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As someone who studies quantum computing, I’'m often asked whether | worry
that useful quantum computers will never be built in our lifetimes—and hence,
that all the research devoted to studying these hypothetical devices will have
been wasted. | try to convey that the real reason to study quantum computing
has nothing to do with the distant prospect of building a machine that could
factor 10,000-digit numbers in an instant. Rather, it’s the transformative insights
that we get right now into physics and computation. And there are few better
illustrations of such insights than that provided by the paper of Schuch and
Verstraete.

A central problem of quantum chemistry is to compute the ground states—that is,
the lowest-energy states—of systems of electrons interacting via the Coulomb
force. In this way, one can work out, for example, the spatial configuration of a
molecule. Schuch and Verstraete study the computational difficulty of finding
electron ground states in the framework of Density Functional Theory (DFT). The
achievement of DFT—for which one of its developers, Walter Kohn, received the
1998 Nobel Prize in Chemistry—was to split the problem of computing ground
states into two parts. The first part is to compute or approximate a “universal
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functional” governing the interaction between electrons; this functional is the
same for every molecule with the same number of electrons. The second part is
to minimize the sum of that universal functional and a term that applies to each
electron separately. Because of the counterintuitive nature of quantum
mechanics—wherein the amount of information needed to describe a physical
system increases exponentially with the number of particles—a minimization
problem involving just a single electron can be exponentially easier than one
involving many electrons. Thus, DFT made possible computing the properties of
molecules previously considered beyond reach for even the most powerful

computers.



However, DFT also left a crucial question unanswered: how hard is it to compute
the universal functional? In practice, we know of fairly efficient ways to
approximate this functional, but sometimes those methods break down. Is the
breakdown necessary, or simply a result of insufficient cleverness? While not
giving definitive answers, the modern theory of computational complexity offers a
powerful toolkit for such questions, one that lets us go beyond intuition or trial-
or-error. In particular, we can argue that a problem is hard by showing that it’s
“at least as hard” as hundreds of other problems that have resisted efficient
solution for decades.

This is what Schuch and Verstraete do. Their main result is that minimizing the
energy for a system of N interacting electrons is “QMA-complete.” Intuitively,
this means that the problem is at least as hard as any other problem involving
minimizing energy of a quantum system. If you’re wondering, the QMA stands for
“Quantum Merlin Arthur”: the terminology comes from a thought experiment
wherein an omniscient prover, Merlin, has to provide a skeptical verifier, Arthur,
with a short “proof” (in this case, the ground state of a quantum system) in order
to convince Arthur of the truth of some proposition (in this case, that the ground
state energy is at most some stated value). The proof can be quickly verified once
found (at least by a quantum computer), but it might be fiendishly difficult to find.

Now, minimizing a single-electron energy, given the ability to compute the
Universal Functional, turns out to be easy (in technical terms, it is a convex
optimization problem). And thus, an implication of Schuch and Verstraete’s result
is that we shouldn’t hope for a fast, general-purpose method to compute the
Universal Functional. For if such a method existed, then all QMA problems would
be efficiently solvable, which is considered vanishingly unlikely. Rather, we
should expect that in the worst case, every algorithm to compute the Universal
Functional will take time that scales exponentially with the number of electrons
N.

Admittedly, the same conclusion also follows from a simpler and earlier-known
fact: that minimizing electron energies belongs to the class NP-hard. Roughly
speaking, that’s the class of problems that are at least as hard as the notorious
Traveling Salesman Problem, of finding the shortest route that visits a large



number of cities. NP stands for “Nondeterministic Polynomial-Time”: the class of
problems that might be hard to solve, but for which a solution, once found, can
be efficiently recognized by a classical computer. QMA can be seen as the
quantum generalization of NP. All QMA-hard problems are also NP-hard, but
there are conjectured to be NP-hard problems that are not QMA-hard.

Now, it’s reasonable to ask: once we know a problem is NP-hard, isn’t that hard
enough? NP-hardness already establishes a problem as intractable in the worst
case, at least under the famous “P#ZNP” conjecture. So why go to the additional
step, as Schuch and Verstraete do, of proving the problem QMA-hard?

Here is where things get interesting. Suppose we consider a slight variant of the
electron ground state problem, where we want to minimize the energy over all
pure states, but are not interested in mixed states. In that case, minimizing a
single-electron energy could already be a difficult NP problem. And thus, if we
found a fast algorithm to compute the Universal Functional, the consequence
would be, not to solve QMA problems, but “merely” to make the class QMA equal
to the class NP—which is again considered unlikely. Thus, here we can get
evidence that a practical problem is hard, but only by reasoning about a
hypothetical collapse of “higher-level” computational classes. The conclusion
really does depend on the fine-toothed distinction between QMA and NP,
between quantum proofs and classical proofs.

In important respects, Schuch and Verstraete’s result is illustrative of quantum
information science as a whole. This field does nothing to challenge the laws of
qguantum mechanics—the framework for almost all of physics since the 1920s.
But it does ask a new set of questions about those laws: in this case, “what is the
complexity of computing the DFT Universal Functional?” Because those questions
straddle disciplines, they can look strange at first both to physicists and to
computer scientists. But often enough they’ve turned out to have illuminating
and nontrivial answers.



