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Abstract

This paper proposes an algorithm to aid in the design of
hypertext systems. A numerical index is presented for
rating the organizational efficiency of hypertexts based
on (1) user demand for pages, (2) the relevance of pages
to one another, and (3) the probability that users can
navigate along hypertext paths without getting lost.
Maximizing this index under constraints on the number
of links is proven NP-complete, and a genetic algorithm
is used to search for the optimal link topology. An ex-
periment with computer users provides evidence that a
numerical measure of hypertext efliciency might have
practical value.

1 Introduction

The form of information retrieval called hypertext has
grown vastly in importance over the past few years.
Hypertext, wherein information is organized into pages
containing links to one another, is the basis of not only
the World Wide Web, but also voice-prompt telephony
services; online software documentation; many multi-
media applications; and emerging technologies such as
network computers and interactive television. A large
body of research, since the 1960’s, addresses how to or-
ganize information in hypertext systems so that users
can quickly access the information they want (see [8]).
Riner [13] considers automated methods of converting
reference materials and other structured documents into
hypertext, while Rearick [12] proposes choosing links for
hypertext systems by searching for pages with similar
word patterns. However, previous research has gen-
erally been qualitative, with mathematical activity fo-
cused on the converse problem of finding information

(for instance, [4]). Parunak [11] views hypertexts as
directed graphs, and categorizes patterns of links, but
does not consider algorithms for choosing links auto-
matically.

In this paper, we consider a graph-theoretic model
of hypertext that emphasizes user demand for infor-
mation. We also propose a numerical index for rat-
ing how well-organized a hypertext system is. We
show that rearranging links to maximize this index is
an NP-complete problem. Since finding the absolute
maximum would be too computationally costly, we use
a genetic algorithm to approximate the solution. Fi-
nally, we describe an experiment in which 70 computer
users searched for information using three different ver-
sions of the same hypertext. The results show that the
mathematical model described here might be useful to
hypertext designers, though it does not eliminate the
need for link layout by humans.

2 Definitions

For the purposes of this paper, we will define a hypertext
system by the following: a set of pages P, a degree 0,
and a demand d, for each p € P, a set of virtual links
I', a set of real links R, a set of mandatory links M, a
system degree 0, and an attention-span factor a.

A page (often called a node in the literature), con-
taining information and links to other pages, is the basic
unit of a hypertext system [3, 8].

0, € N represents the maximum number of outgoing
links page p can have. It is useful for a variety of rea-
sons. Bell Laboratories researchers have found that,
when users of a voice-prompt telephony service are pre-
sented with too many options at once, they often forget
the first few [10]. In addition, “personal communi-
cators” and other hand-held consumer electronics may
have display screens that are too small to hold many
links at once. Even without constraints imposed by
the medium, however, hypertext system designers may
restrict the number of outgoing links pages contain; ac-
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Figure 1: The hypertext system diagrammed here con-
tains four real links and six virtual links.

cording to Benjamin [2], “when visitors are given too
many choices at once, they may become overwhelmed,
leave, and never come back.”

The other page-specific constant, d,, > 0, represents
how popular or important the hypertext designer judges
p to be. For a World Wide Web site using a strictly
demand-based model, dy, could be the number of ac-
cesses (or “hits”) that p receives over a representative
period—say, a month. d, could also be determined
through a controlled experiment to gauge user interest
in each page p. Ultimately, the choice is an arbitrary
one that rests with the hypertext designer.

Our definition of a hypertext system also includes
three sets of links: the virtual links I', the real links
R C T, and the mandatory links M C R. A virtual
link is an ordered pair of pages (pq,ps) € T' signifying
that, based on the content of p, and ps, p, could con-
ceivably contain a link to pp. Thus, G = (P, T) forms a
directed graph. The virtual links should be chosen by
the hypertext designer, or someone else who has a thor-
ough knowledge of the hypertext’s content and purpose.
A real link (po,ps) € R C T signifies that p, actually
links to pp in the hypertext system. For the problem
of hypertext optimization as defined here, real links are
the only variables. Figure 1 illustrates the difference
between virtual and real links. To provide hypertext
designers with more flexibility in adding constraints, we
also define a set of mandatory links M C R. If there
is a mandatory link (pg,ps), Pe Mmust link to pp in any
rendition of the hypertext system.

Finally, we define two constants that apply to the
entire hypertext system. The first is the system degree,

0, <> 0y

peEP

representing the total number of real links the hy-
pertext system may have. 6 is useful for regulating
“link density”; when used in conjunction with page de-
grees, it can prevent the user from being overwhelmed
with choices. The second is the attention-span factor

0 < a < 1, which is chosen arbitrarily by the hyper-
text designer (for the experiment described here we use
a =0.7). « is a constant used in computing an index
associated with the hypertext system; it represents the
likelihood that users will follow a path through the sys-
tem without becoming sidetracked. When « is close to
1, systems with paths connecting disparate pages will
be favored; when « is close to 0, systems that link all
closely related pages will be favored. That o may be
chosen arbitrarily, and that it is constant throughout
the hypertext system, are simplifying assumptions used
in our model.

3 The Organizational Index

Our goal is to rearrange links to maximize hypertext
efficiency. Before we can do this, however, we need a
numerical measure of hypertext efficiency: an index cor-
responding to how well-organized, or easy to navigate, a
hypertext system is. Here, we present one such index.
In Section 5, we present empirical evidence indicating
that it is indeed a meaningful measure of hypertext sys-
tem organization.

Benjamin [2] advises World Wide Web site designers:
“Don’t make people click through too many successive
pages to get from point A to point B... The further
your visitors have to travel, the more of them you’ll
lose along the way.” In that spirit, we propose the
following working definition: hypertext organization is
a measure of the ease or rapidity with which users can
navigate from any page to any other page in a hypertext
system.

How do we measure “ease or rapidity” numerically?
We assume that at each intermediary page along a path
from page p, to page pp, there is a certain probability
that the user will become sidetracked, get lost, or give
up in his or her quest; furthermore, we assume that
this probability is equal to 1 — «, the negation of the
attention-span factor. Thus, we say the strength of a
path containing ¢ real links is o~ 1.

Clearly, there can be more than one path of real
links from p, to pp in the hypertext system. However,
since considering all paths would be computationally
impractical, we simplify matters by considering only the
length of the shortest path from p, to pp, which we call
Tpa,ps- LI there is no path from p, to py, then we say
that rp,, p, = co.

In order to compute a realistic aggregate of the
strengths of all shortest paths, we need to weight each
path by the likelihood that a user would actually want
to traverse it. We assume the likelihood of users fol-
lowing a path from p, to py is proportional to d,,, dp,,
and the strength of the shortest path from p, to pp in
virtual links (which is an estimate of how germane the



content of py, is to p,). Let Vpa,ps T€Present the length
of the shortest virtual path from p, to pp; note that,
since R C I', v, ., < 7p,p,- Thus, the weight factor
for a path from p, to pp is

dpa dpb arerst,

Multiplying the path strength by the weight factor,
we obtain a weighted path strength of

dp, dpbof”“’b+7pa»f’b72

Then, summing the weighted path strengths for all
(po € P,py € P) such that p, # pp, we find that, if we
call the organizational index ¥, then

v = Z <dpa dpbOérp“’pb +7Pa’Pb72)

Pa:Po€F
PaFPb

(Note that if 7, ,, = 00, then "o ™ rars ™2 = (,)
Arranging links in a hypertext system to maximize
this index is likely to ensure that:

e The pages with the highest demand are easily
reachable from one another.

e Closely related pages are easily reachable from one
another.

e All of the links on a given page are relevant to that
page.

However, one drawback of the index presented here
is that it does not ensure that every page is reachable
from every other. Hypertext designers who want to
ensure that even pages with low demand are reachable
have several options:

e Increase the attention-span factor a.

e Create a tree of mandatory links, originating at a
central home page and connecting every page in
the hypertext.

e After links have been arranged so that ¥ is max-
imized, add or rearrange links manually (or with
a separate algorithm) so that every page is reach-
able.

4 Genetic Algorithm Approximation

Our problem is to find a set of real links that maximizes
¥ under the given constraints. Appendix A contains
a proof that this problem is NP-complete. Thus, no
known method can solve this problem in polynomial
time, and it is necessary to consider heuristic methods.
Originally, we implemented a greedy algorithm, which
simply selected the virtual link that increased ¥ the
most during each pass. However, the greedy algorithm
performed poorly, and did not converge to optimal ¥
in the general case. Thus, we decided to use a more
robust genetic algorithm.

4.1 Overview

A genetic algorithm (GA) uses selection, crossover, and
mutation heuristics inspired by biological evolution to
approach the solution to a problem [7, 9]. We have
implemented a GA that, given a hypertext system, con-
verges to R such that ¥ is maximal or near-maximal.
To improve performance, it uses special crossover and
mutation heuristics that are designed for the degree con-
straints of our hypertext model. It also includes sev-
eral user-specified parameters, which can be adjusted
for each hypertext system to yield optimal convergence
time.

4.2 Procedure: GA for approximating

maximal ¥

Table 1 shows the set of input data and parameters for
the GA. Algorithm 1 shows our implementation of the
GA written in pseudocode.

After parsing the input data, the algorithm stores
the hypertext system’s pages and virtual links as a di-
rected graph Gr using an adjacency matrix (line 2 of
the pseudocode). Then, it computes the length of the
shortest path in virtual links from each page to each
other page, if such a path exists, and stores the results
in a new matrix (defined on line 3). This is a classical
problem called all-pairs shortest paths; we solve it us-
ing Floyd’s algorithm (described in [14]), which runs in

(0] <|P|3) time. There are algorithms with better time

complexity, such as one presented in [5], but we judged
Floyd’s algorithm to be sufficient for use with the GA.

Input | Type Represents

P Set Pages in hypertext
0y N Degree of page p
dp R>0 Demand of page p
T Set Virtual links

R Set Real links

M Set Mandatory links
0 N System degree

@ 0 < R < 1| Attention-span factor
P N>1 Population size

m 0 <R <1 | Mutation rate
elite Boolean Elitist selection on
fitness | Boolean Fitness scaling on
t R>0 Seconds until halt

Table 1: Inputs to the GA
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Input P,T', R, M, 0, o, p, m, elite, fitness,t;

Let Gr := (P,T) be a directed graph;

Let Hp := all _pairs_shortest path(Gr);

Let D :=1"U M’ be a set of links;
Let € := an array of p subsets of D;
Let b; ; = 1if D; € Q;, 0 otherwise;
Let b ; =07 0<i<|Q,0<j<|D|
fori:=0to |Q—1{
while (|{links € Q;}| < 0;) {
n := random _integer(0...|D| — 1);
{ links £ € ; with
if

< gsource((Qi)n)
then b; , :==1; } }
do {
fori:=0top—1{
Let R :=0b; U M,

Let Gg := (P, R) be a directed graph;
Let Hp := all _pairs_shortest path(Gpg);

Let ¥, := org_index(Hg);

if (U; > Wprax) then{Wprax = ¥;; £:=14;}
if (‘Ifl < \IIMIN) then \IIMIN = \I/i; }

source (¢) = source ((£%;),,)

1

if (fitness) then for ¢ := 0 to || — 1

W =W — Wy + 1
Let ' := an array of p subsets of D;
Let ¢; ; =1 if D; € , 0 otherwise;

Let ¢, j; =0V 0<:i<|Q,0<j<|D|;

fori:=0top—1¢{

do { z := random_ integer(0...p — 1); }
until (random_real (0..¥prax) < ¥y)
do { ¥ := random _integer(0...p — 1); } until
(random_real (0..Uprax) < ¥, and y # )

for j:==0to |D|—1{¢;; :=0;

if (b;; =1and by ; =1) thenc¢;; :=1; }

while (|{links € Q}}| < 6;) {

n := random _integer(0... |D| — 1);

(bjz =1lorbd;, =1) and

)

do {n :=random __integer (0... |D| — 1);}

H links £ € Q; with
if

source (¢) = source <(Q§

< Hsource((Qé)n)
then ¢; ; :=1; }
while (random_real (0...1) < m) {

until (¢;n =1); ¢in =05

do { n :=random__integer (0... |D| —1); }

until (¢; » = 0) and
links £ € Q) with
source (£) = source <(Q§)n)

< Hsource((ﬂé ) n)

Cin = 1;
if (elite) then € := Qg;
Let Q :=Q/;

} until (seconds_so_far () >t)

Algorithm 1: GA to maximize ¥

}

f
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Line 4 defines D as the set of virtual links that are
not mandatory. We call these discretionary links, since
candidate solutions to the hypertext optimization prob-
lem can be represented as subsets of them. Line 5 ini-
tializes an array ) of these subsets; {0 will be used as
the parent population in genetic reproduction. Line 6
represents {2 as a set of bit strings b in which ‘1’ signi-
fies that a discretionary link is included in a candidate
solution and ‘0’ signifies that it is excluded; this bit no-
tation will be helpful for describing genetic operations.
Line 7 clears all bits in b to 0.

On lines 8 to 12, the algorithm forms an initial pop-
ulation of candidate solutions randomly. It repeat-
edly selects a discretionary link at random (employing
the “random_integer” function on line 10). Then, it
evaluates whether adding this link to the current can-
didate solution would violate constraints on page de-
gree (line 11; note that the “source” function returns a
link’s source page). If not, it adds the link (line 12); it
repeats this process until the number of discretionary
links equals €, the system degree.

Lines 13-46 form the main body of the GA,
which keeps iterating through generations until a user-
specified amount of seconds have elapsed (line 46).

Lines 14-20 evaluate the organizational index ¥ for
each member of the current parent population €. On
lines 16-17, the algorithm forms a directed graph G of
real links and solves the all-pairs shortest path problem
over them. Now that page distances have been com-
puted for both the virtual links (which are constant)
and the current set of real links, the index ¥ can be

easily computed in O <|P|2) time by the formula in

Section 3. Lines 19-20 simply store the maximum and
minimum values of ¥ in the parent population, as well
as the position of the candidate solution with maximal
v.

If the user selected fitness scaling as a parameter,
then lines 21-22 subtract the minimal ¥ from the index
of each candidate solution, and then add 1 (so that all
indices are nonzero). This technique significantly im-
proved performance in empirical tests (see Section 6).

Line 23 defines a second array of candidate solutions
Q', which will be used as the child population in genetic
reproduction. Line 24 represents )’ as a set of bit
strings ¢ analogous to b; line 25 clears all bits in ¢ to 0.

Lines 26-43 loop through the child population £,
building each new candidate solution through genetic
selection, crossover, and mutation operations on the
parent population Q. Lines 27-28 select the first par-
ent for genetic crossover from 2, with the probability of
any candidate being selected proportional to its organi-
zational index ¥. Here, we perform weighted selection



using a Monte Carlo technique, in which a candidate so-
lution and a real number 0 < R < Wy, 4 x are repeatedly
selected at random until the real number is less than or
equal to the candidate’s index W. However, another
possibility would be roulette-wheel selection (described
in [7]), in which the sum

k

>,

i=0

is stored in position & of an array A, and binary
search is used to select a candidate solution based on a
random real number 0 < R < A[p — 1]. Monte Carlo
selection tends to perform well when most values of ¥
are close to W4 x; roulette-wheel selection might run
more quickly when the values of ¥ are widely distrib-
uted. Lines 29-30 select the second parent by a method
identical to that for the first, except that an extra test
ensures that both parents are distinct.

Lines 31-36 perform genetic crossover on the two se-
lected parents. With our crossover function, discre-
tionary links that appear in both parents will definitely
appear in the child; those that appear in only one par-
ent might appear in the child; and those that appear
in neither parent will not appear in the child. Lines
31-32 set the child’s bit array equal to the binary AND
of the two parents’ bit arrays. Then, lines 33-36 choose
‘1’ bits at random from the binary OR of the two par-
ents’ bit arrays; test whether copying them to the child
would violate constraints on page degree; and if not,
copy them. The ‘while’ loop continues until the num-
ber of discretionary links in the child equals the system
degree ;. (This algorithm is analogous to the one used
for random candidate generation on lines 9-12.)

After a child has been generated through crossover,
the GA performs random mutations on it (lines 37-43).
In each mutation, a ‘1’ bit is selected at random and
changed to a ‘0’ bit (lines 38-39). Then, ‘O’ bits are re-
peatedly selected at random until one is found for which
changing it to a ‘1’ bit would not violate constraints on
page degree! (lines 40-43); this bit is then flipped. The
GA continues to mutate while a random real number
0 < R <1 is less than or equal to the mutation rate m
(line 37); thus, in principle, any number of mutations
are possible.

If the user selected elitist selection as a parameter,
then line 44 copies the best candidate solution from
the parent population ) into the first position in the
child population Q’. Like fitness scaling, this technique
improved performance in empirical tests (see Section 6).

Line 45 sets the parent population for the next gen-
eration equal to the current child population. (This is
implemented as a simple pointer exchange, not a trans-

!There is guaranteed to be such a ‘0’ bit—if nothing else, it will
be the one which was just before changed from a ‘1’ bit.

fer of data.) The GA loop continues until ¢ seconds
have elapsed, at which time the GA breaks and returns
the best candidate solution in the current child popula-
tion. Depending on user needs, particular implemen-
tations could have other criteria for breaking, such as
whether the GA has iterated through a specified num-
ber of generations, or whether W,,4x has attained a
specified value.

5 Experiment with Human Subjects

Thus far, we have not presented evidence that the “or-
ganizational index” W is related to the organizational ef-
ficiency of actual hypertext systems. Here, we describe
an experiment wherein 70 computer users searched for
information using three real link configurations with the
same underlying hypertext.

5.1 Procedure

Our goal was to study the relationship between a hy-
pertext system’s organizational index and the perceived
and actual speed with which users could find specific in-
formation in it. To accomplish this, we constructed sev-
eral hypertext systems, each with equivalent informa-
tion but with real links corresponding to different values
of the index, ¥. We intended to base these systems on
an existing hypertext that had content of wide general
interest; included a large number of pages, each with
specific information; was truly “hypertextual,” rather
than simply hierarchical; contained some indication as
to what virtual links should be; had some constraints
on page degree; included detailed usage statistics; and
was not copyrighted. Failing to find such a hypertext,
we constructed our own, a 46-page system concerning
the topic of the Watergate scandal. We arbitrarily
chose o = 0.7, 6, = 6 for each p € P, and 8§, = 120.
dp was 1 for almost every p € P, 2 for a few pages of
pivotal importance (“The White House,” for instance),
and 100 for the central home page of the system. In
addition, each page had a mandatory link to the home
page. Using the genetic algorithm described in Section
4, we created three renditions of this hypertext, System
A with & 22 7382, System B with ¥ 22 8186, and System
C with ¥ 22 9039. We made a few manual changes to
Systems A and B to ensure that pages were reachable
from the home page. We then converted these hyper-
texts into sets of HTML pages and placed them on a
World Wide Web server. We configured this server to
require users’ names before they entered any of the hy-
pertexts, and to store for later statistical analysis the
sequence of links each individual user chose.

We then created a written instruction and question
sheet (reproduced in Appendix B) to guide participants



in an experiment that would compare the three hyper-
text systems. The instructions directed participants
to seek information in all three systems on both of two
research topics; then, if they found information, to rate
their perception of how quickly they found it on a scale
of 1 to 10. If users reported that they could not find
relevant information at all, we would record a rating of
0 out of 10. The research topics, which were different
for each participant, were randomly selected titles of
pages in the system, with double weight given to pages
with d, = 2. The sheet also asked participants to
write down two facts about their research topics if they
found information, to ensure that they were following
instructions.

For the actual experiment, we reserved a computer
lab at Clarkson University for two days. Participants
were Clarkson University students with varying com-
puter experience. On the first day, participants were
presented System A first, then System C, then System
B; on the second, they were presented System B first,
then System A, then System C. The ordering of the
hypertext systems was thus minimized as a source of
€error.

5.2 Results

In all, 70 students participated in the experiment, 28
on the first day and 42 on the second. Since each par-
ticipant was given two research topics, we thus had 140
datasets - user ratings of how quickly some piece of in-
formation was found in each of the three systems, if it
was found at all. However, since some participants did
not register their names before entering the hypertext
systems, went from one system to another out of or-
der, or otherwise failed to follow directions, only 125
datasets could be retrieved from the Internet server’s
access logs for statistical analysis.

The results confirm the prediction made in Section
3 that the organizational index is positively correlated
with the speed of finding information. For System A
(W4 = 7382), the mean user rating on the 0 to 10 scale
was 3.7 and the median rating was 1; for System B
(¥p = 8186), the mean rating was 5.3 and the median
was 7; for System C (U = 9039), the mean rating was
6.6 and the median was 8. Figure 2 and Table 2 show
the distribution of ratings in each of the three systems.
Note that the ratings are highly polarized - the average
standard deviation for the three systems is 4.0.
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Figure 2: Distribution of user ratings (note that 0 was
recorded when a user could not find information)

Score A (7382) | B (8186) | C (9039)
0 68 41 29
1 4 2 2

2 5 2 2

3 2 3 1

4 4 6 3

5 5 9 4

6 5 3 6

7 6 15 12
8 8 18 17
9 11 18 16
10 22 23 48
Datasets | 140 140 140
Mean 3.7 5.3 6.6
Median 1 7 8
Mode 0 0 10
St. Dev. | 4.1 3.9 3.9

Table 2: User ratings

Analysis of the Internet server’s access logs shows
that, as W increased, there was a corresponding decrease
in the number of pages participants visited before they
either found information on their research topics or gave
up. (Note that by “number of pages” we do not mean
number of unique pages.) For System A, the mean
number of pages visited while looking for information
on a research topic was 26.2 and the median number of
pages was 20; for System B, the mean number of pages
was 16.4 and the median was 9; for System C, the mean
number of pages was 12.0 and the median was 7. Figure
3 and Table 3 show the distribution of number of pages
accessed for each of the three systems. The standard
deviation of number of pages accessed for Systems A, B,
and C are 23.5, 16.8, and 11.9 respectively, indicating a
wide range of path lengths needed to access information.
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8760

Average organizational index

Any performance analysis of the GA described in Sec-
tion 4 is necessarily subjective, since the algorithm by
its nature evades computational classification and may 8680
deliver different performance based on the hypertext
systems it receives as input.

For all of the hypertext systems we tested with |P| <
10, the GA converged to the optimum very quickly. For
the hypertext described in Section 5 with |P| = 46, we
ran the GA through tens of thousands of generations

8720 715

10 20
Population size for genetic algorithm

Figure 6: Effect of population size on convergence rate,
with generations=50, mutation=0.2, elitism, scaling



and are still reasonably certain that we did not find
the optimum value. Figure 4 illustrates how the GA
converges toward a maximal value of ¥; as with most
optimization methods, W initially increases very rapidly,
then increases more slowly, finally reaching a plateau.
(The organizational index would only surpass 9000 after
thousands of generations.)

We have found that elitist selection and fitness scal-
ing, two optional GA parameters described in Section 4,
almost always accelerate the convergence of ¥. Figure
5 shows the average values of ¥ returned after running
the GA ten times with and without both elitist selection
and fitness scaling. We have also found that mutation
rate, within the range from 0.1 to 0.4, does not signif-
icantly affect the GA’s performance. Figure 6 shows
the results of ten-trial GA runs with varying mutation
rates, in which m = 0.3 produces W slightly higher than
that for the other mutation rates tested. Finally, we
have found that, although increasing population gener-
ally increases the convergence rate per generation, the
convergence rate per processing time is usually maxi-
mized when || = 20. Figure 7 shows the average
organizational indices returned for ten runs of the GA
with each of four population sizes.

7 Conclusion and Future Directions

The results described in Section 5 indicate a strong cor-
relation between the organizational index ¥ and both
the actual number of pages users access while seek-
ing information and users’ perceptions of how quickly
they can find information. These results should not be
taken as proof that the organizational index is a reliable
measure of hypertext organization, especially since we
tested only three sets of real links for one underlying
hypertext system. However, there seems to be enough
evidence that a numerical rating of hypertext organiza-
tion has some usefulness to warrant further investiga-
tion into mathematical modeling of hypertext systems.

We have implemented the GA described in Section
4 as cross-platform console-based software. In the fu-
ture, we plan to evolve our software into a class library
that other developers can easily use. Some open prob-
lems are:

e How well does the organizational index perform
for larger, more realistic hypertexts than the one
used in Section 57

e Can the organizational index be improved by tak-
ing into account the hierarchical structure of most
hypertexts, or the need for every page to be reach-
able from every other?

e Can a model of hypertexts be designed in which
the set of pages is not given a priori, but rather is
constructed by the optimization algorithm?

e Can the genetic crossover and mutation heuristics
described in Section 4, which account smoothly for
constraints on vertex degree and total number of
edges, be applied to other graph-theory problems?

Algorithmic optimization of hypertext link topology,
such as that described here, is unlikely to replace design
of hypertext systems by humans. There are structural
and aesthetic nuances in hypertext design that algo-
rithms would have extreme difficulty handling. Rather,
the numerical methods described in this paper should
be considered tools to aid hypertext designers in under-
standing and resolving organizational issues.
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A Appendix: Computational Complexity

Our problem is to find a set of real links that maximizes
WU under the given constraints. Here, we prove that
no known method can solve this problem in polynomial
time, and hence that it is necessary to consider heuristic
methods.

Theorem 1 Mazimizing ¥ is NP-complete.

Proof. Let us first rephrase the optimization prob-
lem as a decision problem: Given a hypertext system
and a constant K > 0, does there exist R such that
¥ > K¢ Call this problem Hypertext Optimization
(or HTO). Clearly, HTO is not any “harder” than the
original problem (see [6] for example).

It is apparent that HT'O € NP, since a nondeter-
ministic algorithm need only guess all permissible con-
figurations of real links and check in polynomial time
whether any of them have ¥ > K.

We will transform HC (the Hamiltonian cycle prob-
lem on a directed graph; known to be NP-complete [6])
into HTO. Given an instance G = (V, E) of HC with
|V| > 2, we map each v € V onto p € P, and each
(vo,v1) € E onto (pg,p1) € I'. For each p € P, let
0, = d, = 1. Furthermore, let §, = |P| and choose



System A System B

Figure 7: System A contains a Hamiltonian cycle and
System B does not, so System A has a higher organiza-
tional index (given the bound on alpha)

_ 2
a> 21— qEeome

(the reason for this restriction on « will be clarified
shortly).

If G contains a Hamiltonian cycle, then for each
Po,p1 € P with py # pi1, the length of the shortest
virtual path from pg to p; is at most |P| - that is,
~v(po,p1) < |P|. Thus, if for each (pg,p1) € I' along
the Hamiltonian cycle we let (po,p1) € R, then

Y(po.p1) < |P| = r(po,p1) < |P|

and we can give a lower bound on the organizational
index U3gc. Since there are %(|P| —1)|P| pairs of
distinct (po,p1) with v,7 < |P|,

Uspe > 3 (|P| - 1) |Pla?PI=2,

Figure 8 illustrates systems with and without Hamil-
tonian cycles.

If G does not contain a Hamiltonian cycle, then for
some Po,p1, Y(Po,p1) = oo (because the page degree
0, = 1 for each p € P). Since there are at most
2 (|P| = 1) |P| — 1 pairs of distinct (po,p1) with v, r fi-
nite, we can specify an upper bound on ¥:

Winc < 3 (1P| = 1)[P|— 1.

Now, notice that because of the bound on «, it al-
ways holds that W5y > Wipe. Thus, if G contains a
Hamiltonian cycle, there exists R such that

W= L(|P|— 1) |Pla? P2,

Otherwise, there does not exist such an R. W
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B Appendix: Instructions and questions given to experiment participants
(Condensed to fit on page)

Name: Phone: x Email:
If you win a prize, you would prefer to be contacted by (checkone): __ Phone __ Email
Welcome to this experiment! Please read and follow the directions carefully.
Your first research topic is
1. Click Home on Netscape’s toolbar. When the Welcome Page appears, select the link that says Login. Then, type
in your full name (as it appears on this sheet) in the Name box, and press the Continue button.
2. When you are back to the Welcome Page, select the link that says System A.
3. Navigate through the hypertext system that appears, looking for information on your first research topic. Do not
become sidetracked - try to find the information by clicking on as few links as possible. Do not click Home on the
Netscape toolbar while you are looking for information. If, after a few minutes, you cannot find anything, give up.
4. Fill out the following questionnaire:
Did you find any information on the first research topic? Yes No
If so, jot down two facts about your topic:
1.
2.
On a scale of 1 to 10, how quickly were you able to find the information (if you found it)?
Veryslowly 1 2 3 4 5 6 7 8 9 10 Very quickly
5. Click Home on Netscape’s toolbar. On the Welcome Page, select the link that says System B. Again, look for
information on your first research topic, following exactly the same rules as before. Then, answer the following
questions:
Did you find any information on the first research topic? Yes No
On a scale of 1 to 10, how quickly were you able to find the information (if you found it)?
Veryslowly 1 2 3 4 5 6 7 8 9 10 Very quickly
6. Click Home on Netscape’s toolbar. On the Welcome Page, select the link that says System C. Once again (we
know it’s boring, but it’s in the name of science), look for information on your first research topic, following the
rules from Step #3. Then, answer the following questions:
Did you find any information on the first research topic? Yes No
On a scale of 1 to 10, how quickly were you able to find the information (if you found it)?
Veryslowly 1 2 3 4 5 6 7 8 9 10 Very quickly
Your second research topic is
7. Click Home on Netscape’s toolbar. On the Welcome Page, select System A. Now, look for information on your
second research topic, following the same rules. Then, answer these questions:
Did you find any information on the second research topic? Yes No
If so, jot down two facts about your topic:
1.
2.
On a scale of 1 to 10, how quickly were you able to find the information (if you found it)?
Veryslowly 1 2 3 4 5 6 7 8 9 10 Very quickly
8. You know what to do...click Home, select System B, and look for information on your second research topic.
Then, answer these questions:
Did you find any information on the second research topic? Yes No
On a scale of 1 to 10, how quickly were you able to find the information (if you found it)?
Veryslowly 1 2 3 4 5 6 7 8 9 10 Very quickly
9. Click Home, select System C, and look for information on your second research topic. Then, answer these
questions:
Did you find any information on the second research topic? Yes No
On a scale of 1 to 10, how quickly were you able to find the information (if you found it)?
Veryslowly 1 2 3 4 5 6 7 8 9 10 Very quickly
Thanks for participating! Please turn in this sheet at the front.




