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ABSTRACT
We give new evidence that quantum computers—moreover,
rudimentary quantum computers built entirely out of linear-
optical elements—cannot be efficiently simulated by classical
computers. In particular, we define a model of computa-
tion in which identical photons are generated, sent through
a linear-optical network, then nonadaptively measured to
count the number of photons in each mode. This model
is not known or believed to be universal for quantum com-
putation, and indeed, we discuss the prospects for realizing
the model using current technology. On the other hand,
we prove that the model is able to solve sampling problems
and search problems that are classically intractable under
plausible assumptions.

Our first result says that, if there exists a polynomial-time
classical algorithm that samples from the same probability
distribution as a linear-optical network, then P#P = BPPNP,
and hence the polynomial hierarchy collapses to the third
level. Unfortunately, this result assumes an extremely ac-
curate simulation.

Our main result suggests that even an approximate or
noisy classical simulation would already imply a collapse of
the polynomial hierarchy. For this, we need two unproven
conjectures: the Permanent-of-Gaussians Conjecture, which
says that it is #P-hard to approximate the permanent of a
matrix A of independentN (0, 1) Gaussian entries, with high
probability over A; and the Permanent Anti-Concentration
Conjecture, which says that |Per (A)| ≥

√
n!/poly (n) with

high probability over A. We present evidence for these con-
jectures, both of which seem interesting even apart from our
application.
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This paper does not assume knowledge of quantum optics.
Indeed, part of its goal is to develop the beautiful theory of
noninteracting bosons underlying our model, and its con-
nection to the permanent function, in a self-contained way
accessible to theoretical computer scientists.

Categories and Subject Descriptors
F.1.3 [Theory of Computation]: Computation by Ab-
stract Devices—Complexity Measures and Classes

General Terms
Theory

1. INTRODUCTION
The Extended Church-Turing Thesis says that all com-

putational problems that are efficiently solvable by realistic
physical devices, are efficiently solvable by a probabilistic
Turing machine. Ever since Shor’s algorithm [29], we have
known that this thesis is in severe tension with the currently-
accepted laws of physics. One way to state Shor’s discovery
is this:

Predicting the (probabilistic) results of a given
quantum-mechanical experiment, to finite accu-
racy, cannot be done by a classical computer in
probabilistic polynomial time, unless factoring in-
tegers can as well.

As the above formulation makes clear, Shor’s result is not
merely about some hypothetical future in which large-scale
quantum computers are built. It is also a hardness result
for a practical problem. For simulating quantum systems
is one of the central computational problems of modern sci-
ence, with applications from drug design to nanofabrication
to nuclear physics. It has long been a major application of
high-performance computing, and Nobel Prizes have been
awarded for methods (such as the Density Functional The-
ory) to handle special cases. What Shor’s result shows
is that, if we had an efficient, general-purpose solution to
the quantum simulation problem, then we could also break
widely-used cryptosystems such as RSA.

However, as evidence against the Extended Church-Turing
Thesis, Shor’s algorithm has two significant drawbacks. The
first is that, even by the conjecture-happy standards of com-
plexity theory, it is no means settled that factoring is classi-
cally hard. Yes, we believe this enough to base modern



cryptography on it—but as far as anyone knows, factor-
ing could be in BPP without causing any collapse of com-
plexity classes or other disastrous theoretical consequences.
Also, of course, there are subexponential-time factoring al-
gorithms (such as the number field sieve), and few would
express confidence that they cannot be further improved.
And thus, ever since Bernstein and Vazirani [7] defined the
class BQP of quantumly feasible problems, it has been a
dream of quantum computing theory to show (for example)
that, if BPP = BQP, then the polynomial hierarchy would
collapse, or some other “generic, foundational” assumption
of theoretical computer science would fail. In this paper, we
do not quite achieve that dream, but we come closer than
one might have thought possible.

The second, even more obvious drawback of Shor’s algo-
rithm is that implementing it scalably is well beyond current
technology. To run Shor’s algorithm, one needs to be able to
perform arithmetic (including modular exponentiation) on a
coherent superposition of integers encoded in binary. This
does not seem much easier than building a universal quan-
tum computer.1 In particular, it appears one first needs
to solve the problem of fault-tolerant quantum computation,
which is known to be possible in principle if quantum me-
chanics is valid [5, 23], but might require decoherence rates
that are several orders of magnitude below what is achiev-
able today.

Thus, one might suspect that proving a quantum system’s
computational power by having it factor integers encoded in
binary is a bit like proving a dolphin’s intelligence by teach-
ing it to solve arithmetic problems. Yes, with heroic effort,
we can probably do this, and perhaps we have good reasons
to. However, if we just watched the dolphin in its natural
habitat, then we might see it display equal intelligence with
no special training at all.

Following this analogy, we can ask: are there more “natu-
ral” quantum systems that already provide evidence against
the Extended Church-Turing Thesis? Indeed, there are
countless quantum systems accessible to current experiments—
including high-temperature superconductors, Bose-Einstein
condensates, and even just large nuclei and molecules—that
seem intractable to simulate on a classical computer, and
largely for the reason a theoretical computer scientist would
expect: namely, that the dimension of a quantum state in-
creases exponentially with the number of particles. The dif-
ficulty is that it is not clear how to interpret these systems
as solving computational problems. For example, what is
the “input” to a Bose-Einstein condensate? In other words,
while these systems might be hard to simulate, we would
not know how to justify that conclusion using the one for-
mal tool (reductions) that is currently available to us.

So perhaps the real question is this: do there exist quan-
tum systems that are “intermediate” between Shor’s algo-
rithm and a Bose-Einstein condensate—in the sense that

(1) they are significantly closer to experimental reality than
universal quantum computers, but

(2) they can be proved, under plausible complexity as-

1One caveat is a result of Cleve andWatrous [10], that Shor’s
algorithm can be implemented using log-depth quantum cir-
cuits (that is, in BPPBQNC). But even here, fault-tolerance
will presumably be needed, among other reasons because
one still has polynomial latency (the log-depth circuit does
not obey spatial locality constraints).

Figure 1: Galton’s board, a simple “computer”
to output samples from the binomial distribution.
From MathWorld.

sumptions (the more “generic” the better), to be in-
tractable to simulate classically?

In this paper, we will argue that the answer is yes.

1.1 Our Model
Building on earlier work [14, 15, 22, 27, 36], we define and

study a formal model of quantum computation with nonin-
teracting bosons. Physically, our model could be imple-
mented using a linear-optical network, in which n identical
photons pass through a collection of simple optical elements
(beamsplitters and phaseshifters), and are then measured
to determine the number of photons in each location. In
the full version, we give a detailed exposition of the model
that does not presuppose any physics knowledge. For now,
though, it is helpful to imagine a rudimentary “computer”
consisting of n identical balls, which are dropped one by one
into a vertical lattice of pegs, each of which randomly scat-
ters each incoming ball onto one of two other pegs. Such
an arrangement—called Galton’s board—is sometimes used
in science museums to illustrate the binomial distribution
(see Figure 1). The “input” to the computer is the exact
arrangement A of the pegs, while the“output” is the number
of balls that have landed at each location on the bottom (or
rather, a sample from the joint distribution DA over these
numbers). There is no interaction between pairs of balls.

Our model is essentially the same as that shown in Figure
1, except that instead of identical balls, we use identical
bosons governed by quantum statistics. Other differences
are that, in our model, the “balls” are each dropped from
different starting locations, rather than a single location; and
the “pegs,” rather than being arranged in a regular lattice,
can be arranged arbitrarily to encode a problem of interest.

Mathematically, the key point about our model is that,
to find the probability of any particular output of the com-
puter, one needs to calculate the permanent of an n × n
matrix. This can be seen even in the classical case: sup-
pose there are n balls and n final locations, and ball i has
probability aij of landing at location j. Then the probabil-
ity of one ball landing in each of the n locations is

Per (A) =
∑

σ∈Sn

n
∏

i=1

aiσ(i),

where A = (aij)i,j∈[n]. Of course, in the classical case, the
aij ’s are nonnegative real numbers—which means that we
can approximate Per (A) in probabilistic polynomial time,



by using the celebrated algorithm of Jerrum, Sinclair, and
Vigoda [18]. In the quantum case, by contrast, the aij ’s are
complex numbers. And it is not hard to show that, given
a general matrix A ∈ C

n×n, even approximating Per (A) to
within a constant factor is #P-complete. This fundamental
difference between nonnegative and complex matrices is the
starting point for everything we do in this paper.

It is not hard to show that a boson computer can be simu-
lated by a “standard” quantum computer (that is, in BQP).
But the other direction seems extremely unlikely—indeed,
it even seems unlikely that a boson computer can do uni-
versal classical computation! Nor do we have any evidence
that a boson computer could factor integers, or solve any
other decision or promise problem not in BPP. However,
if we broaden the notion of a computational problem to en-
compass sampling and search problems, then the situation
is quite different.

1.2 Our Results
In this paper we study BosonSampling: the problem of

sampling, either exactly or approximately, from the output
distribution of a boson computer. Our goal is to give ev-
idence that this problem is hard for a classical computer.
Crucially, we cannot simply appeal to the fact that the per-
manent is #P-complete, since estimating the permanent of a
given matrix via a linear-optical experiment would generally
involve estimating an exponentially-small amplitude, which
would require repeating the experiment an exponential num-
ber of times. Instead, we need to study BosonSampling
as a new problem requiring new hardness arguments.

Our main results fall into three categories:

(1) Hardness results for exactBosonSampling, which give
an essentially complete picture of that case.

(2) Hardness results for approximate BosonSampling, which
depend on plausible conjectures about the permanents
of i.i.d. Gaussian matrices.

(3) A program aimed at understanding and proving the
conjectures.

We now discuss these in turn.

1.2.1 The Exact Case
Our first (easy) result says the following.

Theorem 1. The exact BosonSampling problem is not
efficiently solvable by a classical computer, unless P#P =
BPPNP and the polynomial hierarchy collapses to the third
level.

More generally, let O be any oracle that “simulates boson
computers,” in the sense that O takes as input a random
string r (which O uses as its only source of randomness)
and a description of a boson computer A, and returns a sam-
ple OA (r) from the probability distribution DA over possible

outputs of A. Then P#P ⊆ BPPNPO

.

In particular, even if the exact BosonSampling problem
were solvable by a classical computer with an oracle for a PH

problem, Theorem 1 would still imply that P#P ⊆ BPPPH—
and therefore that the polynomial hierarchy would collapse,
by Toda’s Theorem [35]. This provides evidence that quan-
tum computers have capabilities outside the entire polyno-
mial hierarchy, complementing the recent evidence of Aaron-
son [2] and Fefferman and Umans [11].

At least for a computer scientist, it is tempting to inter-
pret Theorem 1 as saying that “the exact BosonSampling
problem is #P-hard under BPPNP-reductions.” Notice that
this would have a shocking implication: that quantum com-
puters (indeed, quantum computers of a particularly simple
kind) could efficiently solve a #P-hard problem!

There is a catch, though, arising from the fact thatBoson-
Sampling is a sampling problem rather than a decision
problem. Namely, if O is an oracle for sampling from the
boson distribution DA, then Theorem 1 shows that P#P ⊆
BPPNPO

—but only if the BPPNP machine gets to fix the ran-
dom bits used by O. This condition is clearly met if O is
a classical randomized algorithm, since we can always inter-
pret a randomized algorithm as just a deterministic algo-
rithm that takes a random string r as part of its input. On
the other hand, the condition would not be met if we imple-
mented O (for example) using the boson computer itself. In
other words, our “reduction” from #P-complete problems to
BosonSampling makes essential use of the hypothesis that
we have a classical BosonSampling algorithm.

In the full version, we give two proofs of Theorem 1. In
the first proof, we consider the probability p of some partic-
ular basis state when a boson computer is measured. We
then prove two facts:

(1) Even approximating p to within a multiplicative con-
stant is a #P-hard problem.

(2) If we had a polynomial-time classical algorithm for
exact BosonSampling, then we could approximate p
to within a multiplicative constant in the class BPPNP,
by using a standard technique called universal hashing.

Combining facts (1) and (2), we find that, if the classical
BosonSampling algorithm exists, then P#P = BPPNP, and
therefore the polynomial hierarchy collapses.

Our second proof was inspired by independent work of
Bremner, Jozsa, and Shepherd [8]. In this proof, we start
with a result of Knill, Laflamme, and Milburn [22], which
says that linear optics with adaptive measurements is uni-
versal for BQP. A straightforward modification of their con-
struction shows that linear optics with postselected measure-
ments is universal for PostBQP (that is, quantum polynomial-
time with postselection on possibly exponentially-unlikely
measurement outcomes). Furthermore, Aaronson [1] showed
that PostBQP = PP. On the other hand, if a classical
BosonSampling algorithm existed, then we will show that
we could simulate postselected linear optics in PostBPP (that
is, classical polynomial-time with postselection, also called
BPPpath). We would therefore get

BPPpath = PostBPP = PostBQP = PP,

which is known to imply a collapse of the polynomial hier-
archy.

Despite the simplicity of the above arguments, there is
something conceptually striking about them. Namely, start-
ing from an algorithm to simulate quantum mechanics, we
get an algorithm2 to solve #P-complete problems—even though
solving #P-complete problems is believed to be well beyond
what a quantum computer itself can do! Of course, one
price we pay is that we need to talk about sampling prob-
lems rather than decision problems. If we do so, though,

2Admittedly, a BPPNP algorithm.



then we get to base our belief in the power of quantum com-
puters on P#P 6= BPPNP, which is a much more “generic”
(many would say safer) assumption than Factoring/∈ BPP.

As we see it, the central drawback of Theorem 1 is that it
only addresses the consequences of a fast classical algorithm
that exactly samples the boson distribution DA. One can
relax this condition slightly: if the oracle O samples from
some distribution D′

A whose probabilities are all multiplica-
tively close to those in DA, then we still get the conclusion

that P#P ⊆ BPPNPO

. In our view, though, multiplicative
closeness is already too strong an assumption. At a mini-
mum, given as input an error parameter ε > 0, we ought to
let our simulation algorithm sample from some distribution
D′

A such that ‖D′
A −DA‖ ≤ ε (where ‖·‖ represents total

variation distance), using poly (n, 1/ε) time.
Why are we so worried about this issue? One obvious

reason is that noise, decoherence, photon losses, etc. will be
unavoidable features in any real implementation of a boson
computer. As a result, not even the boson computer itself
can sample exactly from the distribution DA! So it seems
arbitrary and unfair to require this of a classical simulation
algorithm.

A second, more technical reason to allow error is that
later, we would like to show that a boson computer can
solve classically-intractable search problems, in addition to
sampling problems. However, while Aaronson [3] proved an
extremely general connection between search problems and
sampling problems, that connection only works for approxi-
mate sampling, not exact sampling.

The third, most fundamental reason to allow error is that
the connection we are claiming, between quantum comput-
ing and #P-complete problems, is so counterintuitive. One’s
first urge is to dismiss this connection as an artifact of poor
modeling choices. So the burden is on us to demonstrate
the connection’s robustness.

Unfortunately, the proof of Theorem 1 fails completely
when we consider approximate sampling algorithms. The
reason is that the proof hinges on the #P-completeness of es-
timating a single, exponentially-small probability p. Thus,
if a sampler “knew” which p we wanted to estimate, then
it could adversarially choose to corrupt that p. It would
still be a perfectly good approximate sampler, but would no
longer reveal the solution to the #P-complete instance that
we were trying to solve.

1.2.2 The Approximate Case
To get around the above problem, we need to argue that

a boson computer can sample from a distribution D that
“robustly” encodes the solution to a #P-complete problem.
This means intuitively that, even if a sampler was badly
wrong about any ε fraction of the probabilities in D, the
remaining 1 − ε fraction would still allow the #P-complete
problem to be solved.

It is well-known that there exist #P-complete problems
with worst-case/average-case equivalence, and that one ex-
ample of such a problem is the permanent, at least over
finite fields. This is a reason for optimism that the sort of
robust encoding we need might be possible. Indeed, it was
precisely our desire to encode the “robustly #P-complete”
permanent function into a quantum computer’s amplitudes
that led us to study the noninteracting-boson model in the
first place. That this model also has great experimental
interest simply came as a bonus.

In this paper, our main technical contribution is to prove
a connection between the ability of classical computers to
solve the approximate BosonSampling problem and their
ability to approximate the permanent. This connection “al-
most” shows that even approximate classical simulation of
boson computers would imply a collapse of the polynomial
hierarchy. There is still a gap in the argument, but it has
nothing to do with quantum computing. The gap is simply
that it is not known, at present, how to extend the worst-
case/average-case equivalence of the permanent from finite
fields to suitably analogous statements over the reals or com-
plex numbers. We show that, if this gap can be bridged,
then there exist search problems and approximate sampling
problems that are solvable in polynomial time by a boson
computer, but not by a BPP machine unless P#P = BPPNP.

More concretely, consider the following problem, where
the GPE stands for Gaussian Permanent Estimation:

Problem 2 (|GPE|2±). Given as input a matrix X ∼

N (0, 1)n×n
C

of i.i.d. Gaussians, together with error bounds

ε, δ > 0, estimate |Per (X)|2 to within additive error ±ε ·n!,
with probability at least 1 − δ over X, in poly (n, 1/ε, 1/δ)
time.

Then our main result is the following.

Theorem 3 (Main Result). Let DA be the probabil-
ity distribution sampled by a boson computer A. Suppose
there exists a classical algorithm C that takes as input a de-
scription of A as well as an error bound ε, and that samples
from a probability distribution D′

A such that ‖D′
A −DA‖ ≤ ε

in poly (|A| , 1/ε) time. Then the |GPE|2± problem is solv-

able in BPPNP. Indeed, if we treat C as a black box, then

|GPE|2± ∈ BPPNPC

.

In proving Theorem 3, the key idea is to “smuggle” the
|GPE|2± instance X that we want to solve into the probabil-
ity of a random output of a boson computer A. That way,
even if the classical sampling algorithm C is adversarial, it
will not know which of the exponentially many probabilities
in DA is the one we care about. And therefore, provided
C correctly approximates most probabilities in DA, with
high probability it will correctly approximate “our” proba-
bility, and will therefore allow |Per (X)|2 to be estimated in
BPPNP.

Besides this conceptual step, the proof of Theorem 3 also
contains a technical component that might find other appli-
cations in quantum information. This is that, if we choose
an m×m unitary matrix U randomly according to the Haar
measure, then any n × n submatrix of U will be close in
variation distance to a matrix of i.i.d. Gaussians, provided
that n ≤ m1/6. Indeed, the fact that i.i.d. Gaussian ma-
trices naturally arise as submatrices of Haar unitaries is the
reason why we are so interested in Gaussian matrices in this
paper, rather than Bernoulli matrices or other well-studied
ensembles.

In our view, Theorem 3 already shows that fast, approxi-
mate classical simulation of boson computers would have a
surprising complexity consequence. For notice that, if X ∼

N (0, 1)n×n
C

is a complex Gaussian matrix, then Per (X) is
a sum of n! complex terms, almost all of which usually can-
cel each other out, leaving only a tiny residue exponentially
smaller than n!. A priori, there seems to be little reason
to expect that residue to be approximable in the polynomial
hierarchy, let alone in BPPNP.



1.2.3 The Permanents of Gaussian Matrices
One could go further, though, and speculate that estimat-

ing Per (X) for Gaussian X is actually #P-hard. We call
this the Permanent-of-Gaussians Conjecture, or PGC.3 We
prefer to state the PGC using a more“natural”variant of the
Gaussian Permanent Estimation problem than |GPE|2±.
The more natural variant talks about estimating Per (X) it-
self, rather than |Per (X)|2, and also asks for a multiplicative
rather than additive approximation.

Problem 4 (GPE×). Given as input a matrix X ∼

N (0, 1)n×n
C

of i.i.d. Gaussians, together with error bounds
ε, δ > 0, estimate Per (X) to within error ±ε·|Per (X)|, with
probability at least 1− δ over X, in poly (n, 1/ε, 1/δ) time.

Then the main complexity-theoretic challenge we offer is
to prove or disprove the following:

Conjecture 5. (Permanent-of-Gaussians Conjecture
or PGC) GPE× is #P-hard. In other words, if O is any
oracle that solves GPE×, then P#P ⊆ BPPO.

Of course, a question arises as to whether one can bridge
the gap between the |GPE|2± problem that appears in Theo-
rem 3, and the more “natural”GPE× problem used in Con-
jecture 5. We are able to do so assuming another conjecture,
this one an extremely plausible anti-concentration bound for
the permanents of Gaussian random matrices.

Conjecture 6. (Permanent Anti-Concentration Con-
jecture or PACC) There exists a polynomial p such that
for all n and δ > 0,

Pr
X∼N (0,1)n×n

C

[

|Per (X)| <
√
n!

p (n, 1/δ)

]

< δ.

In the full version, we give a complicated reduction that
proves the following:

Theorem 7. Suppose the PACC holds. Then |GPE|2±
and GPE× are polynomial-time equivalent.

Figure 2 summarizes the overall structure of our hardness
argument for approximate BosonSampling.

The rest of our main results aim at a better understanding
of Conjectures 5 and 6.

First, we give considerable evidence for the Permanent
Anti-Concentration Conjecture. This includes numerical
results (see Figure 3); a weaker anti-concentration bound for
the permanent recently proved by Tao and Vu [32]; another
weaker bound that we prove; and the analogue of Conjecture
6 for the determinant.

Next, we examine the less certain state of affairs regard-
ing the Permanent-of-Gaussians Conjecture. On the one
hand, we extend the random self-reducibility of permanents
over finite fields proved by Lipton [25], to show that ex-
actly computing the permanent of most Gaussian matrices
X ∼ N (0, 1)n×n

C
is #P-hard. On the other hand, we also

show that extending this result further, to show that approx-
imating Per (X) for Gaussian X is #P-hard, will require go-
ing beyond Lipton’s polynomial interpolation technique in a
fundamental way.

3The name is a pun on the well-known Unique Games Con-
jecture (UGC), which says that a certain approximation
problem that “ought” to be NP-hard really is NP-hard.

Figure 2: Summary of our hardness argument (mod-
ulo conjectures).

 

 

 

 

 

Figure 3: Probability density functions of Dn :=
|Det (X)|2 /n! and Pn := |Per (X)|2 /n!, where X ∼ Gn×n

is a Gaussian random matrix and n = 6. Note that
E [Dn] = E [Pn] = 1 and that the tails continue in-
finitely to the right.

Let us mention a few additional results that are in the full
version. First, we present two remarkable algorithms due
to Gurvits [16] (with Gurvits’s kind permission) for solving
certain problems related to linear-optical networks in classi-
cal polynomial time. We also explain why these algorithms
do not conflict with our hardness conjecture. Second, we
prove a useful fact that is implicit in our proof of Theorem
3, but seems to deserve its own treatment. This is that, if
we have n identical bosons scattered among m ≫ n2 loca-
tions, with no two bosons in the same location, and if we
apply a Haar-random m×m unitary transformation U and
then measure the number of bosons in each location, with
high probability we will still not find two bosons in the same
location. In other words, at least asymptotically, the birth-
day paradox works the same way for identical bosons as for
classical particles, in spite of bosons’ well-known tendency
to cluster in the same state.

1.3 Experimental Implications
An important motivation for our results is that they im-

mediately suggest a linear-optics experiment, which would
use simple optical elements (beamsplitters and phaseshifters)
to induce a Haar-random m×m unitary transformation U
on an input state of n photons, and would then check that
the probabilities of various final states of the photons corre-
spond to the permanents of n× n submatrices of U , as pre-
dicted by quantum mechanics. Were such an experiment
successfully scaled to large numbers of photons n, Theo-
rem 3 asserts that no polynomial-time classical algorithm
could simulate the experiment even approximately, unless
|GPE|2± ∈ BPPNP.



Of course, the question arises of how large n has to be
before one can draw interesting conclusions. An obvious
difficulty is that no finite experiment can hope to render
a decisive verdict on the Extended Church-Turing Thesis,
since the ECT is a statement about the asymptotic limit as
n → ∞. Indeed, this problem is actually worse for us than
for (say) Shor’s algorithm, since unlike with Factoring, we
do not believe there is any NP witness for BosonSampling.
In other words, if n is large enough that a classical computer
cannot solve BosonSampling, then n is probably also large
enough that a classical computer cannot even verify that a
quantum computer is solving BosonSampling correctly.

Yet while this sounds discouraging, it is not really an is-
sue from the perspective of near-term experiments. For
the foreseeable future, n being too large is likely to be the
least of one’s problems! If one could implement our ex-
periment with (say) 20 ≤ n ≤ 30, then certainly a clas-
sical computer could verify the answers—but at the same
time, one would be getting direct evidence that a quantum
computer could efficiently solve an “interestingly difficult”
problem, one for which the best-known classical algorithms
require many millions of operations. While disproving the
Extended Church-Turing Thesis is formally impossible, such
an experiment would arguably constitute the strongest evi-
dence against the ECT to date.

But the reader might be wondering: what, if any, are
the advantages of doing our experiment, as opposed simply
to building a somewhat larger “conventional” quantum com-
puter, able (for example) to factor 10-digit numbers using
Shor’s algorithm? While a full answer to this question will
need to await detailed analysis by experimentalists, let us
mention four aspects of BosonSampling that might make
it attractive for quantum computing experiments.

(1) Our proposal does not require any explicit coupling
between pairs of photons. It therefore bypasses what has
long been seen as one of the central technological obstacles
to building a scalable quantum computer: namely, how to
make arbitrary pairs of particles “talk to each other” (e.g.,
via two-qubit gates), in a manner that still preserves the
particles’ coherence. One might ask how there is any possi-
bility of a quantum speedup, if the particles are never entan-
gled. The answer is that, because of the way boson statistics
work, every two identical photons are somewhat entangled
“for free,” in the sense that the amplitude for any process
involving both photons includes contributions in which the
photons swap their states. This “free” entanglement is the
only kind that our model ever uses.

(2) Photons traveling through linear-optical networks are
known to have some of the best coherence properties of any
quantum system accessible to current experiments. From
a “traditional” quantum computing standpoint, the disad-
vantages of photons are that they have no direct coupling
to one another, and also that they are extremely difficult to
store (they are, after all, traveling at the speed of light).
There have been ingenious proposals for working around
these problems, including the schemes of Knill, Laflamme,
and Milburn [22] and Gottesman, Kitaev, and Preskill [14],
both of which require the additional resource of adaptive
measurements. By contrast, rather than trying to remedy
photons’ disadvantages as qubits, our proposal simply never
uses photons as qubits at all, and thereby gets the coher-
ence advantages of linear optics without having to address
the disadvantages.

(3) To implement Shor’s algorithm, one needs to perform
modular arithmetic on a coherent superposition of integers
encoded in binary. Unfortunately, this requirement causes
significant constant blowups, and helps to explain why the
“world record” for implementations of Shor’s algorithm is
still the factoring of 15 into 3×5, first demonstrated in 2001
[39]. By contrast, because the BosonSampling problem
is so close to the “native physics” of linear-optical networks,
an n-photon experiment corresponds directly to a problem
instance of size n, which involves the permanents of n × n
matrices. This raises the hope that, using current technol-
ogy, one could sample quantum-mechanically from a distri-
bution in which the probabilities depended (for example) on
the permanents of 10× 10 matrices of complex numbers.

(4) The resources that our experiment does demand—
including reliable single-photon sources and photodetector
arrays—are ones that experimentalists, for their own rea-
sons, have devoted large and successful efforts to improving
within the past decade. We see every reason to expect
further improvements.

In implementing our experiment, the central difficulty is
likely to be getting a reasonably-large probability of an n-
photon coincidence: that is, of all n photons arriving at
the photodetectors at the same time (or rather, within a
short enough time interval that interference is seen). If the
photons arrive at different times, then they effectively be-
come distinguishable particles, and the experiment no longer
solves the BosonSampling problem. Of course, one solu-
tion is simply to repeat the experiment many times, then
postselect on the n-photon coincidences. However, if the
probability of an n-photon coincidence decreases exponen-
tially with n, then this “solution” has obvious scalability
problems.

If one could scale our experiment to moderately large
values of n (say, 10 or 20), without the probability of an
n-photon coincidence falling off dramatically, then our ex-
periment would raise the exciting possibility of doing an
interestingly-large quantum computation without any need
for explicit quantum error-correction. Whether or not this
is feasible is the main open problem we leave for experimen-
talists.

The full version goes into more detail about the physical
resource requirements for our proposed experiment, as well
as how one would interpret the results. We also show there
that the size and depth of the linear-optical network needed
for our experiment can both be improved by polynomial
factors over the näıve bounds.

1.4 Related Work
By necessity, this paper brings together many ideas from

quantum computing, optical physics, and computational com-
plexity. In this section, we try to survey the large relevant
literature, organizing it into eight categories.

Quantum computing with linear optics. There is
a huge body of work, both experimental and theoretical,
on quantum computing with linear optics. Much of that
work builds on a seminal 2001 result of Knill, Laflamme,
and Milburn [22], showing that linear optics combined with
adaptive measurements is universal for quantum computa-
tion. It is largely because of that result—as well as an
alternative scheme due to Gottesman, Kitaev, and Preskill



[14]—that linear optics is considered a viable proposal for
building a universal quantum computer.4

In the opposite direction, several interesting classes of
linear-optics experiments are known to be efficiently sim-
ulable on a classical computer. First, it is easy to show
that a linear-optical network with coherent-state inputs, and
possibly-adaptive demolition measurements in the photon-
number basis, can be simulated in classical polynomial time.
Intuitively, a coherent state—the output of a standard laser—
is a superposition over different numbers of photons that
behaves essentially like a classical wave. Also, a demoli-
tion measurement is one that only returns the classical mea-
surement outcome, and not the post-measurement quantum
state.

Second, Bartlett and Sanders [6] showed that a linear-
optical network with Gaussian-state inputs and possibly-
adaptive Gaussian nondemolition measurements can be sim-
ulated in classical polynomial time. Here a Gaussian state
is an entangled generalization of a coherent state, and is
also relatively easy to produce experimentally. A Gaussian
nondemolition measurement is a measurement of a Gaus-
sian state whose outcome is also Gaussian. This result of
Bartlett and Sanders can be seen as the linear-optical ana-
logue of the Gottesman-Knill Theorem (see [4]).

Third, Gurvits [16] showed that, in any n-photon linear-
optical experiment, the probability of measuring a particu-
lar basis state can be estimated to within ±ε additive error
in poly (n, 1/ε) time.5 He also showed that the marginal
distribution over any k photon modes can be computed de-
terministically in nO(k) time. We discuss Gurvits’s results
in detail in the full version.

Our model seems to be intermediate between the extremes
of quantum universality and classical simulability. Unlike
Knill et al. [22], we do not allow adaptive measurements,
and as a result, our model is probably not BQP-complete.
On the other hand, unlike Bartlett and Sanders, we do al-
low single-photon inputs and (nonadaptive) photon-number
measurements; and unlike Gurvits [16], we consider sam-
pling from the joint distribution over all poly (n) photon
modes. Our main result gives evidence that the resulting
model, while possibly easier to implement than a universal
quantum computer, is still intractable to simulate classically.

Intermediate models of quantum computation. By
now, several interesting models of quantum computation
have been proposed that are neither known to be universal
for BQP, nor simulable in classical polynomial time. A few
examples, besides the ones mentioned elsewhere in the pa-
per, are the “one-clean-qubit”model of Knill and Laflamme
[21]; the permutational quantum computing model of Jor-
dan [19]; and stabilizer circuits with non-stabilizer initial

4An earlier proposal for building a universal optical quan-
tum computer was to use nonlinear optics: in other words,
explicit entangling interactions between pairs of photons.
(See Nielsen and Chuang [26] for discussion.) The problem
is that, at least at low energies, photons have no direct cou-
pling to one another. It is therefore necessary to use other
particles as intermediaries, which greatly increases decoher-
ence, and negates many of the advantages of using photons
in the first place.
5While beautiful, this result is of limited use in practice—
since in a typical linear-optics experiment, the probability p
of measuring any specific basis state is so small that 0 is a
good additive estimate to p.

Figure 4: The Hong-Ou-Mandel dip.

states (such as cos π
8
|0〉 + sin π

8
|0〉) and nonadaptive mea-

surements [4]. The noninteracting-boson model is another
addition to this list.

The Hong-Ou-Mandel dip. In 1987, Hong, Ou, and
Mandel [17] performed a now-standard experiment that, in
essence, directly confirms that two-photon amplitudes corre-
spond to 2×2 permanents in the way predicted by quantum
mechanics. In more detail, two identical photons, which
were initially in different locations, become correlated after
passing through a beamsplitter that applies the Hadamard
transformation (see Figure 4). Formally, the basis state |1, 1〉
evolves to

|2, 0〉 − |0, 2〉√
2

,

so that a subsequent measurement reveals either both pho-
tons in the first location or else both photons in the second
location. The reason the amplitude of the basis state |1, 1〉
“dips” to 0 is that

Per

(

1√
2

1√
2

1√
2

− 1√
2

)

= 0,

and hence there is destructive interference between the two
paths mapping |1, 1〉 to itself. From an experimental per-
spective, what we are asking for could be seen as a gen-
eralization of this “Hong-Ou-Mandel dip” to the n-photon
case, where n is as large as possible. Lim and Beige [24]
previously proposed an n-photon generalization of the Hong-
Ou-Mandel dip, but without the computational complexity
motivation.

Bosons and the permanent. Bosons are one of the
two basic types of particle in the universe; they include
photons and the carriers of nuclear forces. It has been
known since work by Caianiello [9] in 1953 (if not earlier)
that the amplitudes for n-boson processes can be written as
the permanents of n× n matrices. Meanwhile, Valiant [37]
proved in 1979 that the permanent is #P-complete. In-
terestingly, according to Valiant (personal communication),
he and others put these two facts together immediately, and
wondered what they might mean for the computational com-
plexity of simulating bosonic systems. To our knowledge,
however, the first authors to discuss this question in print
were Troyansky and Tishby [36] in 1996. Given an arbi-
trary matrix A ∈ C

n×n, these authors showed how to con-
struct a quantum observable with expectation value equal to



Per (A). However, they correctly pointed out that this did
not imply a polynomial-time quantum algorithm to calcu-
late Per (A), since the variance of their observable was large
enough that exponentially many samples would be needed.
Later, Scheel [27] explained how permanents arise as am-
plitudes in linear-optical networks, and noted that calcula-
tions involving linear-optical networks might be intractable
because the permanent is #P-complete.

Fermions and the determinant. Besides bosons, the
other basic particles in the universe are fermions; these in-
clude matter particles such as quarks and electrons. Re-
markably, the amplitudes for n-fermion processes are given
not by permanents but by determinants of n × n matri-
ces. Despite the similarity of their definitions, it is well-
known that the permanent and determinant differ dramat-
ically in their computational properties; the former is #P-
complete while the latter is in P. In a lecture in 2000,
Wigderson called attention to this striking connection be-
tween the boson/fermion dichotomy of physics and the per-
manent/determinant dichotomy of computer science. He
joked that, between bosons and fermions, “the bosons got
the harder job.” One could view this paper as a formaliza-
tion of Wigderson’s joke.

To be fair, half the work of formalizing Wigderson’s joke
has already been carried out. In 2002, Valiant [38] defined a
beautiful subclass of quantum circuits called matchgate cir-
cuits, and showed that these circuits could be efficiently sim-
ulated classically, via a nontrivial algorithm that ultimately
relied on computing determinants.6 Shortly afterward, Ter-
hal and DiVincenzo [33] (see also Knill [20]) pointed out that
matchgate circuits were equivalent to systems of noninter-
acting fermions7: in that sense, one could say Valiant had
“rediscovered fermions”! Indeed, Valiant’s matchgate model
can be seen as the direct counterpart of the model studied in
this paper, but with noninteracting fermions in place of non-
interacting bosons.8 At a very high level, Valiant’s model
is easy to simulate classically because the determinant is in
P, whereas our model is hard to simulate because the per-
manent is #P-complete.

Ironically, when the quantum Monte Carlo method is used
to approximate the ground states of many-body systems,
the computational situation regarding bosons and fermions
is reversed. Bosonic ground states tend to be easy to
approximate because one can exploit non-negativity, while
fermionic ground states tend to be hard to approximate be-
cause of cancellations between positive and negative terms,
what physicists call “the sign problem.”

Quantum computing and #P-complete problems.
Since amplitudes in quantum mechanics are the sums of ex-
ponentially many complex numbers, it is natural to look for

6Or rather, a closely-related matrix function called the Pfaf-
fian.
7Strictly speaking, unitary matchgate circuits are equivalent
to noninteracting fermions (Valiant also studied matchgates
that violated unitarity).
8However, the noninteracting-boson model is somewhat
more complicated to define, since one can have multiple
bosons occupying the same mode, whereas fermions are pro-
hibited from this by the Pauli exclusion principle. This is
why the basis states in our model are lists of nonnegative in-
tegers, whereas the basis states in Valiant’s model are binary
strings.

some formal connection between quantum computing and
the class #P of counting problems. In 1993, Bernstein and
Vazirani [7] proved that BQP ⊆ P#P. However, this result
says only that #P is an upper bound on the power of quan-
tum computation, so the question arises of whether solving
#P-complete problems is in any sense necessary for simu-
lating quantum mechanics.

To be clear, we do not expect that BQP = P#P; indeed,
it would be a scientific revolution even if BQP were found
to contain NP. However, already in 1999, Fenner, Green,
Homer, and Pruim [12] noticed that, if we ask more refined
questions about a quantum circuit than whether it accepts
with probability greater than 2/3 or less than 1/3, then we
can quickly encounter #P-completeness. In particular, Fen-
ner et al. showed that deciding whether a quantum circuit
accepts with nonzero or zero probability is complete for the
complexity class coC=P. Since P#P ⊆ NPcoC

=
P, this means

that the problem is #P-hard under nondeterministic reduc-
tions.

Later, Aaronson [1] defined the class PostBQP, or quan-
tum polynomial-time with postselection on possibly exponentially-
unlikely measurement outcomes. He showed that PostBQP

is equal to the classical class PP. Since PPP = P#P, this
says that quantum computers with postselection can already
solve #P-complete problems. Following [8], in the full ver-
sion we use the PostBQP = PP theorem to give an alterna-
tive proof of Theorem 1, which does not require using the
#P-completeness of the permanent.

Quantum speedups for sampling and search prob-
lems. Ultimately, we want a hardness result for simulating
real quantum experiments, rather than postselected ones.
To achieve that, a crucial step in this paper is to switch
attention from decision problems to sampling and search
problems. The value of that step in a quantum computing
context was recognized in several previous works.

In 2008, Shepherd and Bremner [28] defined and studied
a fascinating subclass of quantum computations, which they
called“commuting”or“temporally-unstructured.” Their model
is probably not universal for BQP, and there is no known
example of a decision problem solvable by their model that
is not also in BPP. However, if we consider sampling prob-
lems or interactive protocols, then Shepherd and Bremner
plausibly argued (without formal evidence) that their model
might be hard to simulate classically.

Recently, and independently of us, Bremner, Jozsa, and
Shepherd [8] showed that commuting quantum computers
can sample from probability distributions that cannot be ef-
ficiently sampled classically, unless PP = BPPpath and hence
the polynomial hierarchy collapses to the third level. This is
analogous to our Theorem 1, except with commuting quan-
tum computations instead of noninteracting-boson ones.

Previously, in 2002, Terhal and DiVincenzo [34] showed
that constant-depth quantum circuits can sample from prob-
ability distributions that cannot be efficiently sampled by a
classical computer, unless BQP ⊆ AM. By using our argu-
ments and Bremner et al.’s [8], it is not hard to strengthen
Terhal and DiVincenzo’s conclusion, to show that exact clas-
sical simulation of their model would also imply PP = PostBQP =
BPPpath, and hence that the polynomial hierarchy collapses.

However, all of these results (including our Theorem 1)
have the drawback that they only address sampling from ex-
actly the same distribution D as the quantum algorithm—or



at least, from some distribution in which all the probabilities
are multiplicatively close to the ideal ones. Indeed, in these
results, everything hinges on the #P-completeness of esti-
mating a single, exponentially-small probability p. For this
reason, such results might be considered “cheats”: presum-
ably not even the quantum device itself can sample perfectly
from the ideal distribution D! What if we allow “realistic
noise,” so that one only needs to sample from some prob-
ability distribution D′ that is 1/ poly (n)-close to D in to-
tal variation distance? Is that still a classically-intractable
problem? This is the question we took as our starting point.

Oracle results. We know of one previous work that
addressed the hardness of sampling approximately from a
quantum computer’s output distribution. In 2010, Aaron-
son [2] showed that, relative to a random oracle A, quantum
computers can sample from probability distributions D that

are not even approximately samplable in BPPPHA

(that is,
by classical computers with oracles for the polynomial hier-
archy). Relative to a random oracle A, quantum computers

can also solve search problems not in BPPPHA

. The point
of these results was to give the first formal evidence that
quantum computers have “capabilities outside PH.”

For us, though, what is more relevant is a striking fea-
ture of the proofs of these results. Namely, they showed
that, if the sampling and search problems in question were

in BPPPHA

, then (via a nonuniform, nondeterministic reduc-
tion) one could extract small constant-depth circuits for the
2n-bit Majority function, thereby violating the celebrated
circuit lower bounds of H̊astad [31] and others. What made
this surprising was that the 2n-bit Majority function is
#P-complete.9 In other words, even though there is no
evidence that quantum computers can solve #P-complete
problems, somehow we managed to prove the hardness of
simulating a BQP machine by using the hardness of #P.

Of course, a drawback of Aaronson’s results [2] is that they
were relative to an oracle. However, just like Simon’s oracle
algorithm [30] led shortly afterward to Shor’s algorithm [29],
so too in this case one could hope to “reify the oracle”: that
is, find a real, unrelativized problem with the same behavior
that the oracle problem illustrated more abstractly. That
is what we do here.

2. OPEN PROBLEMS
The most exciting challenge we leave is to do the experi-

ment we propose, whether in linear optics or in other physi-
cal systems that contain excitations that behave as identical
bosons. If successful, such an experiment has the potential
to provide the strongest evidence to date for violation of the
Extended Church-Turing Thesis in nature.

We now list a few theoretical open problems.
(1) The most obvious problem is to prove Conjecture 5:

that approximating the permanent of a matrix of i.i.d. Gaus-
sian entries is #P-hard. Failing that, can we prove #P-
hardness for any problem with a similar “flavor” (roughly
speaking, an average-case approximate counting problem
over R or C)? Can we at least find evidence that such
a problem is not in BPPNP?

9Here we are abusing terminology (but only slightly) by
speaking about the #P-completeness of an oracle problem.
Also, strictly speaking we mean PP-complete—but since
PPP = P#P, the distinction is unimportant here.

(2) Another obvious problem is to prove Conjecture 6,

that |Per (X)| almost always exceeds
√
n!/poly (n) for Gaus-

sian random matrices X ∼ N (0, 1)n×n
C

. Failing that, any
progress on understanding the distribution of Per (X) for
Gaussian X would be interesting.

(3) How does the noninteracting-boson model relate to
other models of computation that are believed to be inter-
mediate between BPP and BQP? To give one concrete
question, can every boson computation be simulated by a
qubit-based quantum circuit of logarithmic depth?

(4) Using quantum fault-tolerance techniques, can one de-
crease the effective error in our experiment to 1/ exp (n)—
thereby obviating the need for the mathematical work we
do in this paper to handle 1/poly (n) error in variation dis-
tance? Note that, if one had the resources for universal
quantum computation, then one could easily combine our
experiment with standard fault-tolerance schemes, which are
known to push the effective error down to 1/ exp (n) using
poly (n) computational overhead. So the interesting ques-
tion is whether one can make our experiment fault-tolerant
using fewer resources than are needed for universal quantum
computing—and in particular, whether one can do so using
linear optics alone.

(5) Can we give evidence against not merely an FPTAS
(Fully Polynomial Time Approximation Scheme) for theBoson-
Sampling problem, but an approximate sampling algorithm
that works for some fixed error ε > 1/ poly (n)?

(6) For what other interesting quantum systems, besides
linear optics, do analogues of our hardness results hold? As
mentioned in Section 1.4, the beautiful work of Bremner,
Jozsa, and Shepherd [8] shows that exact simulation of“com-
muting quantum computations” in classical polynomial time
would collapse the polynomial hierarchy. What can we say
about approximate classical simulation of their model?

(7) In this work, we showed that unlikely complexity con-
sequences would follow if classical computers could simu-
late quantum computers on all sampling or search problems:
that is, that SampP = SampBQP or FBPP = FBQP. An
obvious question that remains is, what about decision prob-
lems? Can we derive some unlikely collapse of classical
complexity classes from the assumption that P = BQP or
PromiseP = PromiseBQP?

(8) To what extent do our results relativize? One imme-
diate problem is that we do not even know what it means to
relativize a boson computer! Thus, let us state our results
in terms of universal quantum computers instead. In that

case, our exact result, Theorem 1, says that P#P ⊆ BPPNPO

for every oracle O that samples exactly from the output dis-
tribution of a given quantum circuit. The proof of Theorem
1 is easily seen to relativize. However, we do not know the
situation with our approximate result, Theorem 3. More
concretely, does there exist an oracle A relative to which
FBPP = FBQP but PH is infinite? Currently, the closest
we have to this is a powerful result of Fortnow and Rogers
[13], which gives an oracle A relative to which P = BQP but
PH is infinite. However, it is not even known how to ex-
tend their construction to get an oracle A relative to which
PromiseP = PromiseBQP but PH is infinite.

(9) Is there any plausible candidate for a decision problem
that is efficiently solvable by a boson computer, but not by
a classical computer?

(10) It is not obvious how to convince a skeptic that a
quantum computer is really solving the BosonSampling



problem in a scalable way. This is because, unlike with
(say) Factoring, neither BosonSampling nor any related
problem seems to be in NP. How far can we remedy this?
For example, can a prover with a BosonSampling oracle
prove any nontrivial statements to a BPP verifier via an
interactive protocol?

(11) Is there a polynomial-time classical algorithm to sam-
ple from a probability distribution D′ that cannot be effi-
ciently distinguished from the distribution D sampled by a
boson computer?
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