
m

+2n2e−k/n2
+2n2e−k/(2n2). (5.55)

Recalling that m≥ n5

δ
log2 n

δ
, let us now make the choice k := 6n2 log n

δ
. Then the constraint k ≤ m

2n2 is
satisfied, and furthermore ∆(pG, pS) = O(δ ). This completes the proof of Theorem 5.1.

The above derivation “implicitly” showed that ζ is close to 1. As a first step toward proving Theorem
5.2, let us now make the bound on ζ explicit.

Lemma 5.6. |ζ −1|= O(δ ) .

Proof. We have

|ζ shead− shead| ≤ |ζ shead−ghead|+ |ghead−1|+ |1− shead| (5.56)

= ∆̃head +gtail + stail (5.57)

≤ 4nk (n+ k)
m

+n2e−k/n2
+n2e−k/(2n2) (5.58)

and
shead = 1− stail ≥ 1−n2e−k/(2n2). (5.59)

As before, recall that m≥ n5

δ
log2 n

δ
and set k := 6n2 log n

δ
. Then

|ζ −1|= |ζ shead− shead|
shead

(5.60)

≤ 4nk (n+ k)/m+n2e−k/n2
+n2e−k/(2n2)

1−n2e−k/(2n2)
(5.61)

= O(δ ) . (5.62)
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We can now prove Theorem 5.2, that pS (X)≤ (1+O(δ )) pG (X) for all X ∈ Cn×n.

Proof of Theorem 5.2. Our goal is to upper-bound

C := max
X∈Cn×n

pS (X)

pG (X)
. (5.63)

Using the notation of Lemma 5.5, we can rewrite C as

1
ζ

max
X∈Cn×n

p̃S (X)

pG (X)
=

1
ζ

max
λ1,...,λn≥0

exp

(
∑

i∈[n]
f (λi)

)
, (5.64)

where
f (λi) := λi +(m−2n) ln(1−λi/m) . (5.65)

By elementary calculus, the function f (λ ) achieves its maximum at λ = 2n; note that this is a valid
maximum since m≥ 2n. Setting λi = 2n for all i then yields

C =
1
ζ

exp
(

2n2 +n(m−2n) ln
(

1− 2n
m

))
(5.66)

=
1
ζ

e2n2
(

1− 2n
m

)n(m−2n)

(5.67)

<
1
ζ

e2n2
e−2n2(m−2n)/m (5.68)

=
1
ζ

e4n3/m (5.69)

≤ 1
1−O(δ )

(1+O(δ )) (5.70)

= 1+O(δ ) . (5.71)

Here line (5.70) used Lemma 5.6, together with the fact that m� 4n3

δ
.

5.2 Hardness of Approximate BOSONSAMPLING

Having proved Theorem 5.2, we are finally ready to prove the main result of the paper: that |GPE|2± ∈
FBPPNPO

, where O is any approximate BOSONSAMPLING oracle. In other words, if there is a fast
classical algorithm for approximate BOSONSAMPLING, then there is also a BPPNP algorithm to estimate
|Per(X)|2, with high probability for a Gaussian random matrix X ∼ Gn×n.

We first need a technical lemma, which formalizes the well-known concept of rejection sampling.

Lemma 5.7 (Rejection Sampling). Let D = {px} and E = {qx} be any two distributions over a finite
set S. Suppose that there exists a polynomial-time algorithm to compute ζ qx/px given x ∈ S, where ζ

is some constant independent of x such that |ζ −1| ≤ δ . Suppose also that qx/px ≤ 1+δ for all x ∈ S.
Then there exists a BPP algorithm R that takes a sample x∼D as input, and either accepts or rejects. R
has the following properties:
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(i) Conditioned on R accepting, x is distributed according to E.

(ii) The probability that R rejects (over both its internal randomness and x∼D) is O(δ ).

Proof. R works as follows: first compute ζ qx/px; then accept with probability ζ qx/px

(1+δ )2 ≤ 1. Property (i)
is immediate. For property (ii),

Pr [R rejects] = ∑
x∈S

px

(
1− ζ qx/px

(1+δ )2

)
(5.72)

= ∑
x∈S

(
px−

ζ qx

(1+δ )2

)
(5.73)

= 1− ζ

(1+δ )2 (5.74)

= O(δ ) . (5.75)

By combining Lemma 5.7 with Theorem 5.2, we now show how it is possible to “hide” a matrix
X ∼ Gn×n of i.i.d. Gaussians as a random n×n submatrix of a Haar-random m×n column-orthonormal
matrix A, provided m = Ω

(
n5 log2 n

)
. Our hiding procedure does not involve any distortion of X . We

believe that the hiding procedure could be implemented in BPP; however, we will show only that it can
be implemented in BPPNP, since that is easier and suffices for our application.

Lemma 5.8 (Hiding Lemma). Let m≥ n5

δ
log2 n

δ
for some δ > 0. Then there exists a BPPNP algorithm

A that takes as input a matrix X ∼ Gn×n, that “succeeds” with probability 1−O(δ ) over X, and that,
conditioned on succeeding, samples a matrix A ∈ Um,n from a probability distribution DX , such that the
following properties hold:

(i) X/
√

m occurs as a uniformly-random n×n submatrix of A∼DX , for every X such that Pr [A(X) succeeds]>
0.

(ii) The distribution over A ∈ Cm×n induced by drawing X ∼ Gn×n, running A(X), and conditioning
on A(X) succeeding is simply Hm,n (the Haar measure over m×n column-orthonormal matrices).

Proof. Given a sample X ∼ Gn×n, the first step is to “convert” X into a sample from the truncated Haar
measure Sm,n. To do so, we use the rejection sampling procedure from Lemma 5.7. By Theorem 5.2, we
have pS (X)/pG (X)≤ 1+O(δ ) for all X ∈ Cn×n, where pS and pG are the probability density functions
of Sm,n and Gn×n respectively. Also, letting ζ := (1/π)n2

/cm,n be the constant from Section 5.1, we have

ζ · pS (X)

pG (X)
=

p̃S (X)

pG (X)
=

∏i∈[n] (1−λi/m)m−2n

∏i∈[n] e−λi
, (5.76)

which is clearly computable in polynomial time (to any desired precision) given X . Finally, we saw from
Lemma 5.6 that |ζ −1|= O(δ ). So by Lemma 5.7, the rejection sampling procedure R has the following
properties:
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(1) R can be implemented in BPP.

(2) R rejects with probability O(δ ).

(3) Conditioned on R accepting, we have X ∼ Sm,n.

Now suppose R accepts, and let X ′ := X/
√

m. Then our problem reduces to embedding X ′ as a random
submatrix of a sample A from Hm,n. We do this as follows. Given a matrix A ∈ Um,n, let EX (A) be the
event that X ′ occurs as an n×n submatrix of A. Then let DX be the distribution over A ∈ Um,n obtained
by first sampling A from Hm,n, and then conditioning on EX (A) holding. Note that DX is well-defined,
since for every X in the support of Sm,n, there is some A ∈ Um,n satisfying EX (A). We now check that DX

satisfies properties (i) and (ii). For (i), every element in the support of DX contains X ′ as a submatrix by
definition, and by symmetry, this X ′ occurs at a uniformly-random location. For (ii), notice that we could
equally well have sampled A∼DX by first sampling X ∼ Sm,n, then placing X ′ at a uniformly-random
location within A, and finally “filling in” the remaining (m−n)×n block of A by drawing it from Hm,n

conditioned on X ′. From this perspective, however, it is clear that A is Haar-random, since Sm,n was
just a truncation of Hm,n to begin with. What remains to show is that, given X as input, we can sample
from DX in BPPNP. As a first step, we can certainly sample from Hm,n in BPP. To do so, for example,
we can first generate a matrix A∼ Gm×n of independent Gaussians, and then apply the Gram-Schmidt
orthogonalization procedure to A. Now, given a BPP algorithm that samples A∼Hm,n, the remaining
task is to condition on the event EX (A). Given X and A, it is easy to check whether EX (A) holds. But
this means that we can sample from the conditional distribution DX in the complexity class PostBPP,
and hence also in BPPNP by equation (2.1). So, combining a BPP algorithm with a BPPNP algorithm,
we get an overall BPPNP algorithm.

The final step is to prove that, if we had an oracle O for approximate BOSONSAMPLING, then by
using O in conjunction with the hiding procedure from Lemma 5.8, we could estimate |Per(X)|2 in
BPPNP, where X ∼ Gn×n is a Gaussian input matrix.

To prove this theorem, we need to recall some definitions from previous sections. The set of tuples
S = (s1, . . . ,sm) satisfying s1, . . . ,sm ≥ 0 and s1 + · · ·+ sm = n is denoted Φm,n. Given a matrix A ∈ Um,n,
we denote by DA the distribution over Φm,n where each S occurs with probability

Pr
DA

[S] =
|Per(AS)|2

s1! · · ·sm!
. (5.77)

Also, recall that in the |GPE|2± problem, we are given an input of the form
〈
X ,01/ε ,01/δ

〉
, where X is an

n×n matrix drawn from the Gaussian distribution Gn×n. The goal is to approximate |Per(X)|2 to within
an additive error ε ·n!, with probability at least 1−δ over X .

We now prove Theorem 1.3, our main result. Let us restate the theorem for convenience:

Let O be any approximate BOSONSAMPLING oracle. Then |GPE|2± ∈ FBPPNPO

.

Proof of Theorem 1.3. Let X ∼ Gn×n be an input matrix, and let ε,δ > 0 be error parameters. Then we
need to show how to approximate |Per(X)|2 to within an additive error ε ·n!, with probability at least
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1− δ over X , in the complexity class FBPPNPO

. The running time should be polynomial in n, 1/ε ,
and 1/δ . Let m := K

δ
n5 log2 n

δ
, where K is a suitably large constant. Also, let X ′ := X/

√
m be a scaled

version of X . Then we can state our problem equivalently as follows: approximate

∣∣Per
(
X ′
)∣∣2 = |Per(X)|2

mn (5.78)

to within an additive error ε · n!/mn. As a first step, Lemma 5.8 says that in BPPNP, and with high
probability over X ′, we can generate a matrix A ∈ Um×n that is exactly Haar-random, and that contains X ′

as a random n×n submatrix. So certainly we can generate such an A in FBPPNPO

(indeed, without using
the oracle O). Provided we chose K sufficiently large, this procedure will succeed with probability at least
(say) 1− δ/4. Set β := εδ/24. Suppose we feed

〈
A,01/β ,r

〉
to the approximate BOSONSAMPLING

oracle O, where r ∈ {0,1}poly(m) is a random string. Then by definition, as r is varied, O returns a sample
from a probability distribution D′A such that ‖DA−D′A‖ ≤ β . Let pS := PrDA [S] and qS := PrD′A [S] for
all S ∈Φm,n. Also, let W ⊂ [m] be the subset of n rows of A in which X ′ occurs as a submatrix. Then we
will be particularly interested in the basis state S∗ = (s1, . . . ,sm), which is defined by si = 1 if i ∈W and
si = 0 otherwise. Notice that

pS∗ =
|Per(AS∗)|2

s1! · · ·sm!
=
∣∣Per

(
X ′
)∣∣2 , (5.79)

and that
qS∗ = Pr

D′A

[S∗] = Pr
r∈{0,1}poly(m)

[
O
(

A,01/β ,r
)
= S∗

]
. (5.80)

In other words: pS∗ encodes the squared permanent that we are trying to approximate, while qS∗ can be
approximated in FBPPNPO

using Stockmeyer’s approximate counting method (Theorem 4.1). Therefore,
to show that with high probability we can approximate pS∗ in FBPPNPO

, it suffices to show that pS∗ and
qS∗ are close with high probability over X and A. Call a basis state S ∈Φm,n collision-free if each si is
either 0 or 1. Let Gm,n be the set of collision-free S’s, and notice that S∗ ∈ Gm,n. From now on, we will
find it convenient to restrict attention to Gm,n. Let ∆S := |pS−qS|, so that

∥∥DA−D′A
∥∥= 1

2 ∑
S∈Φm,n

∆S. (5.81)

Then

E
S∈Gm,n

[∆S]≤
∑S∈Φm,n ∆S

|Gm,n|
(5.82)

=
2‖DA−D′A‖
|Gm,n|

(5.83)

≤ 2β(m
n

) (5.84)

< 3β · n!
mn , (5.85)
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where line (5.85) used the fact that m = ω
(
n2
)
. So by Markov’s inequality, for all k > 1,

Pr
S∈Gm,n

[
∆S > 3βk · n!

mn

]
<

1
k
. (5.86)

In particular, if we set k := 4/δ and notice that 3βk = 12β/δ = ε/2,

Pr
S∈Gm,n

[
∆S >

ε

2
· n!

mn

]
<

δ

4
. (5.87)

Of course, our goal is to upper-bound ∆S∗ , not ∆S for a randomly-chosen S ∈ Gm,n. However, a crucial
observation is that, from the perspective of O—which sees only A, and not S∗ or X ′—the distribution over
possible values of S∗ is simply the uniform one. To see this, notice that instead of sampling X and then A
(as in Lemma 5.8), we could have equally well generated the pair 〈X ,A〉 by first sampling A from the
Haar measure Hm,n, and then setting X :=

√
mAS∗ , for S∗ chosen uniformly from Gm,n. It follows that

seeing A gives O no information whatsoever about the identity of S∗. So even if O is trying adversarially
to maximize ∆S∗ , we still have

Pr
X ,A

[
∆S∗ >

ε

2
· n!

mn

]
<

δ

4
. (5.88)

Now suppose we use Stockmeyer’s algorithm to approximate qS∗ in FBPPNPO

. Then by Theorem 4.1,
for all α > 0, we can obtain an estimate q̃S∗ such that

Pr [|q̃S∗−qS∗ |> α ·qS∗ ]<
1

2m , (5.89)

in time polynomial in m and 1/α . Note that

E
S∈Gm,n

[qS]≤
1
|Gm,n|

=
1(m
n

) < 2
n!
mn , (5.90)

so

Pr
S∈Gm,n

[
qS > 2k · n!

mn

]
<

1
k

(5.91)

for all k > 1 by Markov’s inequality, so

Pr
X ,A

[
qS∗ > 2k · n!

mn

]
<

1
k

(5.92)

by the same symmetry principle used previously for ∆S∗ . Let us now make the choice α := εδ/16 and
k := 4/δ . Then putting everything together and applying the union bound,

Pr
[
|q̃S∗− pS∗ |> ε · n!

mn

]
≤ Pr

[
|q̃S∗−qS∗ |>

ε

2
· n!

mn

]
+Pr

[
|qS∗− pS∗ |>

ε

2
· n!

mn

]
(5.93)

≤ Pr
[

qS∗ > 2k · n!
mn

]
+Pr [|q̃S∗−qS∗ |> α ·qS∗ ]+Pr

[
∆S∗ >

ε

2
· n!

mn

]
(5.94)

<
1
k
+

1
2m +

δ

4
(5.95)

=
δ

2
+

1
2m , (5.96)
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where the probabilities are over X and A as well as the internal randomness used by the approximate
counting procedure. So, including the probability that the algorithm A from Lemma 5.8 fails, the total
probability that our FBPPNPO

machine fails to output a good enough approximation to pS∗ = |Per(X ′)|2

is at most
δ

4
+

(
δ

2
+

1
2m

)
< δ , (5.97)

as desired. This completes the proof.

5.3 Implications

In this section, we harvest some implications of Theorem 1.3 for quantum complexity theory. First, if a
fast classical algorithm for BOSONSAMPLING exists, then it would have a surprising consequence for the
classical complexity of the |GPE|2± problem.

Corollary 5.9. Suppose BOSONSAMPLING∈ SampP. Then |GPE|2± ∈ FBPPNP. Indeed, even if
BOSONSAMPLING∈ SampPPH, then |GPE|2± ∈ FBPPPH.

However, we would also like evidence that a boson computer can solve search problems that are
intractable classically. Fortunately, by using Theorem 2.5—the “Sampling/Searching Equivalence
Theorem”—we can obtain such evidence in a completely automatic way. In particular, combining
Corollary 5.9 with Theorem 2.5 yields the following conclusion.

Corollary 5.10. There exists a search problem R ∈ BosonFP such that |GPE|2± ∈ FBPPNPO

for all
computable oracles O that solve R. So in particular, if BosonFP⊆ FBPP (that is, all search problems
solvable by a boson computer are also solvable classically), then |GPE|2± ∈ FBPPNP.

Recall from Theorem 3.12 that BosonFP ⊆ FBQP: that is, linear-optics computers can be simu-
lated efficiently by “ordinary” quantum computers. Thus, Corollary 5.10 implies in particular that, if
FBPP = FBQP, then |GPE|2± ∈ FBPPNP. Or in other words: if |GPE|2± is #P-hard, then FBPP cannot
equal FBQP, unless P#P = BPPNP and the polynomial hierarchy collapses. This would arguably be our
strongest evidence to date against the Extended Church-Turing Thesis.

In Sections 7, 8, and 9, we initiate a program aimed at proving |GPE|2± is #P-hard.

6 Experimental Prospects

Our main goal in this paper was to define and study a theoretical model of quantum computing with
noninteracting bosons. There are several ways to motivate this model other than practical realizability:
for example, it abstracts a basic class of physical systems, it leads to interesting new complexity classes
between BPP and BQP, and it helped us provide evidence that quantum mechanics in general is hard to
simulate classically. (In other words, even if we only cared about “standard” quantum computing, we
would not know how to prove results like Theorem 1.3 without using linear optics as a proof tool.)

Clearly, though, a major motivation for our results is that they raise the possibility of actually building
a scalable linear-optics computer, and using it to solve the BOSONSAMPLING problem. By doing this,
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Figure 3: The Hong-Ou-Mandel dip.

one could hope to give evidence that nontrivial quantum computation is possible, without having to solve
all the technological problems of building a universal quantum computer. In other words, one could see
our results as suggesting a new path to testing the Extended Church-Turing Thesis, which might be more
experimentally accessible than alternative paths.

A full discussion of implementation issues is outside the scope of this paper. Here, though, we
offer some preliminary observations that emerged from our discussions with quantum optics experts.
These observations concern both the challenges of performing a BOSONSAMPLING experiment, and the
implications of such an experiment for complexity theory.

6.1 The Generalized Hong-Ou-Mandel Dip

From a physics standpoint, the experiment that we are asking for is essentially a generalization of the
Hong-Ou-Mandel dip [33] to three or more photons. The Hong-Ou-Mandel dip (see Figure 3) is a
well-known effect in quantum optics whereby two identical photons, which were initially in different
modes, become correlated after passing through a beamsplitter that applies the Hadamard transformation.
More formally, the basis state |1,1〉 evolves to

|2,0〉− |0,2〉√
2

, (6.1)

so that a subsequent measurement reveals either both photons in the first mode or else both photons in the
second mode. This behavior is exactly what one would predict from the model in Section 3, in which
n-photon transition amplitudes are given by the permanents of n× n matrices. More concretely, the
amplitude of the basis state |1,1〉 “dips” to 0 because

Per

(
1√
2

1√
2

1√
2
− 1√

2

)
= 0, (6.2)

and hence there is destructive interference between the two paths mapping |1,1〉 to itself.
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Our challenge to experimentalists is to confirm directly that the quantum-mechanical formula for
n-boson transition amplitudes in terms of n×n permanents given in Section 3.3, namely

〈S|ϕ (U) |T 〉= Per(US,T )√
s1! · · ·sm!t1! · · · tm!

, (6.3)

continues to hold for large values of n. In other words, demonstrate a Hong-Ou-Mandel interference
pattern involving as many identical bosons as possible (though even 3 or 4 bosons would be of interest
here).

The point of such an experiment would be to produce evidence that a linear-optical network can
indeed solve the BOSONSAMPLING problem in a scalable way—and that therefore, no polynomial-time
classical algorithm can sample the observed distribution over photon numbers (modulo our conjectures
about the computational complexity of the permanent).

Admittedly, since complexity theory deals only with asymptotic statements, no finite experiment can
answer the relevant questions definitively. That is, even if formula (6.3) were confirmed for 30 identical
bosons, a true-believer in the Extended Church-Turing Thesis could always maintain that the formula
would break down for 31 bosons, and so on. Thus, the goal here is simply to collect enough evidence,
for large enough n, that the ECT becomes less tenable as a scientific hypothesis.

Of course, one should not choose n so large that a classical computer cannot even efficiently verify
that the formula (6.3) holds! It is important to understand this difference between the BOSONSAMPLING

problem on the one hand, and NP problems such as FACTORING on the other. Unlike with FACTORING,
we do not know of any witness for BOSONSAMPLING that a classical computer can efficiently verify,
much less a witness that a boson computer can produce.22 This means that, when n is very large (say,
more than 100), even if a linear-optics device is correctly solving BOSONSAMPLING, there might be no
feasible way to prove this without presupposing the truth of the physical laws being tested! Thus, for
experimental purposes, the most useful values of n are presumably those for which a classical computer
has some difficulty computing an n×n permanent, but can nevertheless do so in order to confirm the
results. We estimate this range as 10≤ n≤ 50.

But how exactly should one verify formula (6.3)? One approach would be to perform full quantum
state tomography on the output state of a linear-optical network, or at least to characterize the distribution
over photon numbers. However, this approach would require a number of experimental runs that grows
exponentially with n, and is probably not needed.

Instead, given a system with n identical photons and m≥ n modes, one could do something like the
following:

(1) Prepare the “standard initial state” |1n〉, in which modes 1, . . . ,n are occupied with a single photon
each and modes n+1, . . . ,m are unoccupied.

(2) By passing the photons through a suitable network of beamsplitters and phaseshifters, apply an
m×m mode-mixing unitary transformation U . This maps the state |1n〉 to ϕ (U) |1n〉, where ϕ (U)
is the induced action of U on n-photon states.

22Indeed, given a matrix X ∈Cn×n, there cannot in general be an NP witness proving the value of Per(X), unless P#P = PNP

and the polynomial hierarchy collapses. Nor, under our conjectures, can there even be such a witness for most Gaussian matrices
X . On the other hand, these arguments do not rule out an interactive protocol with a BPP verifier and a BOSONSAMPLING

prover. Whether any such protocol exists for verifying statements not in BPP is an extremely interesting open problem.
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(3) For each mode i ∈ [m], measure the number of photons si in the ith mode. This collapses the state
ϕ (U) |1n〉 to some |S〉= |s1, . . . ,sm〉, where s1, . . . ,sm are nonnegative integers summing to n.

(4) Using a classical computer, calculate |Per(U1n,S)|
2 /s1! · · ·sm!, the theoretical probability of observ-

ing the basis state |S〉.

(5) Repeat steps (1) to (4), for a number of repetitions that scales polynomially with n and m.

(6) Plot the empirical frequency of |Per(U1n,S)|
2 /s1! · · ·sm! > x for all x ∈ [0,1], with particular focus

on the range x ≈ 1/
(m+n−1

n

)
. Check for agreement with the frequencies predicted by quantum

mechanics (which can again be calculated using a classical computer, either deterministically or
via Monte Carlo simulation).

The procedure above does not prove that the final state is ϕ (U) |1n〉. However, it at least checks that
the basis states |S〉 with large values of |Per(U1n,S)|

2 are more likely to be observed than those with small
values of |Per(U1n,S)|

2, in the manner predicted by formula (6.3).

6.2 Physical Resource Requirements

We now make some miscellaneous remarks about the physical resource requirements for our experiment.

Platform. The obvious platform for our proposed experiment is linear optics. However, one could
also do the experiment (for example) in a solid-state system, using bosonic excitations. What is essential
is just that the excitations behave as indistinguishable bosons when they are far apart. In other words, the
amplitude for n excitations to transition from one basis state to another must be given by the permanent
of an n×n matrix of transition amplitudes for the individual excitations. On the other hand, the more
general formula (6.3) need not hold; that is, it is acceptable for the bosonic approximation to break down
for processes that involve multiple excitations in the same mode. (The reason is that the events that most
interest us do not involve collisions anyway.)

Initial state. In our experiment, the initial state would ideally consist of at most one photon per
mode: that is, single-photon Fock states. This is already a nontrivial requirement, since a standard laser
outputs not Fock states but coherent states, which have the form

|α〉= e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 (6.4)

for some α ∈C. (In other words, sometimes there are zero photons, sometimes one, sometimes two, etc.,
with the number of photons following a Poisson distribution.) Fortunately, the task of building reliable
single-photon sources is an extremely well-known one in quantum optics [45], and the technology to
generate single-photon Fock states has been steadily improving over the past decade.

Still, one can ask whether an analogue of our computational hardness results goes through, if the
inputs are coherent states rather than Fock states. As mentioned in Section 1.4, if the inputs are coherent
states and the measurements are demolition, or the inputs are Gaussian states (a generalization of coherent
states) and the measurements are Gaussian, then the probability distribution over measurement outcomes
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can be sampled in classical polynomial time. By contrast, if the inputs are coherent states and we have
nondemolition photon-number measurements, then Theorem 4.9 shows that exact classical simulation
of the linear-optics experiment would collapse the polynomial hierarchy. However, we do not know
whether approximate classical simulation would have surprising complexity consequences in that case.

Measurements. For our experiment, it is desirable to have an array of m photodetectors, which
reliably measure the number of photons si in each mode i ∈ [m]. However, it would also suffice to use
detectors that only measure whether each si is zero or nonzero. This is because our hardness results talk
only about basis states |S〉 = |s1, . . . ,sm〉 that are collision-free, meaning that si ∈ {0,1} for all i ∈ [m].
Thus, one could simply postselect on the runs in which exactly n of the m detectors record a photon, in
which case one knows that si = 1 for the corresponding modes i, while si = 0 for the remaining m−n
modes. (In Appendix 13, we will prove a “Boson Birthday Bound,” which shows that as long as m
is sufficiently large and the mode-mixing unitary U is Haar-random, this postselection step succeeds
with probability close to 1. Intuitively, if m is large enough, then collision-free basis states are the
overwhelming majority.)

What might not suffice are Gaussian measurements. As mentioned earlier, if both the input states and
the measurements are Gaussian, then Bartlett and Sanders [9] showed that no superpolynomial quantum
speedup is possible. We do not know what the situation is if the measurements are Gaussian and the
inputs are single-photon Fock states.

Like single-photon sources, photodetectors have improved dramatically over the past decade, but of
course no detector will be 100% efficient.23 As we discuss later, the higher the photodetector efficiencies,
the less need there is for postselection, and therefore, the more easily one can scale to larger numbers of
photons.

Number of photons n. An obvious question is how many photons are needed for our experiment.
The short answer is simply “the more, the better!” The goal of the experiment is to confirm that, for
every positive integer n, the transition amplitudes for n identical bosons are given by n×n permanents, as
quantum mechanics predicts. So the larger the n, the stronger the evidence for this claim, and the greater
the strain on any competing interpretation.

At present, it seems fair to say that our experiment has already been done for n = 2 (this is the
Hong-Ou-Mandel dip [33]). However, we are not aware of any experiment directly testing formula (6.3)
even for n = 3. Experimentalists we consulted expressed the view that this is mostly just a matter of
insufficient motivation before now, and that the n = 3 and even n = 4 cases ought to be feasible with
current technology.

Of course, the most interesting regime for computer science is the one where n is large enough that
a classical computer would have difficulty computing an n×n permanent. The best known classical
algorithm for the permanent, Ryser’s algorithm, uses about 2n+1n2 floating-point operations. If n = 10,
then this is about 200,000 operations; if n = 20, it is about 800 million; if n = 30, it is about 2 trillion.
In any of these cases, it would be exciting to perform a linear-optics experiment that “almost-instantly”
sampled from a distribution in which the probabilities were given by n×n permanents.

23Here the “efficiency” of a photodetector refers to the probability of its detecting a photon that is present.
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Number of modes m. Another important question is how many modes are needed for our experiment.
We showed in our proof of Theorem 1.3—see in particular Theorem 5.1—that it suffices to use m =
O
( 1

δ
n5 log2 n

δ

)
modes. This bound is polynomial in n but clearly impractical. As we mentioned in

Section 5.1, results of Jiang [35] (which we learned about only recently) strongly suggest that an improved
analysis would yield m = O

(
n2
)
. On the other hand, by the birthday paradox, we cannot have fewer than

m = Ω
(
n2
)

modes, if we want the state ϕ (U) |1n〉 to be dominated by collision-free photon configurations
(meaning those containing at most one photon per mode).

Unfortunately, a quadratic number of modes might still be difficult to arrange in practice. So the
question arises: what would happen if we ran our experiment with a linear number of modes, m = O(n)?
In that case, almost every basis state would contain collisions, so our formal argument for the classical
hardness of approximate BOSONSAMPLING, based on Conjectures 1.6 and 1.5, would no longer apply.
On the other hand, we suspect it would still be true that sampling is classically hard! Giving a formal
argument for the hardness of approximate BOSONSAMPLING, with n photons and m = O(n) modes, is
an interesting challenge that we leave.

In the meantime, if the goal of one’s experiment is just to verify that the permanent formula (6.3)
remains correct for large values of n, then large numbers of photon collisions are presumably acceptable.
In this case, it should suffice to set m≈ n, or possibly even m� n (though note that it is easy to give a
classical simulation algorithm that runs in nO(m) time).

Choice of unitary transformation U . One could look for an n-photon Hong-Ou-Mandel dip using
any unitary transformation U that produces nontrivial interference among n of the m modes. However,
some choices of U are more interesting than others. The prescription suggested by our results is to
choose U randomly, according to the Haar measure over m×m unitaries. Once U is chosen, one can
then “hardwire” a network of beamsplitters and phaseshifters that produces U .

There are at least three reasons why using a Haar-random U seems like a good idea:

(1) Theorem 5.1 showed that any sufficiently small submatrix of a Haar-random unitary matrix U is
close to a matrix of i.i.d. Gaussians. This extremely useful fact is what let us prove Theorem 1.3,
which relates the hardness of approximate BOSONSAMPLING to the hardness of more “natural”
problems that have nothing to do with unitary matrices.

(2) Setting aside our results, the Haar measure is the unique rotationally-invariant measure over
unitaries. This makes it an obvious choice, if the goal is to avoid any “special structure” that might
make the BOSONSAMPLING problem easy.

(3) In the linear-optics model, one simple way to apply a Haar-random m×m unitary matrix U is via a
network of poly(m) randomly-chosen beamsplitters and phaseshifters.

Optical elements. One might worry about the number of beamsplitters and phaseshifters needed
to implement an arbitrary m×m unitary transformation U , or a Haar-random U in particular. And
indeed, the upper bound of Reck et al. [51] (Lemma 3.1) shows only that O

(
m2
)

beamsplitters and
phaseshifters suffice to implement any unitary, and this is easily seen to be tight by a dimension argument.
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Unfortunately, a network of ∼m2 optical elements might already strain the limits of practicality, especially
if m has been chosen to be quadratically larger than n.

Happily, Section 6.3 will show how to reduce the number of optical elements from O
(
m2
)

to O(mn),
by exploiting a simple observation: namely, we only care about the optical network’s behavior on
the first n modes, since the standard initial state |1n〉 has no photons in the remaining m− n modes
anyway. Section 6.3 will also show how to “parallelize” the resulting optical network, so that the O(mn)
beamsplitters and phaseshifters are arranged into only O(n logm) layers.

Whether one can parallelize linear-optics computations still further, and whether one can sample from
hard distributions using even fewer optical elements (say, O(m logm)), are interesting topics for future
work.

Error. There are many sources of error in our experiment; understanding and controlling the errors
is perhaps the central challenge an experimentalist will face. At the most obvious level:

(1) Generation of single-photon Fock states will not be perfectly reliable.

(2) The beamsplitters and phaseshifters will not induce exactly the desired unitary transformations.

(3) Each photon will have some probability of “getting lost along the way.”

(4) The photodetectors will not have perfect efficiency.

(5) If the lengths of the optical fibers are not well-calibrated, or the single-photon sources are not
synchronized, or there is vibration, etc., then the photons will generally arrive at the photodetectors
at different times.

If (5) occurs, then the photons effectively become distinguishable, and the amplitudes will no longer
correspond to n×n permanents. So then how well-synchronized do the photons need to be? To answer
this question, recall that each photon is actually a Gaussian wavepacket in the position basis, rather
than a localized point. For formula (6.3) to hold, what is necessary is that the photons arrive at the
photodetectors within a short enough time interval that their wavepackets have large pairwise overlaps.

The fundamental worry is that, as we increase the number of photons n, the probability of a successful
run of the experiment might decrease like c−n. In practice, experimentalists usually deal with such
behavior by postselecting on the successful runs. In our context, that could mean (for example) that
we only count the runs in which n detectors register a photon simultaneously, even if such runs are
exponentially unlikely. We expect that any realistic implementation of our experiment would involve at
least some postselection. However, if the eventual goal is to scale to large values of n, then any need
to postselect on an event with probability c−n presents an obvious barrier. Indeed, from an asymptotic
perspective, this sort of postselection defeats the entire purpose of using a quantum computer rather than
a classical computer.

For this reason, while even a heavily-postselected Hong-Ou-Mandel dip with (say) n = 3, 4, or 5
photons would be interesting, our real hope is that it will ultimately be possible to scale our experiment
to interestingly large values of n, while maintaining a total error that is closer to 0 than to 1. However,
supposing this turns out to be possible, one can still ask: how close to 0 does the error need to be?
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Unfortunately, just like with the question of how many photons are needed, it is difficult to give a
direct answer, because of the reliance of our results on asymptotics. What Theorem 1.3 shows is that,
if one can scale the BOSONSAMPLING experiment to n photons and error δ in total variation distance,
using an amount of “experimental effort” that scales polynomially with both n and 1/δ , then modulo
our complexity conjectures, the Extended Church-Turing Thesis is false. The trouble is that no finite
experiment can ever prove (or disprove) the claim that scaling to n photons and error δ takes poly(n,1/δ )
experimental effort. One can, however, build a circumstantial case for this claim—by increasing n,
decreasing δ , and making it clear that, with reasonable effort, one could have increased n and decreased
δ still further.

One challenge we leave is to prove a computational hardness result that works for a fixed (say,
constant) error δ , rather than treating 1/δ as an input parameter to the sampling algorithm along with n.
A second challenge is whether any nontrivial error-correction is possible within the noninteracting-boson
model. In standard quantum computing, the famous Threshold Theorem [7, 41] asserts that there exists
a constant τ > 0 such that, even if each qubit fails with independent probability τ at each time step,
one can still “correct errors faster than they happen,” and thereby perform an arbitrarily long quantum
computation. In principle, the Threshold Theorem could be applied to our experiment, to deal with
all the sources of error listed above. The issue is that, if we have the physical resources available
for fault-tolerant quantum computing, then perhaps we ought to forget about BOSONSAMPLING, and
simply run a universal quantum computation! What we want, ideally, is a way to reduce the error in our
experiment, without giving up on the implementation advantages that make the experiment attractive in
the first place.

6.3 Reducing the Size and Depth of Optical Networks

In this section, we discuss how best to realize an m×m unitary transformation U , acting on the initial
state |1n〉, as a product of beamsplitters and phaseshifters. If we implement U in the “obvious” way—
by appealing to Lemma 3.1—then the number of optical elements and the depth will both be O

(
m2
)
.

However, we can obtain a significant improvement by noticing that our goal is just to apply some unitary
transformation Ũ such that ϕ(Ũ) |1n〉 = ϕ (U) |1n〉: we do not care about the behavior on Ũ on inputs
other than |1n〉. This yields a network in which the number of optical elements and the depth are both
O(mn).

The following theorem shows that we can reduce the depth further, to O(n logm), by exploiting
parallelization.

Theorem 6.1 (Parallelization of Linear-Optical Networks). Given any m×m unitary operation U, one
can map the initial state |1n〉 to ϕ (U) |1n〉 using a linear-optical network of depth O(n logm), consisting
of O(mn) beamsplitters and phaseshifters.

Proof. We will consider a linear-optics system with m+n modes. Let

V =

(
U 0
0 I

)
(6.5)

be a unitary transformation that acts as U on the first m modes, and as the identity on the remaining n
modes. Then our goal will be to map |1n〉 to ϕ (V ) |1n〉. Let |ei〉 be the basis state that consists of a single
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photon in mode i, and no photons in the remaining m+n−1 modes. Also, let |ψi〉 = V |ei〉. Then it
clearly suffices to implement some unitary transformation Ṽ that maps |ei〉 to |ψi〉 for all i ∈ [n]—for then
ϕ(Ṽ ) |1n〉= ϕ (V ) |1n〉 by extension. Our first claim is that, for each i ∈ [n] individually, there exists a
unitary transformation Vi that maps |ei〉 to |ψi〉, and that can be implemented by a linear-optical network
of depth log2 m+O(1) with O(m) optical elements. To implement Vi, we use a binary doubling strategy:
first map |ei〉 to a superposition of the first two modes,

|z1〉= α1 |e1〉+α2 |e2〉 . (6.6)

Then, by using two beamsplitters in parallel, map the above state |z1〉 to a superposition of the first four
modes,

|z2〉= α1 |e1〉+α2 |e2〉+α3 |e3〉+α4 |e4〉 . (6.7)

Next, by using four beamsplitters in parallel, map |z2〉 to a superposition |z3〉 of the first eight modes, and
so on until |ψi〉 is reached. It is clear that the total depth required is log2 m+O(1), while the number of
optical elements required is O(m). This proves the claim. Now let Si be a unitary transformation that
swaps modes i and m+ i, and that acts as the identity on the remaining m+n−2 modes. Then we will
implement Ṽ as follows:

Ṽ =VnSnV †
n · · · · ·V2S2V †

2 ·V1S1V †
1 ·Sn · · ·S1. (6.8)

In other words: first swap modes 1, . . . ,n with modes m+1, . . . ,m+n. Then, for all i := 1 to n, apply
ViSiV

†
i . Since each Si involves only one optical element, while each Vi and V †

i involves O(m) optical
elements and O(logm) depth, it is clear that we can implement Ṽ using a linear-optical network of depth
O(n logm) with O(mn) optical elements. To prove the theorem, we need to verify that Ṽ |ei〉= |ψi〉 for
all i ∈ [n]. We do so in three steps. First, notice that for all i ∈ [n],

ViSiV
†
i (Si |ei〉) =ViSiV

†
i |em+i〉 (6.9)

=ViSi |em+i〉 (6.10)

=Vi |ei〉 (6.11)

= |ψi〉 . (6.12)

where line (6.10) follows since V †
i acts only on the first m modes. Second, for all i, j ∈ [n] with i 6= j,

VjS jV
†
j |em+i〉= |em+i〉 , (6.13)

since Vj and S j both act as the identity on |em+i〉. Third, notice that
〈
ψi|ψ j

〉
= 0 for all i 6= j, since |ψi〉

and
∣∣ψ j
〉

correspond to two different columns of the unitary matrix U . Since unitaries preserve inner
product, this means that V †

j |ψi〉 is also orthogonal to V †
j

∣∣ψ j
〉
=V †

j Vj
∣∣e j
〉
=
∣∣e j
〉
: in other words, the state

V †
j |ψi〉 has no support on the jth mode. It follows that S j acts as the identity on V †

j |ψi〉—and therefore,
for all i, j ∈ [n] with i 6= j, we have

VjS jV
†
j |ψi〉=VjV

†
j |ψi〉= |ψi〉 . (6.14)

Summarizing, we find that for all i ∈ [n]:
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• ViSiV
†
i maps |em+i〉 to |ψi〉.

• VjS jV
†
j maps |em+i〉 to itself for all j < i.

• VjS jV
†
j maps |ψi〉 to itself for all j > i.

We conclude that Ṽ |ei〉=ViSiV
†
i |em+i〉= |ψi〉 for all i ∈ [n]. This proves the theorem.

7 Reducing GPE× to |GPE|2±
The goal of this section is to prove Theorem 1.7: that, assuming Conjecture 1.6 (the Permanent Anti-
Concentration Conjecture), the GPE× and |GPE|2± problems are polynomial-time equivalent. Or in
words: if we can additively estimate |Per(X)|2 with high probability over a Gaussian matrix X ∼ Gn×n,
then we can also multiplicatively estimate Per(X) with high probability over a Gaussian matrix X .

Given as input a matrix X ∼ N (0,1)n×n
C of i.i.d. Gaussians, together with error bounds ε,δ > 0,

recall that the GPE× problem (Problem 1.4) asks us to estimate Per(X) to within error ±ε · |Per(X)|,
with probability at least 1− δ over X , in poly(n,1/ε,1/δ ) time. Meanwhile, the |GPE|2± problem
(Problem 1.2) asks us to estimate |Per(X)|2 to within error ±ε ·n!, with probability at least 1−δ over X ,
in poly(n,1/ε,1/δ ) time. It is easy to give a reduction from |GPE|2± to GPE×. The hard direction, and
the one that requires Conjecture 1.6, is to reduce GPE× to |GPE|2±.

While technical, this reduction is essential for establishing the connection we want between

(1) Theorem 1.3 (our main result), which relates the classical hardness of BOSONSAMPLING to
|GPE|2±, and

(2) Conjecture 1.5 (the Permanent-of-Gaussians Conjecture), which asserts that the GAUSSIAN PER-
MANENT ESTIMATION problem is #P-hard, in the more “natural” setting of multiplicative rather
than additive estimation, and Per(X) rather than |Per(X)|2.

Besides GPE× and |GPE|2±, one can of course also define two “hybrid” problems:

• GPE±, the problem of estimating Per(X) additively (i.e., to within error ±ε
√

n!), with probability
at least 1−δ over X , in poly(n,1/ε,1/δ ) time.

• |GPE|2×, the problem of estimating |Per(X)|2 multiplicatively (i.e., to within error ±ε · |Per(X)|2),
with probability at least 1−δ over X , in poly(n,1/ε,1/δ ) time.

The GPE± problem is not directly used in this paper, but it does play a central role in the recent
followup work of Arora et al. [8]. The |GPE|2× problem will be useful to us, as an “intermediate
stepping-stone” in reducing GPE× to |GPE|2±. Note that, assuming Conjecture 1.6, the GPE± and
|GPE|2× problems both become equivalent to GPE× and |GPE|2± as a byproduct.

Let us start by proving the “easy” reductions. In what follows, ≤P means “is polynomial-time
reducible to” (though in the next two lemmas, the reductions are all extremely simple one-to-one
mappings).

THEORY OF COMPUTING 61

http://dx.doi.org/10.4086/toc


SCOTT AARONSON AND ALEX ARKHIPOV

Lemma 7.1. We have the following “square” of reductions, from additive to multiplicative approximation,
and from approximation of |Per(X)|2 to approximation of Per(X):

GPE± ≤P GPE×, (7.1)

|GPE|2± ≤P |GPE|2× , (7.2)

|GPE|2× ≤P GPE×, (7.3)

|GPE|2± ≤P GPE±. (7.4)

As a corollary, of course, |GPE|2± ≤PGPE×. None of these reductions rely on unproved conjectures.

Proof. We start with GPE± ≤PGPE×. Suppose we have a polynomial-time algorithm M that, given〈
X ,01/ε ,01/δ

〉
, outputs a good multiplicative approximation to Per(X)—that is, a z such that

|z−Per(X)| ≤ ε |Per(X)| (7.5)

—with probability at least 1−δ over X ∼ Gn×n. We claim that z is also a good additive approximation to
Per(X), with high probability over X . For by Markov’s inequality,

Pr
X

[
|Per(X)|> k

√
n!
]
<

1
k2 . (7.6)

So by the union bound,

Pr
X

[
|z−Per(X)|> εk

√
n!
]
≤ Pr

X
[|z−Per(X)|> ε |Per(X)|]+Pr

X

[
ε |Per(X)|> εk

√
n!
]

(7.7)

≤ δ +
1
k2 . (7.8)

Thus, we can achieve any desired additive error bounds (ε ′,δ ′) by setting δ := δ ′/2, k :=
√

2/δ ′, and
ε := ε ′/k, so that εk = ε ′ and δ + 1/k2 = δ ′. Clearly this increases M’s running time by at most a
polynomial factor. The reduction |GPE|2± ≤P |GPE|2× is completely analogous, and is omitted for brevity.
Next we prove |GPE|2× ≤PGPE×. Suppose z is a good multiplicative approximation to Per(X):

|z−Per(X)| ≤ ε |Per(X)| . (7.9)

Then certainly |z|2 is a good multiplicative approximation to |Per(X)|2:∣∣∣|z|2−|Per(X)|2
∣∣∣= ||z|− |Per(X)||(|z|+ |Per(X)|) (7.10)

≤ ε |Per(X)| · [(1+ ε) |Per(X)|+ |Per(X)|] (7.11)

=
(
2ε + ε

2) |Per(X)|2 (7.12)

≤ 3ε |Per(X)|2 . (7.13)

Finally we prove |GPE|2± ≤PGPE±. Suppose z is a good additive approximation to Per(X):

|z−Per(X)| ≤ ε
√

n! (7.14)
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with probability at least 1−δ over X . Then provided that occurs,∣∣∣|z|2−|Per(X)|2
∣∣∣= ||z|− |Per(X)||(|z|+ |Per(X)|) (7.15)

≤ ε
√

n! ·
[
|Per(X)|+

√
n!+ |Per(X)|

]
(7.16)

= ε

[
n!+2

√
n! |Per(X)|

]
. (7.17)

So again using equation (7.6) together with the union bound,

Pr
X

[∣∣∣|z|2−|Per(X)|2
∣∣∣> εk ·n!

]
≤ Pr

X

[∣∣∣|z|2−|Per(X)|2
∣∣∣> ε

[
n!+2

√
n! |Per(X)|

]]
(7.18)

+Pr
X

[
ε

[
n!+2

√
n! |Per(X)|

]
> εk ·n!

]
≤ δ +Pr

X

[
|Per(X)|> k−1

2

√
n!
]

(7.19)

≤ δ +
4

(k−1)2 . (7.20)

Once again, we can achieve any desired error bounds (ε ′,δ ′) by appropriate choices of δ , k, and ε .

Next we show that, assuming the Permanent Anti-Concentration Conjecture, the reductions from
additive to multiplicative approximation in Lemma 7.1 can be reversed.

Lemma 7.2. Assuming Conjecture 1.6, we have GPE× ≤PGPE± (so that GPE× and GPE± become
polynomial-time equivalent), and likewise |GPE|2× ≤P |GPE|2± (so that |GPE|2× and |GPE|2± become
polynomial-time equivalent).

Proof. We show GPE× ≤PGPE±; the reduction |GPE|2× ≤P |GPE|2± is completely analogous and is
omitted for brevity. Suppose z is a good additive approximation to Per(X):

|z−Per(X)| ≤ ε
√

n! (7.21)

with probability at least 1−δ over X ∼ Gn×n. Then assuming Conjecture 1.6, we claim that z is also
a good multiplicative approximation to Per(X) with high probability over X . By the conjecture, there
exists a polynomial p such that

Pr
X

[
|Per(X)|<

√
n!

p(n,1/δ )

]
< δ . (7.22)

So by the union bound,

Pr
X
[|z−Per(X)|> ε · p(n,1/δ ) |Per(X)|]≤ Pr

X

[
|z−Per(X)|> ε

√
n!
]

(7.23)

+Pr
X

[
ε
√

n! > ε · p(n,1/δ ) |Per(X)|
]

≤ 2δ . (7.24)

Thus, we can achieve any desired multiplicative error bounds (ε ′,δ ′) by setting δ := δ ′/2 and ε :=
ε ′/p(n,1/δ ), incurring at most a polynomial blowup in running time.
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We now proceed to proving the main result of the section: that assuming the Permanent Anti-
Concentration Conjecture, approximating |Per(X)|2 for a Gaussian random matrix X ∼ Gn×n is as hard
as approximating Per(X) itself. This result can be seen as an average-case analogue of Theorem 4.3. To
prove it, we need to give a reduction that estimates the phase Per(X)/ |Per(X)| of a permanent Per(X),
given only the ability to estimate |Per(X)| (for most Gaussian matrices X). As in the proof of Theorem
4.3, our reduction proceeds by induction on n: we assume the ability to estimate Per(Y ) for a certain
(n−1)× (n−1) submatrix Y of X , and then use that (together with estimates of |Per(X ′)| for various
n×n matrices X ′) to estimate Per(X). Unfortunately, the reduction and its analysis are more complicated
than in Theorem 4.3, since in this case, we can only assume that our oracle estimates |Per(X)|2 with high
probability if X “looks like” a Gaussian matrix. This rules out the adaptive reduction of Theorem 4.3,
which even starting with a Gaussian matrix X , would vary the top-left entry so as to produce new matrices
X ′ that look nothing like Gaussian matrices. Instead, we will use a nonadaptive reduction, which in turn
necessitates a more delicate error analysis, as well as an appeal to Conjecture 1.6.

To do the error analysis, we first need a technical lemma about the numerical stability of triangulation.
Here triangulation means the procedure that determines a point z ∈ Rd , given the Euclidean distances
∆(z,yi) between z and d + 1 known points y1, . . . ,yd+1 ∈ Rd that are in general position. So for
example, the d = 3 case corresponds to how a GPS receiver calculates its position given its measured
distances to four satellites. (Note that the distances to any d of the yi’s are actually enough to narrow z
down to two possibilities; the (d +1)st distance is only needed to eliminate one of those possibilities.)
Here we are interested in the case d = 2, which corresponds to calculating an unknown complex
number z = Per(X) ∈ C, given its squared Euclidean distances |z− y1|2 , |z− y2|2 , |z− y3|2 to some
“fixed” complex numbers y1,y2,y3 ∈ C. The question that interests us is this:

Suppose our estimates of the squared distances |z− y1|2 , |z− y2|2 , |z− y3|2 are noisy, and
our estimates of the points y1,y2,y3 are also noisy. Can we upper-bound the error that noise
induces in our triangulated value of z?

The following lemma answers that question, in the special case where y1 = 0, y2 = w, y3 = iw for
some complex number w.

Lemma 7.3 (Stability of Triangulation). Let z = reiθ ∈C be a hidden complex number that we are trying
to estimate, and let w = ceiτ ∈ C be a second “reference” number (r,c > 0 and θ ,τ ∈ (−π,π]). For
some known constant λ > 0, let

R := |z|2 = r2, (7.25)

S := |z−λw|2 = r2 +λ
2c2−2λ rccos(θ − τ) , (7.26)

T := |z− iλw|2 = r2 +λ
2c2−2λ rcsin(θ − τ) , (7.27)

C := |w|2 = c2. (7.28)

Suppose we are given approximations R̃, S̃, T̃ ,C̃, τ̃ to R,S,T,C,τ respectively, such that∣∣∣R̃−R
∣∣∣ , ∣∣∣S̃−S

∣∣∣ , ∣∣∣T̃ −T
∣∣∣< ελ

2C, (7.29)∣∣∣C̃−C
∣∣∣< εC. (7.30)
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(0,0) w=(1,0) 
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R 

Figure 4: Triangulating the point v =
√

Reiθ , given its squared distances to the origin, w = (1,0), and
iw = (0,1).

Suppose also that

ε ≤ 1
10

min
{

1,
R

λ 2C

}
. (7.31)

Then the approximation

θ̃ := τ̃ + sgn
(

R̃+C̃− T̃
)

arccos

(
R̃+C̃− S̃

2
√

R̃C̃

)
(7.32)

satisfies ∣∣∣θ̃ −θ

∣∣∣mod2π ≤ |τ̃− τ|+3
√

ε

(
λ

√
C
R
+1

)
. (7.33)

Proof. Notice that without loss of generality, we can fix λ := 1. To obtain the result for general λ , we
then apply the λ = 1 case of the lemma, except that we set w := λw, C := λ 2C, and C̃ := λ 2C̃. A second
simplification that we can make without loss of generality is to fix C := 1, so that∣∣∣R̃−R

∣∣∣ , ∣∣∣S̃−S
∣∣∣ , ∣∣∣T̃ −T

∣∣∣ , ∣∣∣C̃−1
∣∣∣< ε ≤ 1

10
min{1,R} . (7.34)

A third simplification is to fix τ := 0, so that w = ceiτ = 1. To obtain the result for general C and τ ,
we simply rescale and rotate. After these simplifications, we have situation depicted in Figure 4, which
satisfies the geometric identities

cosθ =
R+1−S

2
√

R
, (7.35)

sinθ =
R+1−T

2
√

R
. (7.36)

So we can write

θ = barccos
(

R+1−S
2
√

R

)
(7.37)
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where b ∈ {−1,1} is a sign term given by

b := sgnθ = sgn(sinθ) = sgn(R+1−T ) . (7.38)

Let

b̃ := sgn
(

R̃+C̃− T̃
)
, (7.39)

θ̃ := τ̃ + b̃arccos

(
R̃+C̃− S̃

2
√

R̃C̃

)
. (7.40)

We now consider two cases. First suppose |R+1−T | ≤ 3ε . Then we have the following sequence of
inequalities:

∣∣∣2√Rsinθ

∣∣∣≤ 3ε, (7.41)

sin2
θ ≤ 9ε2

4R
, (7.42)

cos2
θ ≥ 1− 9ε2

4R
, (7.43)

(R+1−S)2

4R
≥ 1− 9ε2

4R
, (7.44)

4R− (R+1−S)2 ≤ 9ε
2. (7.45)

Hence

4R̃C̃−
(

R̃+C̃− S̃
)2

= 4R− (R+1−S)2 (7.46)

+4
[(

R̃−R
)
+
(

R̃−R
)(

C̃−1
)
+R

(
C̃−1

)]
−
((

R̃−R
)
+
(

C̃−1
)
+
(

S̃−S
))2

−2(R+1−S)
((

R̃−R
)
+
(

C̃−1
)
+
(

S̃−S
))

≤ 9ε
2 +4ε +4ε

2 +4Rε +2(R+1)(3ε) (7.47)

≤ 12ε (R+1) (7.48)
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where line (7.48) uses ε ≤ 1
10 . So

sin2
(

θ̃ − τ̃

)
= 1− cos2

(
θ̃ − τ̃

)
(7.49)

= 1−

(
R̃+C̃− S̃

)2

4R̃C̃
(7.50)

≤ 12ε (R+1)

4R̃C̃
(7.51)

≤ 12ε (R+1)
4(R− ε)(1− ε)

(7.52)

≤ 4ε

(
1+

1
R

)
, (7.53)

where line (7.53) uses ε ≤ 1
10 min{1,R}. So

∣∣∣θ̃ −θ

∣∣∣−|τ̃| ≤ |θ |+ ∣∣∣θ̃ − τ̃

∣∣∣ (7.54)

≤ arcsin
3ε

2
√

R
+ arcsin

√
4ε

(
1+

1
R

)
(7.55)

≤ 1.1
(

3ε

2
√

R
+2
√

ε

(
1+

1√
R

))
(7.56)

≤ 3
√

ε

(
1√
R
+1
)
, (7.57)

where line (7.56) uses the inequality arcsinx≤ 1.1x for x≤ 1
2 , and line (7.57) uses ε ≤ 1

10 . Next suppose
|R+1−T |> 3ε . Then by the triangle inequality,

∣∣∣∣∣∣R̃+C̃− T̃
∣∣∣−|R+1−T |

∣∣∣≤ ∣∣∣R̃−R
∣∣∣+ ∣∣∣C̃−1

∣∣∣+ ∣∣∣T̃ −T
∣∣∣≤ 3ε, (7.58)

which implies that

sgn
(

R̃+C̃− T̃
)
= sgn(R+1−T ) (7.59)

THEORY OF COMPUTING 67

http://dx.doi.org/10.4086/toc


SCOTT AARONSON AND ALEX ARKHIPOV

and hence b̃ = b. So∣∣∣θ̃ −θ

∣∣∣−|τ̃| ≤ ∣∣∣∣∣arccos

(
R̃+C̃− S̃

2
√

R̃C̃

)
− arccos

(
R+1−S

2
√

R

)∣∣∣∣∣ (7.60)

≤ arccos

(
R+1−S−3ε

2
√

R̃C̃

)
− arccos

(
R+1−S

2
√

R

)
(7.61)

≤ 2

(
3ε

2
√

R̃C̃
+
|R+1−S|

2

∣∣∣∣∣ 1√
R
− 1√

R̃C̃

∣∣∣∣∣
)

(7.62)

≤ 3ε√
(R− ε)(1− ε)

+2
√

R

(
1√
R
− 1√

(R+ ε)(1+ ε)

)
(7.63)

≤ 3ε√
(0.9R)(0.9)

+2
√

R

√
(R+ ε)(1+ ε)−

√
R

√
R
√
(R+ ε)(1+ ε)

(7.64)

≤ 3.4ε√
R

+
ε + εR+ ε2
√

R
√

R
(7.65)

≤ 1.1ε

R
+

3.4ε√
R

+ ε (7.66)

≤
√

ε

(
1.1
√

R/10
R

+
3.4
√

R/10√
R

+

√
1

10

)
(7.67)

≤
√

ε

(
0.35√

R
+1.4

)
. (7.68)

Here line (7.61) uses the monotonicity of the arccos function, line (7.62) uses the inequality

arccos(x− ε)− arccosx≤ 2ε (7.69)

for ε ≤ 1
2 , line (7.63) uses the geometric inequality

R+1−S
2
√

R
≤ 1, (7.70)

which follows since the left-hand side represents a valid input to the arccos function, line (7.64) uses
ε ≤ 1

10 min{1,R}, line (7.65) uses the inequality
√

x+ ε−
√

x≤ ε

2
√

x
, (7.71)

and lines (7.66), (7.67) and (7.68) again use ε ≤ 1
10 min{1,R}. Combining the two cases, when C = 1

and τ = 0 we have ∣∣∣θ̃ −θ

∣∣∣≤ |τ̃|+max
{

3
√

ε

(
1√
R
+1
)
,
√

ε

(
0.35√

R
+1.4

)}
(7.72)

= |τ̃|+3
√

ε

(
1√
R
+1
)

(7.73)

as claimed.
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We will also need a lemma about the autocorrelation of the Gaussian distribution, which will be
reused in Section 9.

Lemma 7.4 (Autocorrelation of Gaussian Distribution). Consider the distributions

D1 =N
(

0,(1− ε)2
)N

C
, (7.74)

D2 =
N

∏
i=1

N (vi,1)C (7.75)

for some vector v ∈ CN . We have ∥∥D1−GN
∥∥≤ 2Nε, (7.76)∥∥D2−GN
∥∥≤ ‖v‖2 . (7.77)

Proof. It will be helpful to think of each complex coordinate as two real coordinates, in which case
GN =N (0,1/2)2N

R and v is a vector in R2N . For the first part, we have

∥∥D1−GN
∥∥≤ 2N

∥∥∥∥∥N
(

0,
(1− ε)2

2

)
R

−N

(
0,

1
2

)
R

∥∥∥∥∥ (7.78)

=
N√
π

∫
∞

−∞

∣∣∣e−x2/(1−ε)2
− e−x2

∣∣∣dx (7.79)

≤ 2Nε (7.80)

where line (7.78) follows from the triangle inequality and line (7.80) from straightforward estimates.
For the second part, by the rotational invariance of the Gaussian distribution, the variation distance is
unaffected if we replace v by any other vector with the same 2-norm. So let v := (`,0, . . . ,0) where
`= ‖v‖2. Then

∥∥D2−GN
∥∥= 1

2

∫
∞

x1,...,x2N=−∞

∣∣∣∣∣e−(x1−`)2

√
π

e−x2
2

√
π
· · · e

−x2
2N

√
π
− e−x2

1
√

π

e−x2
2

√
π
· · · e

−x2
2N

√
π

∣∣∣∣∣dx1 · · ·dx2N (7.81)

=
1

2
√

π

∫
∞

−∞

∣∣∣e−(x−`)2
− e−x2

∣∣∣dx (7.82)

≤ `, (7.83)

where line (7.83) follows from straightforward estimates.

Using Lemmas 7.3 and 7.4, we can now complete the proof of Theorem 1.7: that assuming Conjecture
1.6 (the Permanent Anti-Concentration Conjecture), the GPE× and |GPE|2± problems are polynomial-time
equivalent under nonadaptive reductions.

Proof of Theorem 1.7. Lemma 7.1 already gave an unconditional reduction from |GPE|2± to GPE×. So
it suffices to reduce in the other direction—from GPE× to |GPE|2±—assuming the Permanent Anti-
Concentration Conjecture. Furthermore, since Lemma 7.2 already reduced |GPE|2× to |GPE|2± assuming
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the PACC, it suffices for us to reduce GPE× to |GPE|2× assuming the PACC. Throughout the proof,
we will fix an N×N input matrix X = (xi j) ∈ CN×N , which we think of as sampled from the Gaussian
distribution GN×N . Probabilities will always be with respect to X ∼ GN×N . For convenience, we will
often assume that “bad events” (i.e., estimates of various quantities outside the desired error bounds)
simply do not occur; then, at the end, we will use the union bound to show that the assumption was
justified. The GPE× problem can be stated as follows. Given the input

〈
X ,01/ε ,01/δ

〉
for some ε,δ > 0,

output a complex number z ∈ C such that

|z−Per(X)| ≤ ε |Per(X)| , (7.84)

with success probability at least 1−δ over X , in time poly(N,1/ε,1/δ ). Let O be an oracle that solves
|GPE|2×. That is, given an input

〈
A,01/ε ,01/∆

〉
where A is an n× n complex matrix, O outputs a

nonnegative real number O
(〈

A,01/ε ,01/∆
〉)

such that

Pr
A∼Gn×n

[∣∣∣O(〈A,01/ε ,01/∆

〉)
−|Per(A)|2

∣∣∣≤ ε |Per(A)|2
]
≥ 1−∆. (7.85)

Then assuming Conjecture 1.6, we will show how to solve the GPE× instance
〈
X ,01/ε ,01/δ

〉
in time

poly(N,1/ε,1/δ ), with the help of 3N nonadaptive queries to O. Let R = |Per(X)|2. Then by simply
calling O on the input matrix X , we can obtain a good approximation R̃ to R, such that (say)

∣∣∣R̃−R
∣∣∣≤

εR/10. Therefore, our problem reduces to estimating the phase θ = Per(X)/ |Per(X)|. In other words,
we need to give a procedure that returns an approximation θ̃ to θ such that (say)

∣∣∣θ̃ −θ

∣∣∣ ≤ 0.9ε , and
does so with high probability. (Here and throughout, it is understood that all differences between angles
are mod2π .) For all n ∈ [N], let Xn be the bottom-right n×n submatrix of X (thus XN = X). A crucial
observation is that, since X is a sample from GN×N , each Xn can be thought of as a sample from Gn×n. As
in Theorem 4.3, given a complex number w and a matrix A = (ai j), let A[w] be the matrix that is identical
to A, except that its top-left entry equals a11−w instead of a11. Then for any n and w, we can think
of the matrix X [w]

n as having been drawn from a distribution D
[w]
n that is identical to Gn×n, except that

the top-left entry is distributed according to N (−w,1)C rather than G. Recall that by Lemma 7.4, the
variation distance between D

[w]
n and Gn×n satisfies∥∥∥D[w]

n −Gn×n
∥∥∥≤ |w| . (7.86)

Let λ > 0 be a parameter to be determined later. Then for each n ∈ [N], we will be interested in two
specific n×n matrices besides Xn, namely X [λ ]

n and X [iλ ]
n . Similarly to Theorem 4.3, our reduction will

be based on the identities

Per
(

X [λ ]
n

)
= Per(Xn)−λ Per(Xn−1) , (7.87)

Per
(

X [iλ ]
n

)
= Per(Xn)− iλ Per(Xn−1) . (7.88)
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More concretely, let

Rn := |Per(Xn)|2 , (7.89)

θn :=
Per(Xn)

|Per(Xn)|
, (7.90)

Sn :=
∣∣∣Per

(
X [λ ]

n

)∣∣∣2 = |Per(Xn)−λ Per(Xn−1)|2 , (7.91)

Tn :=
∣∣∣Per

(
X [iλ ]

n

)∣∣∣2 = |Per(Xn)− iλ Per(Xn−1)|2 . (7.92)

Then some simple algebra—identical to what appeared in Lemma 7.3—yields the identity

θn = θn−1 + sgn(Rn +Rn−1−Tn)arccos
(

Rn +Rn−1−Sn

2
√

RnRn−1

)
(7.93)

for all n≥ 2. “Unravelling” this recursive identity, we obtain a useful formula for θ = θN = Per(X)
|Per(X)| :

θ =
xNN

|xNN |
+

N

∑
n=2

ξn (7.94)

where

ξn := sgn(Rn +Rn−1−Tn)arccos
(

Rn +Rn−1−Sn

2
√

RnRn−1

)
. (7.95)

Our procedure to approximate θ will simply consist of evaluating the above expression for all n≥ 2, but
using estimates R̃n, S̃n, T̃n produced by the oracle O in place of the true values Rn,Sn,Tn. In more detail,
let R̃1 := |xNN |2, and for all n≥ 2, let

R̃n := O
(〈

Xn,01/ε ,01/∆

〉)
, (7.96)

S̃n := O
(〈

X [λ ]
n ,01/ε ,01/∆

〉)
, (7.97)

T̃n := O
(〈

X [iλ ]
n ,01/ε ,01/∆

〉)
, (7.98)

where ε,∆ > 1/poly(N) are parameters to be determined later. Then our procedure for approximating θ

is to return

θ̃ :=
xNN

|xNN |
+

N

∑
n=2

ξ̃n, (7.99)

where

ξ̃n := sgn
(

R̃n + R̃n−1− T̃n

)
arccos

 R̃n + R̃n−1− S̃n

2
√

R̃nR̃n−1

 . (7.100)
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Clearly this procedure runs in polynomial time and makes at most 3N nonadaptive calls to O. We now
upper-bound the error

∣∣∣θ̃ −θ

∣∣∣ incurred in the approximation. Since

∣∣∣θ̃ −θ

∣∣∣≤ N

∑
n=2

∣∣∣ξ̃n−ξn

∣∣∣ , (7.101)

it suffices to upper-bound
∣∣∣ξ̃n−ξn

∣∣∣ for each n. By the definition of O, for all n ∈ [N] we have

Pr
[∣∣∣R̃n−Rn

∣∣∣≤ εRn

]
≥ 1−∆, (7.102)

Pr
[∣∣∣S̃n−Sn

∣∣∣≤ εSn

]
≥ 1−∆−

∥∥∥D[λ ]
n −Gn×n

∥∥∥ (7.103)

≥ 1−∆−λ , (7.104)

Pr
[∣∣∣T̃n−Tn

∣∣∣≤ εTn

]
≥ 1−∆−

∥∥∥D[iλ ]
n −Gn×n

∥∥∥ (7.105)

≥ 1−∆−λ . (7.106)

Also, let p(n,1/β ) be a polynomial such that

Pr
A∼Gn×n

[
|Per(A)|2 ≥ n!

p(n,1/β )

]
≥ 1−β (7.107)

for all n and β > 0; such a p is guaranteed to exist by Conjecture 1.6. It will later be convenient to
assume p is monotone. Then

Pr
[

Rn ≥
n!

p(n,1/β )

]
≥ 1−β (7.108)

In the other direction, it can be shown without much difficulty that E [Rn] = n! (see equations (8.5)-(8.8)
in the next section). Hence, for all 0 < κ < 1, Markov’s inequality gives us

Pr
[

Rn ≤
n!
κ

]
≥ 1−κ, (7.109)

Pr
[

Sn ≤
n!
κ

]
≥ 1−κ−λ , (7.110)

Pr
[

Tn ≤
n!
κ

]
≥ 1−κ−λ , (7.111)

where we have again used the fact that Sn,Tn are random variables with variation distance at most λ from
Rn. Now think of β ,κ > 1/poly(N) as parameters to be determined later, and suppose that all seven of
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the events listed above hold, for all n ∈ [N]. In that case,∣∣∣R̃n−Rn

∣∣∣≤ εRn (7.112)

≤ ε
n!
κ

(7.113)

= ε
Rn−1n

κ

(n−1)!
Rn−1

(7.114)

≤ ε
Rn−1n

κ
p(n−1,1/β ) (7.115)

≤ ε
Rn−1n

κ
p(n,1/β ) (7.116)

=
εn · p(n,1/β )

κλ 2 λ
2Rn−1 (7.117)

and likewise ∣∣∣S̃n−Sn

∣∣∣ , ∣∣∣T̃n−Tn

∣∣∣≤ εn · p(n,1/β )

κλ 2 λ
2Rn−1. (7.118)

Plugging the above bounds into Lemma 7.3, we find that, if there are no “bad events,” then noisy
triangulation returns an estimate ξ̃n of ξn such that

∣∣∣ξ̃n−ξn

∣∣∣≤ 3

√
εn · p(n,1/β )

κλ 2

(
λ

√
Rn−1

Rn
+1
)

(7.119)

≤ 3

√
εn · p(n,1/β )

κλ 2

(
λ

√
(n−1)!/κ

n!/p(N,1/β )
+1

)
(7.120)

≤ 3
√

ε

(
p(n,1/β )

κ
+

√
n
√

p(n,1/β )

λ
√

κ

)
(7.121)

≤ 3
√

ε

(
p(N,1/β )

κ
+

√
N
√

p(N,1/β )

λ
√

κ

)
, (7.122)

where line (7.122) uses n≤ N together with the monotonicity of p. We now upper-bound the probability
of a bad event. Taking the union bound over all n ∈ [N] and all seven possible bad events, we find that
the total probability that the procedure fails is at most

pFAIL := (3∆+3κ +4λ +β )N. (7.123)

Thus, let us now make the choices ∆,κ := δ

12N , λ := δ

16N , and β := δ

4N , so that pFAIL ≤ δ as desired. Let
us also make the choice

ε :=
ε2δ 3

60000N6 p(N,4N/δ )2 . (7.124)
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Then ∣∣∣θ̃ −θ

∣∣∣≤ N

∑
n=2

∣∣∣ξ̃n−ξn

∣∣∣ (7.125)

≤ 3
√

ε

(
12N · p(N,4N/δ )

δ
+

32
√

3N2
√

p(N,4N/δ )

δ 3/2

)
N (7.126)

≤ 9ε

10
(7.127)

as desired. Furthermore, if none of the bad events happen, then we get “for free” that∣∣∣R̃−R
∣∣∣= ∣∣∣R̃N−RN

∣∣∣≤ εRN ≤
εR
10

. (7.128)

So letting r :=
√

R and r̃ :=
√

R̃, by the triangle inequality we have

∣∣∣r̃eiθ̃ − reiθ
∣∣∣≤ |r̃− r|+ r

√
2−2cos

(
θ̃ −θ

)
(7.129)

≤

∣∣∣R̃−R
∣∣∣

r̃+ r
+ r
∣∣∣θ̃ −θ

∣∣∣ (7.130)

≤ εR
10r

+ r
9ε

10
(7.131)

= εr (7.132)

= ε |Per(X)| , (7.133)

and hence we have successfully approximated Per(X) = reiθ .

When combined with Lemmas 7.1 and 7.2, Theorem 1.7 has the corollary that, assuming the
Permanent Anti-Concentration Conjecture, the GPE×, |GPE|2×, GPE±, and |GPE|2± problems are all
polynomial-time equivalent.

8 The Distribution of Gaussian Permanents

In this section, we seek an understanding of the distribution over Per(X), where X ∼ Gn×n is a matrix of
i.i.d. Gaussians. Here, recall that G=N (0,1)C is the standard complex normal distribution, though one
suspects that most issues would be similar with N (0,1)R, or possibly even the uniform distribution over
{−1,1}. As explained in Section 1.2.2, the reason why we focus on the complex Gaussian ensemble
Gn×n is simply that, as shown by Theorem 5.1, the Gaussian ensemble arises naturally when we consider
truncations of Haar-random unitary matrices.

Our goal is to give evidence in favor of Conjecture 1.6, the Permanent Anti-Concentration Conjecture
(PACC). This is the conjecture that, if X ∼ Gn×n is Gaussian, then Per(X) is “not too concentrated around
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0”: a 1−1/poly(n) fraction of its probability mass is greater than
√

n!/poly(n) in absolute value,
√

n!
being the standard deviation. More formally, there exists a polynomial p such that for all n and δ > 0,

Pr
X∼Gn×n

[
|Per(X)|<

√
n!

p(n,1/δ )

]
< δ . (8.1)

An equivalent formulation is that there exist constants C,D and β > 0 such that for all n and ε > 0,

Pr
X∼Gn×n

[
|Per(X)|< ε

√
n!
]
<CnD

ε
β . (8.2)

Conjecture 1.6 has two applications to strengthening the conclusions of this paper. First, it lets us
multiplicatively estimate Per(X) (that is, solve the GPE× problem), assuming only that we can additively
estimate Per(X) (that is, solve the GPE± problem). Indeed, if Conjecture 1.6 holds, then as pointed
out in Lemma 7.1, additive and multiplicative estimation become equivalent for this problem. Second,
as shown by Theorem 1.7, Conjecture 1.6 lets us estimate Per(X) itself, assuming we can estimate
|Per(X)|2. The bottom line is that, if Conjecture 1.6 holds, then we can base our conclusions about the
hardness of approximate BOSONSAMPLING on the natural conjecture that GPE× is #P-hard, rather than
the relatively-contrived conjecture that |GPE|2± is #P-hard.

At a less formal level, we believe proving Conjecture 1.6 might also provide intuition essential to
proving the “bigger” conjecture, that these problems are #P-hard in the first place.

The closest result to Conjecture 1.6 that we know of comes from a 2009 paper of Tao and Vu [62].
These authors show the following:

Theorem 8.1 (Tao-Vu [62]). For all ε > 0 and sufficiently large n,

Pr
X∈{−1,1}n×n

[
|Per(X)|<

√
n!

nεn

]
<

1
n0.1 . (8.3)

Alas, Theorem 8.1 falls short of what we need, since it only upper-bounds the probability that
|Per(X)| <

√
n!/nεn, whereas we need to upper-bound the probability that |Per(X)| <

√
n!/poly(n).

Two more minor differences between Theorem 8.1 and what we need are the following:

(1) The upper bound in Theorem 8.1 is 1/n0.1, whereas we need an upper bound of the form 1/p(n)
for any polynomial p.

(2) Theorem 8.1 applies to Bernoulli random matrices, not Gaussian ones.

Fortunately, differences (1) and (2) seem to “cancel each other out”: Tao24 has reported that, if the
proof techniques from [62] are applied to the Gaussian case, then one should be able not only to reprove
Theorem 8.1, but also to replace the 1/n0.1 by 1/nC for any constant C.

In the rest of the section, we will give three pieces of evidence for Conjecture 1.6. The first, in
Section 8.1, is that it is supported numerically. The second, in Section 8.2, is that the analogous statement

24See http://mathoverflow.net/questions/45822/anti-concentration-bound-for-permanents-of-gaussian-matrices
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holds with the determinant instead of the permanent. The proof of this result makes essential use of
geometric properties of the determinant, which is why we do not know how to extend it to the permanent.
On the other hand, Godsil and Gutman [29] observed that, for all matrices X = (xi j),

Per(X) = E

Det

 ±
√

x11 · · · ±√x1n
...

. . .
...

±√xn1 · · · ±√xnn


2 , (8.4)

where the expectation is over all 2n2
ways of assigning +’s and −’s to the entries. Because of this fact,

together with our numerical data, we suspect that the story for the permanent may be similar to that for
the determinant. The third piece of evidence is that a weaker form of Conjecture 1.6 holds: basically,
|Per(X)| has at least a Ω(1/n) probability of being Ω

(√
n!
)
. We prove this by calculating the fourth

moment of Per(X). Unfortunately, extending the calculation to higher moments seems difficult.
Before going further, let us make some elementary remarks about the distribution over Per(X) for

X ∼ Gn×n. By symmetry, clearly E [Per(X)] = 0. The second moment is also easy to calculate:

E
[
|Per(X)|2

]
= E

[
∑

σ ,τ∈Sn

n

∏
i=1

xi,σ(i)xi,τ(i)

]
(8.5)

= E

[
∑

σ∈Sn

n

∏
i=1

∣∣xi,σ(i)
∣∣2] (8.6)

= ∑
σ∈Sn

n

∏
i=1

E
[∣∣xi,σ(i)

∣∣2] (8.7)

= n!. (8.8)

We will often find it convenient to work with the normalized random variable

Pn :=
|Per(X)|2

n!
, (8.9)

so that E [Pn] = 1.

8.1 Numerical Data

Figure 5 shows the numerically-computed probability density function of Pn when n = 6. For comparison,
we have also plotted the pdf of Dn := |Det(X)|2 /n!.

The numerical evidence up to n = 10 is strongly consistent with Conjecture 1.6. Indeed, from the
data it seems likely that for all 0≤ β < 2, there exist constants C,D such that for all n and ε > 0,

Pr
X∼Gn×n

[
|Per(X)|< ε

√
n!
]
<CnD

ε
β , (8.10)

and perhaps the above even holds when β = 2.
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Figure 5: Probability density functions of the random variables Dn = |Det(X)|2 /n! and Pn =
|Per(X)|2 /n!, where X ∼ Gn×n is a complex Gaussian random matrix, in the case n = 6. Note that
E [Dn] = E [Pn] = 1. As n increases, the bends on the left become steeper. We do not know exactly how
the pdfs behave near the origin.

8.2 The Analogue for Determinants

We prove the following theorem, which at least settles Conjecture 1.6 with the determinant in place of the
permanent:

Theorem 8.2 (Determinant Anti-Concentration Theorem). For all 0≤ β < 2, there exists a constant Cβ

such that for all n and ε > 0,

Pr
X∼Gn×n

[
|Det(X)|< ε

√
n!
]
<Cβ nβ (β+2)/8

ε
β . (8.11)

We leave as an open problem whether Theorem 8.2 holds when β = 2.
Compared to the permanent, a lot is known about the determinants of Gaussian matrices. In particular,

Girko [28] (see also Costello and Vu [18, Appendix A]) have shown that

ln |Det(X)|− ln
√
(n−1)!√

lnn
2

(8.12)

converges weakly to the normal distribution N (0,1)R. Unfortunately, weak convergence is not enough
to imply Theorem 8.2, so we will have to do some more work. Indeed, we will find that the probability
density function of |Det(X)|2, in the critical regime where |Det(X)|2 ≈ 0, is different than one might
guess from the above formula.

The key fact about Det(X) that we will use is that we can compute its moments exactly—even the
fractional and inverse moments. To do so, we use the following beautiful characterization, which can be
found (for example) in Costello and Vu [18].
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Lemma 8.3 ([18]). Let X ∼ Gn×n be a complex Gaussian random matrix. Then |Det(X)|2 has the same
distribution as

n

∏
i=1

(
i

∑
j=1

∣∣ξi j
∣∣2) (8.13)

where the ξi j’s are independent N (0,1)C Gaussians. (In other words, |Det(X)|2 is distributed as T1 · · ·Tn,
where each Tk is an independent χ2 random variable with k degrees of freedom.)

The proof of Lemma 8.3 (which we omit) uses the interpretation of the determinant as the volume of
a parallelepiped, together with the spherical symmetry of the Gaussian distribution.

As with the permanent, it will be convenient to work with the normalized random variable

Dn :=
|Det(X)|2

n!
, (8.14)

so that E [Dn] = 1. Using Lemma 8.3, we now calculate the moments of Dn.

Lemma 8.4. For all real numbers α >−1,

E [Dα
n ] =

1
(n!)α

n

∏
k=1

Γ(k+α)

Γ(k)
. (8.15)

(If α ≤−1 then E [Dα
n ] = ∞.)

Proof. By Lemma 8.3,

E [Dα
n ] =

1
(n!)α E [T α

1 · · ·T α
n ] (8.16)

=
1

(n!)α

n

∏
k=1

E [T α
k ] , (8.17)

where each Tk is an independent χ2 random variable with k degrees of freedom. Now, Tk has probability
density function

f (x) =
e−xxk−1

Γ(k)
(8.18)

for x≥ 0. So

E [T α
k ] =

1
Γ(k)

∫
∞

0
e−xxk+α−1dx (8.19)

=
Γ(k+α)

Γ(k)
(8.20)

as long as k+α > 0. (If k+α ≤ 0, as can happen if α ≤−1, then the above integral diverges.)
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As a sample application of Lemma 8.4, if α is a positive integer then we get

E [Dα
n ] =

α−1

∏
i=1

(
n+ i

i

)
= Θ

(
nα(α−1)/2

)
. (8.21)

For our application, though, we are interested in the dependence of E [Dα
n ] on n when α is not necessarily

a positive integer. The next lemma shows that the asymptotic behavior above generalizes to negative and
fractional α .

Lemma 8.5. For all real numbers α >−1, there exists a positive constant Cα such that

lim
n→∞

E [Dα
n ]

nα(α−1)/2 =Cα . (8.22)

Proof. Let us write

E [Dα
n ] =

Γ(1+α)

nα

n−1

∏
k=1

Γ(k+α +1)
kαΓ(k+1)

. (8.23)

Then by Stirling’s approximation,

ln
n−1

∏
k=1

Γ(k+α +1)
kαΓ(k+1)

=
n−1

∑
k=1

(
ln

Γ(k+α +1)
Γ(k+1)

−α lnk
)

(8.24)

= Hα +o(1)+
n−1

∑
k=1

(
ln

(√
2π (k+α)

( k+α

e

)k+α

√
2πk

( k
e

)k

)
−α lnk

)
(8.25)

= Hα +o(1)+
n−1

∑
k=1

((
k+α +

1
2

)
ln
(

k+α

k

)
−α

)
(8.26)

= Hα + Jα +o(1)+
n−1

∑
k=1

((
k+α +

1
2

)(
α

k
− α2

2k2

)
−α

)
(8.27)

= Hα + Jα +o(1)+
n−1

∑
k=1

(
α (α +1)

2k
− α2 (2α +1)

4k2

)
(8.28)

= Hα + Jα +Lα +o(1)+
α (α +1)

2
lnn. (8.29)

In the above, Hα , Jα , and Lα are finite error terms that depend only on α (and not n):

Hα =
∞

∑
k=1

ln

(
Γ(k+α +1)

Γ(k+1)

√
k
( k

e

)k

√
k+α

( k+α

e

)k+α

)
, (8.30)

Jα =
∞

∑
k=1

(
k+α +

1
2

)(
ln
(

k+α

k

)
−
(

α

k
− α2

2k2

))
, (8.31)

Lα =
α (α +1)

2

(
lim
n→∞

∞

∑
k=1

1
k
− lnn

)
−

∞

∑
k=1

α2 (2α +1)
4k2 (8.32)

=
α (α +1)γ

2
− α2 (2α +1)π2

24k2 , (8.33)
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where γ ≈ 0.577 is the Euler-Mascheroni constant. The o(1)’s represent additional error terms that go to
0 as n→ ∞. Hence

n−1

∏
k=1

Γ(k+α +1)
kαΓ(k+1)

= eHα+Jα+Lα+o(1)nα(α+1)/2 (8.34)

and

lim
n→∞

E [Dα
n ]

nα(α−1)/2 = lim
n→∞

(
1

nα(α−1)/2 ·
Γ(1+α)

nα
eHα+Jα+Lα+o(1)nα(α+1)/2

)
(8.35)

= Γ(1+α)eHα+Jα+Lα , (8.36)

which is a positive constant Cα depending on α .

We can now complete the proof of Theorem 8.2.

Proof of Theorem 8.2. Let α :=−β/2. Then by Markov’s inequality, for all ε > 0 we have

E [Dα
n ] = E

( √
n!

|Det(X)|

)β
 (8.37)

≥ Pr
X∼Gn×n

[
|Det(X)|< ε

√
n!
]
· 1

εβ
. (8.38)

Hence

Pr
X∼Gn×n

[
|Det(X)|< ε

√
n!
]
≤ E [Dα

n ] · εβ (8.39)

<Cαnα(α−1)/2
ε

β (8.40)

=C′
β

nβ (β+2)/8
ε

β (8.41)

for some positive constants Cα ,C′β depending only on α and β respectively.

8.3 Weak Version of the PACC

We prove the following theorem about concentration of Gaussian permanents.

Theorem 8.6 (Weak Anti-Concentration of the Permanent). For all α < 1,

Pr
X∼Gn×n

[
|Per(X)|2 ≥ α ·n!

]
>

(1−α)2

n+1
. (8.42)

While Theorem 8.6 falls short of proving Conjecture 1.6, it at least shows that |Per(X)| has a non-
negligible probability of being large enough for our application when X is a Gaussian random matrix.
In other words, it rules out the possibility that |Per(X)| is almost always tiny compared to its expected
value, and that only for (say) a 1/exp(n) fraction of matrices X does |Per(X)| become enormous.
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Recall that Pn denotes the random variable |Per(X)|2 /n!, and that E [Pn] = 1. Our proof of Theorem
8.6 will proceed by showing that E

[
P2

n
]
= n+1. As we will see later, it is almost an “accident” that this

is true—E
[
P3

n
]
, E
[
P4

n
]
, and so on all grow exponentially with n—but it is enough to imply Theorem 8.6.

To calculate E
[
P2

n
]
, we first need a proposition about the number of cycles in a random permutation,

which can be found in Lange [42, p. 76] for example, though we prove it for completeness. Given a
permutation σ ∈ Sn, let cyc(σ) be the number of cycles in σ .

Proposition 8.7. For any constant c≥ 1,

E
σ∈Sn

[
ccyc(σ)

]
=

(
n+ c−1

c−1

)
. (8.43)

Proof. Assume for simplicity that c is a positive integer. Define a c-colored permutation (on n elements)
to be a permutation σ ∈ Sn in which every cycle is colored one of c possible colors. Then clearly the
number of c-colored permutations equals

f (n) := ∑
σ∈Sn

ccyc(σ). (8.44)

Now consider forming a c-colored permutation σ . There are n possible choices for σ (1). If σ (1) = 1,
then we have completed a cycle of length 1, and there are c possible colors for that cycle. Therefore the
number of c-colored permutations σ such that σ (1) = 1 is c · f (n−1). On the other hand, if σ (1) = b
for some b 6= 1, then we can treat the pair (1,b) as though it were a single element, with an incoming
edge to 1 and an outgoing edge from b. Therefore the number of c-colored permutations σ such that
σ (1) = b is f (n−1). Combining, we obtain the recurrence relation

f (n) = c · f (n−1)+(n−1) f (n−1) (8.45)

= (n+ c−1) f (n−1) . (8.46)

Together with the base case f (0) = 1, this implies that

f (n) = (n+ c−1)(n+ c−2) · · · · · c (8.47)

=

(
n+ c−1

c−1

)
·n!. (8.48)

Hence

E
σ∈Sn

[
ccyc(σ)

]
=

f (n)
n!

=

(
n+ c−1

c−1

)
. (8.49)

The above argument can be generalized to non-integer c using standard tricks (though we will not need
that in the paper).

We can now compute E
[
P2

n
]
.

Lemma 8.8. E
[
P2

n
]
= n+1.
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Proof. We have

E
[
P2

n
]
=

1

(n!)2 E
X∼Gn×n

[
Per(X)2 Per(X)

2
]

(8.50)

=
1

(n!)2 E
X∼Gn×n

[
∑

σ ,τ,α,β∈Sn

n

∏
i=1

xi,σ(i)xi,τ(i)xi,α(i)xi,β (i)

]
(8.51)

=
1

(n!)2 ∑
σ ,τ,α,β∈Sn

M (σ ,τ,α,β ) (8.52)

where

M (σ ,τ,α,β ) := E
X∼Gn×n

[
n

∏
i=1

xi,σ(i)xi,τ(i)xi,α(i)xi,β (i)

]
(8.53)

=
n

∏
i=1

E
X∼Gn×n

[
xi,σ(i)xi,τ(i)xi,α(i)xi,β (i)

]
, (8.54)

line (8.54) following from the independence of the Gaussian variables xi j. We now evaluate M (σ ,τ,α,β ).
Write σ ∪ τ = α ∪β if

{(1,σ (1)) ,(1,τ (1)) , . . . ,(n,σ (n)) ,(n,τ (n))}= {(1,α (1)) ,(1,β (1)) . . . ,(n,α (n)) ,(n,β (n))} .
(8.55)

If σ ∪ τ 6= α ∪β , then we claim that M (σ ,τ,α,β ) = 0. This is because the Gaussian distribution is
uniform over phases—so if there exists an xi j that is not “paired” with its complex conjugate xi j (or vice
versa), then the variations in that xi j will cause the entire product to equal 0. So suppose instead that
σ ∪ τ = α ∪β . Then for each i ∈ [n] in the product, there are two cases. First, if σ (i) 6= τ (i), then

E
X∼Gn×n

[
xi,σ(i)xi,τ(i)xi,α(i)xi,β (i)

]
= E

X∼Gn×n

[∣∣xi,σ(i)
∣∣2 ∣∣xi,τ(i)

∣∣2] (8.56)

= E
X∼Gn×n

[∣∣xi,σ(i)
∣∣2] E

X∼Gn×n

[∣∣xi,τ(i)
∣∣2] (8.57)

= 1. (8.58)

Second, if σ (i) = τ (i), then

E
X∼Gn×n

[
xi,σ(i)xi,τ(i)xi,α(i)xi,β (i)

]
= E

X∼Gn×n

[∣∣xi,σ(i)
∣∣4]= 2. (8.59)

The result is that M (σ ,τ,α,β ) = 2K(σ ,τ), where K (σ ,τ) is the number of i’s such that σ (i) = τ (i). Now
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let N (σ ,τ) be the number of pairs α,β ∈ Sn such that σ ∪ τ = α ∪β . Then

E
[
P4

n
]
=

1

(n!)2 ∑
σ ,τ,α,β∈Sn

M (σ ,τ,α,β ) (8.60)

=
1

(n!)2 ∑
σ ,τ∈Sn

2K(σ ,τ)N (σ ,τ) (8.61)

= E
σ ,τ∈Sn

[
2K(σ ,τ)N (σ ,τ)

]
(8.62)

= E
σ ,τ∈Sn

[
2K(σ−1σ ,σ−1τ)N

(
σ
−1

σ ,σ−1
τ
)]

(8.63)

= E
ξ∈Sn

[
2K(e,ξ )N (e,ξ )

]
, (8.64)

where e denotes the identity permutation. Here line (8.63) follows from symmetry—specifically, from the
easily-checked identities K (σ ,τ) = K (ασ ,ατ) and N (σ ,τ) = N (ασ ,ατ). We claim that the quantity
2K(e,ξ )N (e,ξ ) has a simple combinatorial interpretation as 2cyc(ξ ), where cyc(ξ ) is the number of cycles
in ξ . To see this, consider a bipartite multigraph G with n vertices on each side, and an edge from
left-vertex i to right-vertex j if i = j or ξ (i) = j (or a double-edge from i to j if i = j and ξ (i) = j). Then
since e and ξ are both permutations, G is a disjoint union of cycles. By definition, K (e,ξ ) equals the
number of indices i such that ξ (i) = i—which is simply the number of double-edges in G, or equivalently,
the number of cycles in ξ of length 1. Also, N (e,ξ ) equals the number of ways to partition the edges of
G into two perfect matchings, corresponding to α and β respectively. In partitioning G, the only freedom
we have is that each cycle in G of length at least 4 can be decomposed in two inequvalent ways. This
implies that N (e,ξ ) = 2L(ξ ), where L(ξ ) is the number of cycles in ξ of length at least 2 (note that a
cycle in ξ of length k gives rise to a cycle in G of length 2k). Combining,

2K(e,ξ )N (e,ξ ) = 2K(e,ξ )+L(ξ ) = 2cyc(ξ ). (8.65)

Hence
E
[
P2

n
]
= E

ξ∈Sn

[
2cyc(ξ )

]
= n+1 (8.66)

by Proposition 8.7.

Using Lemma 8.8, we can now complete the proof of Theorem 8.6, that Pr [Pn ≥ α]> (1−α)2

n+1 .

Proof of Theorem 8.6. Let F denote the event that Pn ≥ α , and let δ := Pr [F ]. Then

1 = E [Pn] (8.67)

= Pr [F ]E [Pn | F ]+Pr
[
F
]

E
[
Pn | F

]
(8.68)

< δ E [Pn | F ]+α, (8.69)

so
E [Pn | F ]>

1−α

δ
. (8.70)
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By Cauchy-Schwarz, this implies

E
[
P2

n | F
]
>

(1−α)2

δ 2 (8.71)

and hence

E
[
P2

n
]
= Pr [F ]E

[
P2

n | F
]
+Pr

[
F
]

E
[
P2

n | F
]

(8.72)

> δ · (1−α)2

δ 2 +0 (8.73)

=
(1−α)2

δ
. (8.74)

Now, we know from Lemma 8.8 that E
[
P2

n
]
= n+1. Rearranging, this means that

δ >
(1−α)2

n+1
(8.75)

which is what we wanted to show.

A natural approach to proving Conjecture 1.6 would be to calculate the higher moments of Pn—
E
[
P3

n
]
, E
[
P4

n
]
, and so on—by generalizing Lemma 8.8. In principle, these moments would determine

the probability density function of Pn completely.
When we do so, here is what we find. Given a bipartite k-regular multigraph G with n vertices on

each side, let M (G) be the number of ways to decompose G into an ordered list of k disjoint perfect
matchings. Also, let Mk be the expectation of M (G) over a k-regular bipartite multigraph G chosen
uniformly at random. Then the proof of Lemma 8.8 extends to show the following:

Theorem 8.9. E
[
Pk

n
]
= Mk for all positive integers k.

However, while M1 = 1 and M2 = n+1, it is also known that Mk ∼ (k/e)n for all k ≥ 3: this follows
from the van der Waerden conjecture, which was proved by Falikman [21] and Egorychev [20] in 1981.
In other words, the higher moments of Pn grow exponentially with n. Because of this, it seems one would
need to know the higher moments extremely precisely in order to conclude anything about the quantities
of interest, such as Pr [Pn < α].

9 The Hardness of Gaussian Permanents

In this section, we move on to discuss Conjecture 1.5, which says that GPE×—the problem of multiplica-
tively estimating Per(X), where X ∼ Gn×n is a Gaussian random matrix—is #P-hard. Proving Conjecture
1.5 is the central theoretical challenge that we leave.25

Intuitively, Conjecture 1.5 implies that if P#P 6= BPP, then no algorithm for GPE× can run in time
poly(n,1/ε,1/δ ). Though it will not be needed for this work, one could also consider a stronger

25Though note that, for our BOSONSAMPLING hardness argument to work, all we really need is that estimating Per(X) for
Gaussian X is not in the class BPPNP, and one could imagine giving evidence for this that fell short of #P-hardness.
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conjecture, which would say that if P#P 6= BPP, then no algorithm for GPE× can run in time n f (ε,δ ) for
any function f .

In contrast to the case of the Permanent Anti-Concentration Conjecture, the question arises of why
one should even expect Conjecture 1.5 to be true. Undoubtedly the main reason is that the analogous
statement for permanents over finite fields is true: this is the random self-reducibility of the permanent,
first proved by Lipton [44]. Thus, we are “merely” asking for the real or complex analogue of something
already known in the finite field case.

A second piece of evidence for Conjecture 1.5 is that, if X ∼ Gn×n is a Gaussian matrix, then all
known approximation algorithms fail to find any reasonable approximation to Per(X). If X were a
nonnegative matrix, then we could use the celebrated approximation algorithm of Jerrum, Sinclair, and
Vigoda [34]—but since X has negative and complex entries, it is not even clear how to estimate Per(X) in
BPPNP, let alone in BPP. Perhaps the most relevant approximation algorithms are those of Gurvits [31],
which we discuss in Appendix 12. In particular, Theorem 12.4 will give a randomized algorithm due to
Gurvits that approximates Per(X) to within an additive error±ε ‖X‖n, in O

(
n2/ε2

)
time. For a Gaussian

matrix X ∼ Gn×n, it is known that ‖X‖≈ 2
√

n almost surely, as a consequence of the Tracy-Widom law.26

So in O
(
n2/ε2

)
time, we can approximate Per(X) to within additive error ±ε (2

√
n)n. However, this is

larger than what we need (namely ±ε
√

n!/poly(n)) by a ∼ (2
√

e)n factor.
A third piece of evidence for Conjecture 1.5 was recently provided by Arora et al. [8], motivated

by an earlier version of this paper. They show that the GPE± problem is self-checkable—in the sense
that one can decide, in randomized polynomial time, whether a given oracle solves GPE± or is far from
solving it. Since #P-complete problems are well-known to be self-checkable, this provides a useful
“sanity check,” showing that GPE± shares at least one important property with #P-complete problems.
Of course, assuming the Permanent Anti-Concentration Conjecture, their result would apply to GPE× as
well.

In the rest of this section, we discuss the prospects for proving Conjecture 1.5. First, in Section 9.1,
we at least show that exactly computing Per(X) for a Gaussian random matrix X ∼ Gn×n is #P-hard. The
proof is a simple extension of the classic result of Lipton [44], that the permanent over finite fields is
“random self-reducible”: that is, as hard to compute on average as it is in the worst case. As in Lipton’s
proof, we use the facts that (1) the permanent is a low-degree polynomial, and (2) low-degree polynomials
constitute excellent error-correcting codes. However, in Section 9.2, we then explain why any extension
of this result to show average-case hardness of approximating Per(X) will require a fundamentally new
approach. In other words, the “polynomial reconstruction paradigm” cannot suffice, on its own, to prove
Conjecture 1.5.

9.1 Evidence That GPE× Is #P-Hard

We already saw, in Theorem 4.3, that approximating the permanent (or even the magnitude of the
permanent) of all matrices X ∈ Cn×n is a #P-hard problem. But what about the “opposite” problem:
exactly computing the permanent of most matrices X ∼ Gn×n? In this section, we will show that the
latter problem is #P-hard as well. This means that, if we want to prove the Permanent-of-Gaussians

26See http://terrytao.wordpress.com/2010/01/09/254a-notes-3-the-operator-norm-of-a-random-matrix/ for an accessible
overview.
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Conjecture, then the difficulty really is just to combine approximation with an average-case assumption.
Our result will be an adaptation of a famous result on the random-self-reducibility of the permanent

over finite fields:

Theorem 9.1 (Random-Self-Reducibility of the PERMANENT [44],[26],[27],[14]). For all α ≥ 1/poly(n)
and primes p > (3n/α)2, the following problem is #P-hard: given a uniform random matrix M ∈ Fn×n

p ,
output Per(M) with probability at least α over M.

The proof of Theorem 9.1 proceeds by reduction: suppose we had an oracle O such that

Pr
M∈Fn×n

p

[O(M) = Per(M)]≥ α. (9.1)

Using O, we give a randomized algorithm that computes the permanent of an arbitrary matrix X ∈ Fn×n
p .

The latter is certainly a #P-hard problem, which implies that computing Per(M) for even an α fraction of
M’s must have been #P-hard as well.

There are actually four variants of Theorem 9.1, which handle increasingly small values of α . All four
are based on the same idea—namely, reconstructing a low-degree polynomial from noisy samples—but
as α gets smaller, one has to use more and more sophisticated reconstruction methods. For convenience,
we have summarized the variants in the table below.

Success probability α Reconstruction method Curve in Fn×n Reference
1− 1

3n Lagrange interpolation Linear Lipton [44]
3
4 +

1
poly(n) Berlekamp-Welch Linear Gemmell et al. [26]

1
2 +

1
poly(n) Berlekamp-Welch Polynomial Gemmell-Sudan [27]

1
poly(n) Sudan’s list decoding [61] Polynomial Cai et al. [14]

In adapting Theorem 9.1 to matrices over C, we face a choice of which variant to prove. For simplicity,
we have chosen to prove only the α = 3

4 +
1

poly(n) variant in this paper. However, we believe that it should

be possible to adapt the α = 1
2 +

1
poly(n) and α = 1

poly(n) variants to the complex case as well; we leave
this as a problem for future work.

Let us start by explaining how the reduction works in the finite field case, when α = 3
4 +δ for some

δ = 1
poly(n) . Assume we are given as input a matrix X ∈ Fn×n

p , where p≥ n/δ is a prime. We are also
given an oracle O such that

Pr
M∈Fn×n

p

[O(M) = Per(M)]≥ 3
4
+δ . (9.2)

Then using O, our goal is to compute Per(X).
We do so using the following algorithm. First choose another matrix Y ∈ Fn×n

p uniformly at random.
Then set

X (t) := X + tY, (9.3)

q(t) := Per(X (t)) . (9.4)
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Notice that q(t) is a univariate polynomial in t, of degree at most n. Furthermore, q(0) = Per(X (0)) =
Per(X), whereas for each t 6= 0, the matrix X (t) is uniformly random. So by assumption, for each t 6= 0
we have

Pr [O(X (t)) = q(t)]≥ 3
4
+δ . (9.5)

Let S be the set of all nonzero t such that O(X (t)) = q(t). Then by Markov’s inequality,

Pr
[
|S| ≥

(
1
2
+δ

)
(p−1)

]
≥ 1−

1
4 −δ

1
2 −δ

≥ 1
2
+δ . (9.6)

So if we can just compute Per(X) in the case where |S| ≥ (1/2+δ )(p−1), then all we need to do is run
our algorithm O

(
1/δ 2

)
times (with different choices of the matrix Y ), and output the majority result.

So the problem reduces to the following: reconstruct a univariate polynomial q : Fp→ Fp of degree
n, given “sample data” O(X (1)) , . . . ,O(X (p−1)) that satisfies q(t) = O(X (t)) for at least a 1

2 + δ

fraction of t’s. Fortunately, we can solve that problem efficiently using the well-known Berlekamp-Welch
algorithm:

Theorem 9.2 (Berlekamp-Welch Algorithm). Let q be a univariate polynomial of degree d, over any
field F. Suppose we are given m pairs of F-elements (x1,y1) , . . . ,(xm,ym) (with the xi’s all distinct), and
are promised that yi = q(xi) for more than m+d

2 values of i. Then there is a deterministic algorithm to
reconstruct q, using poly(n,d) field operations.

Theorem 9.2 applies to our scenario provided p is large enough (say, at least n/δ ). Once we have the
polynomial q, we then simply evaluate it at 0 to obtain q(0) = Per(X).

The above argument shows that it is #P-hard to compute the permanent of a “random” matrix—but
only over a sufficiently-large finite field F, and with respect to the uniform distribution over matrices. By
contrast, what if F is the field of complex numbers, and the distribution over matrices is the Gaussian
distribution, Gn×n?

In that case, one can check that the entire argument still goes through, except for the part where
we asserted that the matrix X (t) was uniformly random. In the Gaussian case, it is easy enough to
arrange that X (t) ∼ Gn×n for some fixed t 6= 0, but we can no longer ensure that X (t) ∼ Gn×n for all
t 6= 0 simultaneously. Indeed, X (t) becomes arbitrarily close to the input matrix X (0) = X as t → 0.
Fortunately, we can deal with that problem by means of Lemma 7.4, which implies that, if the matrix
M ∈ Cn×n is sampled from Gn×n and if E is a small shift, then M+E is nearly indistinguishable from a
sample from Gn×n. Using Lemma 7.4, we now adapt Theorem 9.1 to the complex case.

Theorem 9.3 (Random Self-Reducibility of Gaussian Permanent). For all δ ≥ 1/poly(n), the following
problem is #P-hard. Given an n×n matrix M drawn from Gn×n, output Per(M) with probability at least
3
4 +δ over M.

Proof. Let X = (xi j) ∈ {0,1}n×n be an arbitrary 0/1 matrix. We will show how to compute Per(X) in
probabilistic polynomial time, given access to an oracle O such that

Pr
M∼Gn×n

[O(M) = Per(M)]≥ 3
4
+δ . (9.7)
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Clearly this suffices to prove the theorem. The first step is to choose a matrix Y ∈Cn×n from the Gaussian
distribution Gn×n. Then define

X (t) := (1− t)Y + tX , (9.8)

so that X (0) = Y and X (1) = X . Next define

q(t) := Per(X (t)) , (9.9)

so that q(t) is a univariate polynomial in t of degree at most n, and q(1) = Per(X (1)) = Per(X). Now let
L := dn/δe and ε := δ

(4n2+2n)L . For each ` ∈ [L], call the oracle O on input matrix X (ε`). Then, using
the Berlekamp-Welch algorithm (Theorem 9.2), attempt to find a degree-n polynomial q′ : C→ C such
that

q′ (ε`) = O(X (ε`)) (9.10)

for at least a 3
4 +δ fraction of ` ∈ [L]. If no such q′ is found, then fail; otherwise, output q′ (1) as the

guessed value of Per(X). We claim that the above algorithm succeeds (that is, outputs q′ (1) = Per(X))
with probability at least 1

2 +
δ

2 over Y . Provided that holds, it is clear that the success probability can be
boosted to (say) 2/3, by simply repeating the algorithm O

(
1/δ 2

)
times with different choices of Y and

then outputting the majority result. To prove the claim, note that for each ` ∈ [L], one can think of the
matrix X (ε`) as having been drawn from the distribution

D` :=
n

∏
i, j=1

N
(

ε`ai j,(1− ε`)2
)
C
. (9.11)

Let

D′` :=
n

∏
i, j=1

N (ε`ai j,1)C (9.12)

Then by the triangle inequality together with Lemma 7.4,∥∥D`−Gn×n
∥∥≤ ∥∥D`−D′`

∥∥+∥∥D′`−Gn×n
∥∥ (9.13)

≤ 2n2
ε`+

√
n2 (ε`)2 (9.14)

≤
(
2n2 +n

)
εL (9.15)

≤ δ

2
. (9.16)

Hence

Pr [O(X (ε`)) = q(ε`)]≥ 3
4
+δ −

∥∥D`−N (0,1)n×n
C
∥∥ (9.17)

≥ 3
4
+

δ

2
. (9.18)

Now let S be the set of all ` ∈ [L] such that O(X (ε`)) = q(ε`). Then by Markov’s inequality,

Pr
[
|S| ≥

(
1
2
+

δ

2

)
L
]
≥ 1−

1
4 −

δ

2
1
2 −

δ

2

≥ 1
2
+

δ

2
. (9.19)
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Furthermore, suppose |S| ≥
(

1
2 +

δ

2

)
L. Then by Theorem 9.2, the Berlekamp-Welch algorithm will

succeed; that is, its output polynomial q′ will be equal to q. This proves the claim and hence the
lemma.

As mentioned before, we conjecture that it is possible to improve Theorem 9.3, to show that it is
#P-hard even to compute the permanent of an α = 1

poly(n) fraction of matrices X drawn from the Gaussian
distribution Gn×n.

Let us mention two other interesting improvements that one can make to Theorem 9.3. First, one
can easily modify the proof to show that not just Per(X), but also |Per(X)|2, is as hard to compute for X
drawn from the Gaussian distribution Gn×n as it is in the worst case. For this, one simply needs to observe
that, just as Per(X) is a degree-n polynomial in the entries of X , so |Per(X)|2 is a degree-2n polynomial
in the entries of X together with their complex conjugates (or alternatively, in the real and imaginary parts
of the entries). The rest of the proof goes through as before. Since |Per(X)|2 is #P-hard to compute in
the worst case by Theorem 4.3, it follows that |Per(X)|2 is #P-hard to compute for X drawn from the
Gaussian distribution as well.

Second, in the proof of Theorem 9.3, one can relax the requirement that the oracle O computes Per(X)
exactly with high probability over X ∼ Gn×n, and merely require that

Pr
X∼Gn×n

[
|O(X)−Per(X)| ≤ 2−q(n)

]
≥ 3

4
+

1
poly(n)

, (9.20)

for some sufficiently large polynomial q. To do so, one can appeal to the following lemma of Paturi.

Lemma 9.4 (Paturi [48]; see also Buhrman et al. [13]). Let p : R→ R be a real polynomial of degree d,
and suppose |p(x)| ≤ δ for all |x| ≤ ε . Then |p(1)| ≤ δe2d(1+1/ε).

From this perspective, the whole challenge in proving the Permanent-of-Gaussians Conjecture is to
replace the 2−q(n) approximation error with 1/q(n).

Combining, we obtain the following theorem, whose detailed proof we omit.

Theorem 9.5. There exists a polynomial p for which the following problem is #P-hard, for all δ ≥
1/poly(n). Given an n×n matrix X drawn from Gn×n, output a real number y such that

∣∣∣y−|Per(X)|2
∣∣∣≤

2−p(n,1/δ ) with probability at least 3
4 +δ over X.

As a final observation, it is easy to find some efficiently samplable distribution D over matrices
X ∈ Cn×n, such that estimating Per(X) or |Per(X)|2 for most X ∼D is a #P-hard problem. To do so,
simply start with any problem that is known to be #P-hard on average: for example, computing Per(M)
for most matrices M ∈ Fn×n

p over a finite field Fp. Next, use Theorem 4.3 to reduce the computation of
Per(M) (for a uniform random M) to the estimation of |Per(X1)|2 , . . . , |Per(Xm)|2, for various matrices
X1, . . . ,Xm ∈ Cn×n. Finally, output a random Xi as one’s sample from D. Clearly, if one could estimate
|Per(X)|2 for a 1−1/poly(n) fraction of X ∼D, one could also compute Per(M) for a 1−1/poly(n)
fraction of M ∈ Fn×n

p , and thereby solve a #P-hard problem. Because of this, we see that the challenge
is “merely” how to prove average-case #P-hardness, in the specific case where the distribution D over
matrices that interests us is the Gaussian distribution Gn×n (or more generally, some other “nice” or
“uniform-looking” distribution).
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9.2 The Barrier to Proving the PGC

In this section, we identify a significant barrier to proving Conjecture 1.5, and explain why a new approach
seems needed.

As Section 9.1 discussed, all existing proofs of the worst-case/average-case equivalence of the
PERMANENT are based on low-degree polynomial interpolation. More concretely, given a matrix
X ∈ Fn×n for which we want to compute Per(X), we first choose a random low-degree curve X (t)
through Fn×n satisfying X (0) = X . We then choose nonzero points t1, . . . , tm ∈ R, and compute or
approximate Per(X (ti)) for all i ∈ [m], using the assumption that the PERMANENT is easy on average.
Finally, using the fact that q(t) := Per(X (t)) is a low-degree polynomial in t, we perform polynomial
interpolation on the noisy estimates

y1 ≈ q(t1) , . . . ,ym ≈ q(tm) , (9.21)

in order to obtain an estimate of the worst-case permanent q(0) = Per(X (0)) = Per(X).
The above approach is a very general one, with different instantiations depending on the base field

F, the fraction of X’s for which we can compute Per(X), and so forth. Nevertheless, we claim that,
assuming the Permanent Anti-Concentration Conjecture, the usual polynomial interpolation approach
cannot possibly work to prove Conjecture 1.5. Let us see why this is the case.

Let X ∈ Cn×n be a matrix where every entry has absolute value at most 1. Then certainly it is a
#P-hard problem to approximate Per(X) multiplicatively (as shown by Theorem 4.3, for example). Our
goal is to reduce the approximation of Per(X) to the approximation of Per(X1) , . . . ,Per(Xm), for some
matrices X1, . . . ,Xm that are drawn from the Gaussian distribution Gn×n or something close to it.

Recall from Section 8 that
E

X∼Gn×n

[
|Per(X)|2

]
= n!, (9.22)

which combined with Markov’s inequality yields

Pr
X∼Gn×n

[
|Per(X)|> k

√
n!
]
<

1
k2 (9.23)

for all k > 1. But this already points to a problem: |Per(X)| could, in general, be larger than
|Per(X1)| , . . . , |Per(Xm)| by an exponential factor. Specifically, |Per(X)| could be as large as n! (for
example, if A is the all-1’s matrix). By contrast, |Per(X1)| , . . . , |Per(Xm)| will typically be O(

√
n!) by

equation (9.23). And yet, from constant-factor approximations to Per(X1) , . . . ,Per(Xm), we are supposed
to recover a constant-factor approximation to Per(X), even in the case that |Per(X)| is much smaller than
n! (say, |Per(X)| ≈

√
n!).

Why is this a problem? Because polynomial interpolation is linear with respect to additive errors.
And therefore, even modest errors in estimating Per(X1) , . . . ,Per(Xm) could cause a large error in
estimating Per(X).

To see this concretely, let X be the n×n all-1’s matrix, and X (t) be a randomly-chosen curve through
Cn×n that satisfies X (0) =X . Also, let t1, . . . , tm ∈R be nonzero points such that, as we vary X , each X (ti)
is close to a Gaussian random matrix X ∼ Gn×n. (We need not assume that the X (ti)’s are independent.)
Finally, let q0 (t) := Per(X (t)). Then
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(i) |q0 (t1)| , . . . , |q0 (tm)| are each at most nO(1)
√

n! with high probability over the choice of X , but

(ii) |q0 (0)|= |Per(X (0))|= |Per(X)|= n!.

Here (i) holds by our assumption that each X (ti) is close to Gaussian, together with equation (9.23).
All we need to retain from this is that a polynomial q0 with properties (i) and (ii) exists, within

whatever class of polynomials is relevant for our interpolation problem.
Now, suppose that instead of choosing X to be the all-1’s matrix, we had chosen an X such that

|Per(A)| ≤
√

n!. Then as before, we could choose a random curve X (t) such that X (0) = X and
X (t1) , . . . ,X (tm) are approximately Gaussian, for some fixed interpolation points t1, . . . , tm ∈ R. Then
letting q(t) := Per(X (t)), we would have

(i) |q(t1)| , . . . , |q(tm)| are each at least
√

n!/nO(1) with high probability over the choice of X , and

(ii) |q(0)|= |Per(X (0))|= |Per(X)| ≤
√

n!.

Here (i) holds by our assumption that each X (ti) is close to Gaussian, together with Conjecture 1.6
(the Permanent Anti-Concentration Conjecture).

Now define a new polynomial
q̃(t) := q(t)+ γq0 (t) , (9.24)

where, say, |γ|= 2−n. Then for all i ∈ [m], the difference

|q̃(ti)−q(ti)|= |γq0 (ti)| ≤
nO(1)

2n

√
n!, (9.25)

is negligible compared to
√

n!. This means that it is impossible to distinguish the two polynomials q̃ and
q, given their approximate values at the points t1, . . . , tm. And yet the two polynomials have completely
different behavior at the point 0: by assumption |q(0)| ≤

√
n!, but

|q̃(0)| ≥ |γq0 (0)|− |q(0)| (9.26)

≥ n!
2n −

√
n!. (9.27)

We conclude that it is impossible, given only the approximate values of the polynomial q(t) := Per(X (t))
at the points t1, . . . , tm, to deduce its approximate value at 0. And therefore, assuming the PACC, the
usual polynomial interpolation approach cannot suffice for proving Conjecture 1.5.

Nevertheless, we speculate that there is a worst-case/average-case reduction for approximating the
permanents of Gaussian random matrices, and that the barrier we have identified merely represents a
limitation of current techniques. So for example, perhaps one can do interpolation using a restricted
class of low-degree polynomials, such as polynomials with an upper bound on their coefficients. To
evade the barrier, what seems to be crucial is that the restricted class of polynomials one uses not be
closed under addition.

Of course, the above argument relied on the Permanent Anti-Concentration Conjecture, so one
conceivable way around the barrier would be if the PACC were false. However, in that case, the results
of Section 7 would fail: that is, we would not know how to use the hardness of GPE× to deduce the
hardness of |GPE|2± that we need for our application.
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10 Open Problems

The most exciting challenge we leave is to do the experiments discussed in Section 6, whether in linear
optics or in other physical systems that contain excitations that behave as identical bosons. If successful,
such experiments have the potential to provide the strongest evidence to date for violation of the Extended
Church-Turing Thesis in nature.

We now list a few theoretical open problems.

(1) The most obvious problem is to prove Conjecture 1.5 (the Permanent-of-Gaussians Conjecture):
that approximating the permanent of a matrix of i.i.d. Gaussian entries is #P-hard. Failing that, can
we prove #P-hardness for any problem with a similar “flavor” (roughly speaking, an average-case
approximate counting problem over R or C)? Can we at least find evidence that such a problem is
not in BPPNP?

(2) Another obvious problem is to prove Conjecture 1.6 (the Permanent Anti-Concentration Con-
jecture), that |Per(X)| almost always exceeds

√
n!/poly(n) for Gaussian random matrices X ∼

N (0,1)n×n
C . Failing that, any progress on understanding the distribution of Per(X) for Gaussian X

would be interesting.

(3) Can we reduce the number of modes needed for our linear-optics experiment, perhaps from O
(
n2
)

to O(n)?

(4) How far can we decrease the physical resource requirements for our experiment? For example,
what happens if we have single-photon input states combined with Gaussian measurements? Also,
if we have Gaussian input states combined with nonadaptive photon-number measurements, then
Theorem 4.9 shows that our argument for the hardness of exact sampling goes through, but what
about approximate sampling?

(5) How does the noninteracting-boson model relate to other models of computation that are believed
to be intermediate between BPP and BQP? To give one concrete question, can every boson
computation be simulated by a qubit-based quantum circuit of logarithmic depth?

(6) To what extent can one use quantum fault-tolerance techniques to decrease the effective error in our
experiment? Note that, if one had the resources for universal quantum computation, then one could
easily combine our experiment with standard fault-tolerance schemes, which are known to push
the effective error down to 1/exp(n) using poly(n) computational overhead. So the interesting
question is whether one can make our experiment fault-tolerant using fewer resources than are
needed for universal quantum computing—and in particular, whether one can do so using linear
optics alone.

(7) Can we give evidence against not merely an FPTAS (Fully Polynomial Time Approximation
Scheme) for the BOSONSAMPLING problem, but an approximate sampling algorithm that works
for some fixed error ε > 1/poly(n)?

(8) For what other interesting quantum systems, besides linear optics, do analogues of our hardness
results hold? As mentioned in Section 1.4, the beautiful work of Bremner, Jozsa, and Shepherd
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[12] shows that exact simulation of “commuting quantum computations” in classical polynomial
time would collapse the polynomial hierarchy. What can we say about approximate classical
simulation of their model?

(9) In this work, we showed that unlikely complexity consequences would follow if classical computers
could simulate quantum computers on all sampling or search problems: that is, that SampP =
SampBQP or FBPP= FBQP. An obvious question that remains is, what about decision problems?
Can we derive some unlikely collapse of classical complexity classes from the assumption that
P = BQP or PromiseP = PromiseBQP?

(10) To what extent do our results relativize? One immediate problem is that we do not even know
what it means to relativize a boson computer! Thus, let us state our results in terms of universal
quantum computers instead. In that case, our exact result, Theorem 4.9, says that P#P ⊆ BPPNPO

for every oracle O that samples exactly from the output distribution of a given quantum circuit.
The proof of Theorem 4.9 is easily seen to relativize. However, we do not know the situation with
our approximate result, Theorem 1.3. More precisely, does there exist an oracle A relative to which
FBPP = FBQP but PH is infinite? Such an oracle would show that Theorem 1.3 required the use
of some nonrelativizing ingredient—for example, the #P-hardness of a concrete problem involving
Gaussian permanents. Currently, the closest we have to this is a powerful result of Fortnow and
Rogers [25], which gives an oracle A relative to which P = BQP but PH is infinite. However, it is
not even known how to extend the Fortnow-Rogers construction to get an oracle A relative to which
PromiseP = PromiseBQP but PH is infinite. The situation is summarized in the table below.

Complexity consequence
Assumption PH collapses (relativizing) PH collapses (in real world)
P = BQP No [25] ?
PromiseP = PromiseBQP ? ?
FBPP = FBQP ? Assuming our conjectures
Exact QSAMPLING easy Yes Yes

(11) Is there any plausible candidate for a decision problem that is efficiently solvable by a boson
computer, but not by a classical computer?

(12) As discussed in Section 6, it is not obvious how to convince a skeptic that a quantum computer
is really solving the BOSONSAMPLING problem in a scalable way. This is because, unlike with
(say) FACTORING, neither BOSONSAMPLING nor any related problem seems to be in NP. How
much can we do to remedy this? For example, can a prover with a BOSONSAMPLING oracle
prove any nontrivial statements to a BPP verifier via an interactive protocol? Here we should
mention the lovely recent result of Arora et al. [8], which was motivated by an earlier version of
this paper. They show that the problem we call GPE± is self-checkable. In other words, suppose
we are given an oracle O, which is claimed to output a good additive approximation to Per(X),
for most Gaussian matrices X ∼ N (0,1)n×n

C . Then Arora et al. show that it is possible to test,
in randomized polynomial time, whether O satisfies the claim or is far from satisfying it. One
consequence of their result is that, if we were given a purported classical randomized algorithm
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for BOSONSAMPLING—call it C—then we could check whether C worked in the class BPPNPC
.

Unfortunately, it remains unclear whether this result has any relevance for the verification of
BOSONSAMPLING experiments in the lab.

(13) Is there a polynomial-time classical algorithm to sample from a probability distribution D′ that
cannot be efficiently distinguished from the distribution D sampled by a boson computer?

11 Appendix: The Symmetric Product

As mentioned in Section 1.1, one way to think about the Hilbert space of n identical photons, is as the
so-called symmetric product of n single-photon Hilbert spaces. Although we never needed the formalism
of symmetric products when proving our results, in this appendix we develop the formalism a bit, in order
to explore what it says about the presence or absence of “entanglement” in linear-optical states.

Given an m-dimensional Hilbert space H = Cm, the symmetric product

H�n =

n factors︷ ︸︸ ︷
H�·· ·�H (11.1)

(also written Sn(Cm)) is the
(m+n−1

n

)
-dimensional space Hm,n defined in Section 3. The � operation

also acts on states, in which case we can define |φ〉 = |ψ1〉� |ψ2〉 to be the unique state |φ〉 such that
P|φ〉 = P|ψ1〉 ·P|ψ2〉. Here P|φ〉,P|ψ2〉,P|ψ2〉 are the polynomials corresponding to |φ〉 , |ψ1〉 , |ψ2〉 respectively
as defined in Section 3.2 (see equation (3.37)), and · denotes ordinary polynomial multiplication. A
crucial difference between the symmetric product � and the ordinary tensor product ⊗ is that the
symmetric product is commutative:

|A〉� |B〉= |B〉� |A〉 . (11.2)

The reason for this commutativity is the assumption that the bosons are identical, so that swapping them
produces no physical change.

Because of the isomorphism between the symmetric product and polynomial multiplication, it follows
immediately from Section 3.2 that we can represent any state ϕ (U) |1n〉, obtained by taking the standard
initial state and then applying a linear-optical transformation, as a symmetric product |ψ1〉� · · ·� |ψn〉 of
single-photon states.

But the symmetric product provides only one way to represent linear-optical states. A second
representation is what we might call “naı̈ve tensor-product form”: this is like symmetric-product form,
except that the commutativity (11.2) is made explicit by the symmetries of the state itself. (The analogue,
in algebra, would be replacing every occurrence of xy by 1

2 (xy+ yx).) A third representation is the one
we’ve been using for almost all of the paper: namely, a superposition over the occupation-number basis
states |s1, . . . ,sm〉.

To illustrate these three representations, let |Λ〉 be the linear-optical state consisting of one photon
in an equal superposition of two modes, let |Ψ〉 be the state consisting of two photons, one in each of
two modes, and let |Φ〉 be the two-photon output state produced in the Hong-Ou-Mandel experiment
(see Section 6.1). Then the following table shows what |Λ〉, |Ψ〉, and |Φ〉 look like in each of the
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representations.

|Λ〉 |Ψ〉 |Φ〉
Occupation-Number |1,0〉+|0,1〉√

2
|1,1〉 |2,0〉−|0,2〉√

2

Naı̈ve Tensor-Product |1〉+|2〉√
2

|1〉⊗|2〉+|2〉⊗|1〉√
2

|1〉⊗|1〉−|2〉⊗|2〉√
2

Symmetric-Product |1〉+|2〉√
2

|1〉� |2〉 |1〉+|2〉√
2
� |1〉−|2〉√

2

Here the factorization in the bottom-right corner corresponds to the identity x2− y2 = (x+ y)(x− y).
With these representations and examples in hand, we now pose the question: are the states |Λ〉, |Ψ〉,

and |Φ〉 “entangled” or “unentangled”? Alas, we see that the answers can apparently be different
depending on which representation is used! In occupation-number form—treating basis states |s, t〉 as
tensor products |s〉⊗ |t〉— the states |Λ〉 and |Φ〉 both look entangled while |Ψ〉 looks unentangled. In
naı̈ve tensor-product form, |Ψ〉 and |Φ〉 both look entangled while |Λ〉 looks unentangled. Finally, in
symmetric-product form, all three states look unentangled.

Let us make three remarks that might help clarify the situation. First, all linear-optical states involving
superpositions over different modes look entangled when written in occupation-number form. One can
argue about whether such entanglement is “real” or “illusory”—but whichever the case, this is the reason
why we generate entangled states when simulating a linear-optical quantum computer using a standard,
qubit-based quantum computer in the manner of Theorem 3.12. As such, it is directly related to why our
model seems intractable to simulate using a classical computer. Second, all multiple-photon states look
entangled when written in naı̈ve tensor-product form. In our view, however, any “entanglement” that
appears only in the naı̈ve tensor-product representation is just a mathematical artifact, since it arises solely
from that representation’s unphysical insistence on labeling identical photons. Third, by construction, all
linear-optical states of the form ϕ (U) |1n〉 look unentangled when written in symmetric-product form.
This is the mathematical reflection of the physical fact that the photons never interact in our model.
Indeed, this is arguably what justifies calling our model “noninteracting” in the first place.

12 Appendix: Positive Results for Simulation of Linear Optics

In this appendix, we present two results of Gurvits, both of which give surprising classical polynomial-
time algorithms for computing certain properties of linear-optical networks. The first result, which
appeared in [31], gives an efficient randomized algorithm to approximate the permanent of a (sub)unitary
matrix with ±1/poly(n) additive error, and as a consequence, to estimate final amplitudes such as
〈1n|ϕ (U) |1n〉= Per(Un,n) with ±1/poly(n) additive error, given any linear-optical network U . This
ability is of limited use in practice, since 〈1n|ϕ (U) |1n〉 will be exponentially small for most choices of
U (in which case, 0 is also a good additive estimate!). On the other hand, we certainly do not know how
to do anything similar for general, qubit-based quantum circuits—indeed, if we could, then BQP would
equal BPP.

Gurvits’s second result (unpublished) gives a way to compute the marginal distribution over photon
numbers for any k modes, deterministically and in nO(k) time. Again, this is perfectly consistent with
our hardness conjectures, since if one wanted to sample from the distribution over photon numbers (or
compute a final probability such as |〈1n|ϕ (U) |1n〉|2), one would need to take k ≥ n.
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To prove Gurvits’s first result, our starting point will be the following identity of Ryser, which is also
used for computing the permanent of an n×n matrix in O

(
2nn2

)
time.

Lemma 12.1 (Ryser’s Formula). For all V ∈ Cn×n,

Per(V ) = E
x1,...,xn∈{−1,1}

[
x1 · · ·xn

n

∏
i=1

(vi1x1 + · · ·+ vinxn)

]
. (12.1)

Proof. Let p(x1, . . . ,xn) be the degree-n polynomial that corresponds to the product in the above expecta-
tion. Then the only monomial of p that can contribute to the expectation is x1 · · ·xn, since all the other
monomials will be cancelled out by the multiplier of x1 · · ·xn (which is equally likely to be 1 or −1).
Furthermore, as in Lemma 3.8, the coefficient of x1 · · ·xn is just

∑
σ∈Sn

n

∏
i=1

vi,σ(i) = Per(V ) . (12.2)

Therefore the expectation equals

Per(V ) E
x1,...,xn∈{−1,1}

[
x2

1 · · ·x2
n
]
= Per(V ) . (12.3)

(Indeed, all we needed about the random variables x1, . . . ,xn was that they were independent and had
mean 0 and variance 1.)

Given x = (x1, . . . ,xn) ∈ {−1,1}n, let

Rysx (V ) := x1 · · ·xn

n

∏
i=1

(vi1x1 + · · ·+ vinxn) . (12.4)

Then Lemma 12.1 says that Rysx (V ) is an unbiased estimator for the permanent, in the sense that
Ex [Rysx (V )] = Per(V ). Gurvits [31] observed the following key further fact about Rysx (V ).

Lemma 12.2. |Rysx (V )| ≤ ‖V‖n for all x ∈ {−1,1}n and all V .

Proof. Given a vector x = (x1, . . . ,xn) all of whose entries are 1 or −1, let y =V x, and let

yi := vi1x1 + · · ·+ vinxn (12.5)

be the ith component of y. Then ‖x‖=
√

n, so ‖y‖ ≤ ‖V‖‖x‖= ‖V‖
√

n. Hence

|Rysx (V )|= |x1 · · ·xny1 · · ·yn| (12.6)

= |y1 · · ·yn| (12.7)

≤
(
|y1|+ · · ·+ |yn|

n

)n

(12.8)

≤
(
‖y‖√

n

)n

(12.9)

≤ ‖V‖n , (12.10)

where line (12.8) follows from the arithmetic-geometric mean inequality, and line (12.9) follows from
Cauchy-Schwarz.
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An immediate consequence of Lemma 12.2 is the following:

Corollary 12.3. |Per(V )| ≤ ‖V‖n for all V .

Another consequence is a fast additive approximation algorithm for Per(V ), which works whenever
‖V‖ is small.

Theorem 12.4 (Gurvits’s Permanent Approximation Algorithm [31]). There exists a randomized (classi-
cal) algorithm that takes a matrix V ∈ Cn×n as input, runs in O

(
n2/ε2

)
time, and with high probability,

approximates Per(V ) to within an additive error ±ε ‖V‖n.

Proof. By Lemma 12.1,
Per(V ) = E

x∈{−1,1}n
[Rysx (V )] . (12.11)

Furthermore, we know from Lemma 12.2 that |Rysx (V )| ≤ ‖V‖n for every x. So our approximation
algorithm is simply the following: for T = O

(
1/ε2

)
, first choose T vectors x(1) , . . . ,x(T ) uniformly at

random from {−1,1}n. Then output the empirical mean

p̃ :=
1
T

T

∑
t=1

Rysx(t) (V ) (12.12)

as our estimate of Per(V ). Since Rysx (V ) can be computed in O
(
n2
)

time, this algorithm takes O
(
n2/ε2

)
time. The failure probability,

Pr
x(1),...,x(T )

[|p̃−Per(V )|> ε ‖V‖n] , (12.13)

can be upper-bounded using a standard Chernoff bound.

In particular, Theorem 12.4 implies that, given an n× n unitary matrix U , one can approximate
Per(U) to within an additive error ±ε (with high probability) in poly(n,1/ε) time.

We now sketch a proof of Gurvits’s second result, giving an nO(k)-time algorithm to compute the
marginal distribution over any k photon modes. We will assume the following lemma, whose proof will
appear in a forthcoming paper of Gurvits.

Lemma 12.5 (Gurvits). Let V ∈ Cn×n be a matrix of rank k. Then Per(V + I) can be computed exactly
in nO(k) time.

We now show how to apply Lemma 12.5 to the setting of linear optics.

Theorem 12.6 (Gurvits’s k-Photon Marginal Algorithm). There exists a deterministic classical algorithm
that, given a unitary matrix U ∈ Cm×m, indices i1, . . . , ik ∈ [m], and occupation numbers j1, . . . , jk ∈
{0, . . . ,n}, computes the joint probability

Pr
S=(s1,...,sm)∼DU

[si1 = j1∧·· ·∧ sik = jk] (12.14)

in nO(k) time.
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Proof. By symmetry, we can assume without loss of generality that (i1, . . . , ik) = (1, . . . ,k). Let c =
(c1, . . . ,ck) be an arbitrary vector in Ck. Then the crucial claim is that we can compute the expectation

E
S∼DU

[
|c1|2s1 · · · |ck|2sk

]
= ∑

s1,...,sk

Pr [s1, . . . ,sk] |c1|2s1 · · · |ck|2sk (12.15)

in nO(k) time. Given this claim, the theorem follows easily. We simply need to choose (n+1)k values
for |c1| , . . . , |ck|, compute ES∼DU

[
|c1|2s1 · · · |ck|2sk

]
for each one, and then solve the resulting system

of (n+1)k independent linear equations in (n+1)k unknowns to obtain the probabilities Pr [s1, . . . ,sk]
themselves. We now prove the claim. Let Ic : Cm→ Cm be the diagonal linear transformation that maps
the vector (x1, . . . ,xm) to (c1x1, . . . ,ckxk,xk+1, . . . ,xm), and let I|c|2 = I†

c Ic be the linear transformation that

maps (x1, . . . ,xm) to
(
|c1|2 x1, . . . , |ck|2 xk,xk+1, . . . ,xm

)
. Also, let

U [Jm,n] (x) = ∑
S∈Φm,n

aSxS. (12.16)

Now define a polynomial q by
q(x) := IcU [Jm,n] (x) , (12.17)

and note that
q(x) = ∑

S∈Φm,n

aSxScs1
1 · · ·c

sk
k . (12.18)

Hence

E
S=(s1,...,sm)∼DU

[
|c1|2s1 · · · |ck|2sk

]
= ∑

S=(s1,...,sm)∈Φm,n

(
|aS|2 s1! · · ·sm!

)
|c1|2s1 · · · |ck|2sk (12.19)

= ∑
S=(s1,...,sm)∈Φm,n

(
aScs1

1 · · ·c
sk
k

)(
aScs1

1 · · ·c
sk
k

)
s1! · · ·sm! (12.20)

= 〈q,q〉 . (12.21)

Now,

〈q,q〉= 〈IcU [Jm,n] , IcU [Jm,n]〉 (12.22)

=
〈

U [Jm,n] , I|c|2U [Jm,n]
〉

(12.23)

=
〈

Jm,n,U†I|c|2U [Jm,n]
〉

(12.24)

= Per
((

U†I|c|2U
)

n,n

)
(12.25)

where lines (12.23) and (12.24) follow from Theorem 3.4, and line (12.25) follows from Lemma 3.8.
Finally, let Λ := I|c|2− I. Then Λ is a diagonal matrix of rank at most k, and(

U†I|c|2U
)

n,n
=
(
U† (Λ+ I)U

)
n,n (12.26)

=
(
U†

ΛU + I
)

n,n (12.27)

=V + I, (12.28)
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where V :=
(
U†ΛU

)
n,n is an n×n matrix of rank at most k. So by Lemma 12.5, we can compute

Per(V + I) = E
S=(s1,...,sm)∼DU

[
|c1|2s1 · · · |ck|2sk

]
(12.29)

in nO(k) time. Furthermore, notice that we can compute V itself in O
(
n2k
)
= nO(1) time, independent of

m. Therefore the total time needed to compute the expectation is nO(k)+O(1) = nO(k). This proves the
claim.

13 Appendix: The Bosonic Birthday Paradox

By the birthday paradox, we mean the statement that, if n balls are thrown uniformly and independently
into m bins, then with high probability we will see a collision (i.e., two or more balls in the same bin) if
m = O

(
n2
)
, but not otherwise.

In this appendix, we prove the useful fact that the birthday paradox still holds if the balls are identical
bosons, and “throwing” the balls means applying a Haar-random unitary matrix. More precisely, suppose
there are m modes, of which the first n initially contain n identical photons (with one photon in each
mode) and the remaining m− n are unoccupied. Suppose we mix the modes by applying an m×m
unitary matrix U chosen uniformly at random from the Haar measure. Then if we measure the occupation
number of each mode, we will observe a collision (i.e., two or more photons in the same mode) with
probability bounded away from 0 if m = O

(
n2
)

but not otherwise.
It is well-known that identical bosons are “gregarious,” in the sense of being more likely than classical

particles to occur in the same state. For example, if we throw two balls uniformly and independently
into two bins, then the probability of both balls landing in the same bin is only 1/2 with classical balls,
but 2/3 if the balls are identical bosons.27 So the interesting part of the bosonic birthday paradox is the
“converse direction”: when m� n2, the probability of two or more bosons landing in the same mode is
not too large. In other words, while bosons are “somewhat” more gregarious than classical particles, they
are not so gregarious as to require a different asymptotic relation between m and n.

The proof of our main result, Theorem 1.3, implicitly used this fact: we needed that when m� n2,
the basis states with two or more photons in the same mode can safely be neglected. However, while in
principle one could extract a proof of the bosonic birthday paradox from the proof of Theorem 1.3, we
thought it would be illuminating to prove the bosonic birthday paradox directly.

The core of the proof is the following simple lemma about the transition probabilities induced by
unitary matrices.

Lemma 13.1 (Unitary Pigeonhole Principle). Partition a finite set [M] into a “good part” G and “bad
part” B = [M]\G. Also, let U = (uxy) be any M×M unitary matrix. Suppose we choose an element
x ∈ G uniformly at random, apply U to |x〉, then measure U |x〉 in the standard basis. Then letting y be
the measurement outcome, we have Pr [y ∈ B]≤ |B|/ |G|.

27This is in stark contrast to the situation with identical fermions, no two of which ever occur in the same state by the Pauli
exclusion principle.
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Proof. Let R be an M×M doubly-stochastic matrix whose (x,y) entry is rxy := |uxy|2. Then applying U
to a computational basis state |x〉 and measuring immediately afterward is the same as applying R; in
particular, Pr [y ∈ B] = rxy. Moreover,

∑
x,y∈G

rxy = ∑
x∈G,y∈[M]

rxy + ∑
x∈[M],y∈G

rxy− ∑
x,y∈[M]

rxy + ∑
x,y∈B

rxy (13.1)

= |G|+ |G|−M+ ∑
x,y∈B

rxy (13.2)

≥ 2 |G|−M, (13.3)

where line (13.1) follows from simple rearrangements and line (13.2) follows from the double-stochasticity
of R. Hence

Pr [y ∈ G] = E
x∈G

[
∑
y∈G

rxy

]
≥ 2 |G|−M

|G|
= 1− |B||G|

, (13.4)

and

Pr [y ∈ B] = 1−Pr [y ∈ G]≤ |B||G|
. (13.5)

Lemma 13.1 has the following important corollary. Suppose we draw the M×M unitary matrix
U from a probability distribution Z, where Z is symmetric with respect to some transitive group of
permutations on the good set G. Then Pr [y ∈ B] is clearly independent of the choice of initial state x ∈G.
And therefore, in the statement of the lemma, we might as well fix x ∈G rather than choosing it randomly.
The statement then becomes:

Corollary 13.2. Partition a finite set [M] into a “good part” G and “bad part” B = [M]\G. Also, let
Γ≤ SM be a permutation group that is transitive with respect to G, and let Z be a probability distribution
over M×M unitary matrices that is symmetric with respect to Γ. Fix an element x ∈ G. Suppose we
draw a unitary matrix U from Z, apply U to |x〉, and measure U |x〉 in the standard basis. Then the
measurement outcome will belong to B with probability at most |B|/ |G|.

Given positive integers m≥ n, recall that Φm,n is the set of lists of nonnegative integers S = (s1, . . . ,sm)
such that s1 + · · ·+ sm = n. Also, recall from Theorem 1.3 that a basis state S ∈Φm,n is called collision-
free if each si is either 0 or 1. Let Gm,n be the set of collision-free S’s, and let Bm,n = Φm,n \Gm,n. Then
we have the following simple estimate.

Proposition 13.3.
|Gm,n|
|Φm,n|

> 1− n2

m
. (13.6)
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Proof.

|Gm,n|
|Φm,n|

=

(m
n

)(m+n−1
n

) (13.7)

=
m!(m−1)!

(m−n)!(m+n−1)!
(13.8)

=

(
1− n−1

m

)(
1− n−1

m+1

)
· · · · ·

(
1− n−1

m+n−1

)
(13.9)

> 1− n2

m
. (13.10)

Now let U be an m×m unitary matrix, and recall from Section 3.1 that ϕ (U) is the “lifting” of U
to the n-photon Hilbert space of dimension M =

(m+n−1
n

)
. Also, let A = A(U,n) be the m×n matrix

corresponding to the first n columns of U . Then recall that DA is the probability distribution over Φm,n

obtained by drawing each basis state S ∈Φm,n with probability equal to |〈1n|ϕ (U) |S〉|2.
Using the previous results, we can upper-bound the probability that a Haar-random unitary maps the

basis state |1n〉 to a basis state containing two or more photons in the same mode.

Theorem 13.4 (Boson Birthday Bound). Recalling that Hm,m is the Haar measure over m×m unitary
matrices,

E
U∈Hm,m

[
Pr

DA(U,n)

[S ∈ Bm,n]

]
<

2n2

m
. (13.11)

Proof. Given a permutation σ ∈ Sm of single-photon states (or equivalently of modes), let ϕ (σ) be the
permutation on the set Φm,n of n-photon states that is induced by σ , and let Γ := {ϕ (σ) : σ ∈ Sm}. Then
Γ is a subgroup of SM of order m! (where as before, M =

(m+n−1
n

)
). Furthermore, Γ is transitive with

respect to the set Gm,n, since we can map any collision-free basis state S ∈ Gm,n to any other collision-
free basis state S′ ∈ Gm,n via a suitable permutation σ ∈ Sm of the underlying modes. Now let U be
the probability distribution over M×M unitary matrices V that is obtained by first drawing an m×m
unitary matrix U from Hm,m and then setting V := ϕ (U). Then since Hm,m is symmetric with respect to
permutations σ ∈ Sm, it follows that U is symmetric with respect to permutations ϕ (σ) ∈ Γ. We want to
upper-bound EU∈Hm,m

[
PrDA(U,n)

[S ∈ Bm,n]
]
. This is simply the probability that, after choosing an m×m

unitary U from Hm,m, applying the M×M unitary ϕ (U) to the basis state |1n〉, and then measuring in
the Fock basis, we obtain an outcome in Gm,n. So

E
U∈Hm,m

[
Pr

DA(U,n)

[S ∈ Bm,n]

]
≤
|Bm,n|
|Gm,n|

<
n2/m

1−n2/m
. (13.12)

Here the first inequality follows from Corollary 13.2 together with the fact that 1n ∈ Gm,n, while the
second inequality follows from Proposition 13.3. Since the expectation is in any case at most 1, we
therefore have an upper bound of

min
{

n2/m
1−n2/m

,1
}
≤ 2n2

m
. (13.13)
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[59] J. HÅSTAD: Computational Limitations for Small Depth Circuits. MIT Press, 1987. 18

[60] L. J. STOCKMEYER: The complexity of approximate counting. In Proc. ACM STOC, pp. 118–126,
1983. 32

[61] M. SUDAN: Maximum likelihood decoding of Reed-Solomon codes. In Proc. IEEE FOCS, pp.
164–172, 1996. 86

[62] T. TAO AND V. VU: On the permanent of random Bernoulli matrices. Advances in Mathematics,
220(3):657–669, 2009. arXiv:0804.2362. 11, 75

[63] B. M. TERHAL AND D. P. DIVINCENZO: Classical simulation of noninteracting-fermion quantum
circuits. Phys. Rev. A, 65(032325), 2002. quant-ph/0108010. 16

[64] B. M. TERHAL AND D. P. DIVINCENZO: Adaptive quantum computation, constant-depth circuits
and Arthur-Merlin games. Quantum Information and Computation, 4(2):134–145, 2004. quant-
ph/0205133. 17, 37

[65] S. TODA: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877, 1991.
7, 11, 36

[66] L. TROYANSKY AND N. TISHBY: Permanent uncertainty: On the quantum evaluation of the
determinant and the permanent of a matrix. In Proceedings of PhysComp, 1996. 15

[67] L. G. VALIANT: The complexity of computing the permanent. Theoretical Comput. Sci., 8(2):189–
201, 1979. 15, 33

[68] L. G. VALIANT: Quantum circuits that can be simulated classically in polynomial time. SIAM J.
Comput., 31(4):1229–1254, 2002. Earlier version in STOC’2001. 16

[69] L. VANDERSYPEN, M. STEFFEN, G. BREYTA, C. S. YANNONI, M. H. SHERWOOD, AND I. L.
CHUANG: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic
resonance. Nature, 414:883–887, 2001. quant-ph/0112176. 13

THEORY OF COMPUTING 106

http://dx.doi.org/10.4086/toc


THE COMPUTATIONAL COMPLEXITY OF LINEAR OPTICS

AUTHORS

Scott Aaronson
associate professor
Massachusetts Institute of Technology, Cambridge, MA
aaronson csail mit edu
http://www.scottaaronson.com

Alex Arkhipov
PhD student
Massachusetts Institute of Technology, Cambridge, MA
arkhipov mit edu

ABOUT THE AUTHORS

SCOTT AARONSON received his bachelor’s degree from Cornell University and his PhD
from UC Berkeley. He is known for his blog and for founding the Complexity Zoo. He
publishes often in Theory of Computing.

ALEX ARKHIPOV is a PhD student at MIT. His advisor is Scott Aaronson. His research
interests are in quantum computing and complexity theory.

THEORY OF COMPUTING 107

http://www.scottaaronson.com
http://dx.doi.org/10.4086/toc

	Introduction
	Our Model
	Our Results
	The Exact Case
	The Approximate Case
	The Permanents of Gaussian Matrices

	Experimental Implications
	Related Work

	Preliminaries
	Complexity Classes
	Sampling and Search Problems

	The Noninteracting-Boson Model of Computation
	Physical Definition
	Polynomial Definition
	Permanent Definition
	Bosonic Complexity Theory

	Efficient Classical Simulation of Linear Optics Collapses PH
	Basic Result
	Alternate Proof Using KLM
	Strengthening the Result

	Main Result
	Truncations of Haar-Random Unitaries
	Hardness of Approximate BosonSampling
	Implications

	Experimental Prospects
	The Generalized Hong-Ou-Mandel Dip
	Physical Resource Requirements
	Reducing the Size and Depth of Optical Networks

	Reducing GPE to "026A30C GPE"026A30C 2
	The Distribution of Gaussian Permanents
	Numerical Data
	The Analogue for Determinants
	Weak Version of the PACC

	The Hardness of Gaussian Permanents
	Evidence That GPE Is #P-Hard
	The Barrier to Proving the PGC

	Open Problems
	Appendix: The Symmetric Product
	Appendix: Positive Results for Simulation of Linear Optics
	Appendix: The Bosonic Birthday Paradox
	Acknowledgments
	References

