THEORY OF COMPUTING, Volume 1 (2005), pp. 47-79
http://www.theoryofcomputing.org

Quantum Search of Spatial Regions

Scott Aaronsoh Andris Ambainig

Received: June 13, 2004; published: June ?, 2005.

Abstract: Can Grover's algorithm speed up search of a physical regfon-example a
2-D grid of size\/nx y/n? The problem is tha{/n time seems to be needed for each
guery, just to move amplitude across the grid. Here we shaivtiis problem can be sur-
mounted, refuting a claim to the contrary by Benioff. In parar, we show how to search
a d-dimensional hypercube in tim@(,/n) for d > 3, or O(y/nlog®?n) for d = 2. More
generally, we introduce a model gliantum query complexity on graphmotivated by
fundamental physical limits on information storage, aitarly the holographic principle
from black hole thermodynamics. Our results in this modellide almost-tight upper and
lower bounds for many search tasks; a generalized algothltworks for any graph with
good expansion properties, not just hypercubes; andarkitips among several notions of
‘locality’ for unitary matrices acting on graphs. As an dpation of our results, we give
anO(y/n)-qubit communication protocol for the disjointness probjevhich improves an
upper bound of Hgyer and de Wolf and matches a lower bound zifdrav.

ACM Classification: F.1.2, F.1.3
AMS Classification: 81P68, 68Q10

Key words and phrases:Quantum computing, Grover search, amplitude amplificatiprantum com-
munication complexity, disjointness, lower bounds

*This work was mostly done while the author was a PhD studan€aBerkeley, supported by an NSF Graduate Fellowship
and by ARO grant DAAD19-03-1-0082.

TSupported by an IQC University Professorship and by CIARis Tvork was mostly done while the author was at the
University of Latvia.

Authors retain copyright to their papers and grant “Thedromputing” unlimited
rights to publish the paper electronically and in hard capse of the article is permitt
ted as long as the author(s) and the journal are properlyoadkdged. For the detailed
copyright statement, seéetp://theoryofcomputing.org/copyright.html.

(© 2005 Scott Aaronson and Andris Ambainis



S. AARONSON, A. AMBAINIS

robot[@@@] T V"

e
©

. Marked item

Jn

Figure 1: A quantum robot, in a superposition over locatiaesrching for a marked item on a 2D grid

of sizey/nx y/n.

1 Introduction

The goal of Grover’s quantum search algorithin?,[18] is to search an ‘unsorted database’ of size
in a number of queries proportional tgn. Classically, of course, order queries are needed. Itis
sometimes asserted that, although the speedup of Grolgoistm is only quadratic, this speedup is
provable in contrast to the exponential speedup of Shor’s factoallggrithm 29]. But is that really
true? Grover’s algorithm is typically imagined as speedipgcombinatorial search—and we do not
know whether every problem iNP can be classically solved quadratically faster than thevitals”
way, any more than we know whether factoring iS8RP.

But could Grover’s algorithm speed up search gshgsical regiof? Here the basic problem, it
seems to us, is the time needed for signals to travel acressegiion. For if we are interested in the
fundamental limits imposed by physics, then we should askedge that the speed of light is finite, and
that a bounded region of space can store only a finite amoumfoomation, according to the holographic
principle []. We discuss the latter constraint in detail in Sectipfor now, we say only that it suggests
a model in which a ‘quantum robot’ occupies a superpositizer @initely many locations, and moving
the robot from one location to an adjacent one takes unit.tifresuch a model, the time needed to
search a region could depend critically on its spatial laydeor example, if then entries are arranged
on aline, then even to move the robot from one end to the adlkesh — 1 steps. But what if the entries
are arranged on, say, a 2-dimensional square grid (Fip@Gre

1.1 Summary of Results

This paper gives the first systematic treatment of quantuancheof spatial regions, with ‘regions’
modeled as connected graphs. Our main result is positiveshoe that a quantum robot can search

a d-dimensional hypercube with vertices for a unique marked vertex in tir(l‘e(\/ﬁlog3/2 n) when

d=2,0rO(y/n) whend > 3. This matches (or in the case of 2 dimensions, nearly msftheQ (,/n)
lower bound for quantum search, and supports the view thatgbisearch of a physical region presents
no problem of principle. Our basic technique is divide-aodquer; indeed, once the idea is pointed out,
an upper bound o®(n1/2+5) follows readily. However, to obtain the tighter bounds isrendifficult;
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d=2 d>2
Hypercube, 1 marked item O (/nlog®?n) ©(y/N)
Hypercubek or more marked items O g\/ﬁlogf’/2 n; @ ¥ma
Arbitrary graph k or more marked items \mzo(m) o gkl/zf”l/d;

Table 1: Upper and lower bounds for quantum searchawulimensional graph given in this paper. The
symbol® means that the upper bound includes a polylogarithmic teéMiote that, ifd = 2, thenQ (\/n)
is always a lower bound, for any number of marked items.

for that we use the amplitude-amplification framework of ¢&ro[19] and Brassard et al1[l].

Section5 presents the main results; Sectiord shows further that, when there der more marked
vertices, the search time becon@é\/ﬁlogf’/2 n> whend = 2, or® (/n/kY/2-1/d) whend > 3. Also,
Section6 generalizes our algorithm to arbitrary graphs that haveéngube-like’ expansion properties.
Here the best bounds we can achieve @(F!QO(\/W) whend = 2, or O(y/npolylogn) whend > 2
(note thatd need not be an integer). Tablel summarizes the results.

Section7 shows, as an unexpected application of our search algqritrahthe quantum communi-
cation complexity of the well-knowdisjointness problerns O(/n). This improves arO(\/ﬁd‘)g*”)
upper bound of Hayer and de Wol(]], and matches th@ (,/n) lower bound of Razborov2].

The rest of the paper is about the formal model that undeoliggesults. Sectiof sets the stage
for this model, by exploring the ultimate limits on inform@at storage imposed by properties of space
and time. This discussion serves only to motivate our rgstiius, it can be safely skipped by readers
unconcerned with the physical universe. In SecBave definequantum query algorithms on graptes
model similar to quantum query algorithms as defined by Betadé [], but with the added requirement
that unitary operations be ‘local’ with respect to some gragn Section3.1 we address the difficult
guestion, which also arises in work on quantum random walkarid quantum cellular automatal],
of what ‘local’ means. Sectior proves general facts about our model, including an uppendhat

O(x/nc‘i) for the time needed to search any graph with diaméteand a proof (using the hybrid

argument of Bennett et al7]) that this upper bound is tight for certain graphs. We codelin Section
8 with some open problems.

1.2 Related Work

In a paper on ‘Space searches with a quantum robot, Berfipfigked whether Grover’s algorithm
can speed up search of a physical region, as opposed to ar@iomal search space. His answer was
discouraging: for a 2-D grid of siz¢'n x \/n, Grover’s algorithm is no faster than classical search. The
reason is that, during each of tig,/n) Grover iterations, the algorithm must use orgér steps just
to travel across the grid and return to its starting pointfierdiffusion step. On the other hand, Benioff
noted, Grover’s algorithm does yield some speedup for gridémension 3 or higher, since those grids
have diameter less thayin.

Our results show that Benioff’s claim is mistaken: by using¥&r's algorithm more carefully, one
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| d=2 d=3 d=4  d>5
This paper| O (\/ﬁlog?’/2 n) o(yn) O(yn) O(y/n)
[16] O(n) O(n®®) O(y/nlogn) O(yN)

315 | O(v/Alogn)  O(VA) O(Vm OV

Table 2: Time needed to find a uniqgue marked item dhdimensional hypercube, using the divide-and-
conquer algorithms of this paper, the original quantum veddjorithm of Childs and Goldstond ),
and the improved walk algorithms of Ambainis, Kempe, andBiv[3] and Childs and Goldstoné }).

can search a 2-D grid for a single marked vertefi ﬁlog?*/2 n) time. To us this illustrates why one

should not assume an algorithm is optimal on heuristic gieurPainful experience—for example, the
“obviously optimal”O (n3) matrix multiplication algorithm $0]—is what taught computer scientists to
see the proving of lower bounds as more than a formality.

Our setting is related to that of quantum random walks onlggdip 13, 14, 28]. In an earlier version
of this paper, we asked whether quantum walks might yield l@mnative spatial search algorithm,
possibly even one that outperforms our divide-and-con@lgorithm. Motivated by this question,
Childs and Goldstonelp] managed to show that in the continuous-time setting, atgoanvalk can
search al-dimensional hypercube for a single marked vertex in @@rg/nlogn) whend =4, orO(,/n)
whend > 5. Our algorithm was still faster in 3 or fewer dimensionse(3ablel.2). Subsequently,
however, Ambainis, Kempe, and Rivos}] pave an algorithm based on a discrete-time quantum walk,
which was as fast as ours in 3 or more dimensions, and fastidimensions. In particular, when
d = 2 their algorithm used onl® (,/nlogn) time to find a unique marked vertex. Childs and Goldstone
[15] then gave a continuous-time quantum walk algorithm withshhme performance, and related this
algorithm to properties of the Dirac equation. It is stilleopwhethetO(/n) time is achievable in 2
dimensions.

Currently, the main drawback of the quantum walk approac¢hasall analyses have relied heavily
on symmetries in the underlying graph. If even minor ‘defeate introduced, it is no longer known
how to upper-bound the running time. By contrast, the amalgtour divide-and-conquer algorithm
is elementary, and does not depend on eigenvalue bounds. aWerefore show that the algorithm
works for any graphs with sufficiently good expansion prtipsr

Childs and Goldstonelf] argued that the quantum walk approach has the advantagoifing
fewer auxiliary qubits than the divide-and-conquer apphoaHowever, the need for many qubits was
an artifact of how we implemented the algorithm in a previeaision of the paper. The current version
uses onlyonequbit.

2 The Physics of Databases

Theoretical computer science generally deals with the Emisome resource (such as time or memory)
increases to infinity. What is not always appreciated is, thathe resource bound increases, physical
constraints may come into play that were negligible at ‘agpmptotic’ scales. We believe theoretical
computer scientists ought to know something about suchtreonts, and to account for them when
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possible. For if the constraints are ignored on the groundttiey “never matter in practice,” then the
obvious question arises: why use asymptotic analysis iffitsieplace, rather than restricting attention
to those instance sizes that occur in practice?

A constraint of particular interest for us is thelographic principle[9], which arose from black-
hole thermodynamics. The principle states that the inftionacontent of any spatial region is upper-
bounded by itsurface aregnot volume), at a rate of one bit per Planck area, or abait 10°° bits per
square meter. Intuitively, if one tried to build a spheribatd disk with mass density, one could not
keep expanding it forever. For as soon as the radius reabbe&thwarzschild bound of= /3/ (8mv)

(in Planck units¢c = G = h =k = 1), the hard disk would collapse to form a black hole, and ftais
contents would be irretrievable.

Actually the situation is worse than that: eveplanar hard disk of constant mass density would
collapse to form a black hole once its radius became sufflgiéarge, r = ©(1/v). (We assume
here that the hard disk is disc-shaped. A linear or 1-D hasl dould expand indefinitely without
collapse.) lItis possible, though, that a hard disk’s infation content could asymptotically exceed its
mass. For example, a black hole’s mass is proportional teaties of its event horizon, but the entropy
is proportional to thesquareof the radius (that is, to the surface area). Admittedlyeneint difficulties
with storage and retrieval make a black hole horizon less itleal as a hard disk. However, even a
weakly-gravitating system could store information at @ rasymptotically exceeding its mass-energy.
For instance, Boussd] shows that an enclosed ball of radiation with radiusan storen = © (r%/2)
bits, even though its energy grows onlyrasOur results in Sectiof.1 will imply that a quantum robot
could (in principle!) search such a ‘radiation disk’ for arnked item in timeO (r4) = O (n%/¢). This
is some improvement over the trivi@(n) upper bound for a 1-D hard disk, though it falls short of the
desiredO (y/n).

In general, ifn = r® bits are scattered throughout a 3-D ball of radisvherec < 3 and the bits’
locations are known), we will show in Theoreir/ that the time needed to search for a ‘1’ bit grows as
nt/c+1/6 = y1+¢/6 (omitting logarithmic factors). In particular, if= © (r?) (saturating the holographic
bound), then the time grows a&® orr%/3. To achieve a search time 6f(,/npolylogn), the bits would
need to be concentrated on a 2-D surface.

Because of the holographic principle, we see that it is ndf gnantum mechanics that yields a
Q(y/n) lower bound on the number of steps needed for unorderedrsedirthe items to be searched
are laid out spatially, then general relativity int3l dimensions independently yields the same bound,
Q(y/n), up to a constant factdr. Interestingly, ind + 1 dimensions the relativity bound would be
Q (n¥(@-1) 'which ford > 3 is weaker than the quantum mechanics bound. Given thataufunda-
mental theories yield the same lower bound, it is naturatkovehether that bound is tight. The answer
seems to be that it isot tight, since (i) the entropy on a black hole horizon is notafitly accessibfe
and (ii) weakly-gravitating systems are subject to Bekenstein boun{b], an even stronger entropy
constraint than the holographic bound.

1Admittedly, the holographic principle is part of quantunagjty and not general relativitger se All that matters for us,
though, is that the principle seems logically independéquantum-mechanical linearity, which is what produces‘tiker”
Q(y/n) bound.

2In the case of a black hole horizon, waiting for the bits to beteed as Hawking radiation—as recent evidence suggests
that they are]7]—takes time proportional to®, which is much too long.
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Yet it is still of basic interest to know whether bits in a radius- ball can be searched in time
o(min{n,ry/n})—that is, whether it is possible to dmythingbetter than either brute-force quantum
search (with the drawback pointed out by Benid@ff)[ or classical search. Our results show that it is
possible.

From a physical point of view, several questions naturailyea (1) whether our complexity measure
is realistic; (2) how to account for time dilation; and (3) ether given the number of bits we are
imagining, cosmological bounds are also relevant. Let dsesd these questions in turn.

1)

)

®3)

One could argue that to maintain a ‘quantum databaseizefrsrequiresn computing elements
([32], though see alsoZf]). So why not just exploit those elements to search the datln
parallel? Then it becomes trivial to show that the search time is éichibnly by the radius of
the database, so the algorithms of this paper are unneges®aur response is that, while there
might ben ‘passive’ computing elements (capable of storing dataethimight be many fewer
‘active’ elements, which we consequently wish to place impesposition over locations. This
assumption seems physically unobjectionable. For a pafand indeed any object) really does
have an indeterminate location, not merely an indeterraimdgéernal state (such as spef)some
location. We leave as an open problem, however, whether saumaption is valid for specific
quantum computer architectures such as ion traps.

So long as we invoke general relativity, should we nob a&lsnsider the effects of time dilation?
Those effects are indeed pronounced near a black hole horiZmgain, though, for our upper
bounds we will have in mind systems far from the Schwarzddhmitit, for which any time dilation
is by at most a constant factor independent.of

How do cosmological considerations affect our ana®/sBousso §] argues that, in a spacetime
with positive cosmological constant > 0, the total number of bits accessible to any one exper-
iment is at most &/ (AIn2), or roughly 1822 given current experimental boundg6] on A.3
Intuitively, even if the universe is spatially infinite, mias it recedes too quickly from any one
observer to be harnessed as computer memory.

One response to this result is to assume an idealization ichwhvanishes, although Planck’s
constanth does not vanish. As justification, one could argue that withloe idealizatiom\ = 0,

all asymptotic bounds in computer science are basically fistiddut perhaps a better response is
to accept the 8/ (AIn2) bound, and then ask how close one can consatoratingit in different
scenarios. Classically, the maximum number of bits thatheeearched is, in a crude madtel
actually proportional to 2v/A ~ 10° rather than IA. The reason is that if a region had much
more than ¥v/A bits, then after 1,/A Planck times—that is, about 1years, or roughly the
current age of the universe—most of the region would haveded beyond one’s cosmological

3Also, Lloyd [21] argues that the total number of bits accessilpdill now is at most the square of the number of Planck

times elapsed so far, or abo(JIOGl)2 =10'22, Lloyd's bound, unlike Bousso's, does not depend/oheing positive. The
numerical coincidence between the two bounds reflects theremental finding 26, 25] that we live in a transitional era, when
both A and “dust” contribute significantly to the universe’s neergy balance@a ~ 0.7, Qqust~ 0.3). In earlier times dust
(and before that radiation) dominated, and Lloyd’s bound tighter. In later time#\ will dominate, and Bousso’s bound will
be tighter. Whywe should live in such a transitional era is unknown.

4specifically, neglecting gravity and other forces that dadunteract the effect a.
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horizon. What our results suggest is that, using a quantlbuotymne could come closer to
saturating the cosmological bound—since, for examplePear@gion of size 1A can be searched

in time O (ﬁ polylog\#). How anyone coulgpreparea database of size much greater than

1/\/K remains unclear, but if such a database existed, it coulédelsed!

3 The Model

Much of what is known about the power of quantum computing e®iinom theblack-boxor query
model |2, 4, 7, 17, 29], in which one counts only the number of queries to an orawéthe number of
computational steps. We will take this model as the stanppioigt for a formal definition of quantum
robots. Doing so will focus attention on our main concernvmouch harder is it to evaluate a function
when its inputs are spatially separated? As it turns oubfalur algorithmswill be efficient as measured
by the number of gates and auxiliary qubits needed to imphethem.

For simplicity, we assume that a robot’s goal is to evalué®@alean functionf : {0,1}" — {0,1},
which could be partial or total. A ‘region of space’ is a coateel undirected grap& = (V,E) with
verticesV = {vy,...,Vp}. LetX =x;...%, € {0,1}" be an input tof ; then each bik; is available only
at vertexv;. We assume the robot knov@ and the vertex labels in advance, and so is ignorant only
of thex; bits. We thus sidestep a major difficulty for quantum walks \hich is how to ensure that a
process on an unknown graph is unitary.

At any time, the robot’s state has the form

> Qiz|Vvi,2).

Herev; €V is a vertex, representing the robot’s location; ansl a bit string (which can be arbitrarily
long), representing the robot’s internal configuration. e Btate evolves via an alternating sequence of
T algorithm steps andl oracle steps:

u® o0 y® ... u™ 5 o,

An oracle steg0®) maps each basis stdtg, 7) to |v;,z& x;), wherex; is exclusive-OR’ed into the first
bit of z.An algorithm stefJ V) can be any unitary matrix that (1) does not depenoand (2) acts
‘locally’ on G. How to make the second condition precise is the subject ci@e3. L

The initial state of the algorithm is1,0). Let ai(.tz) (X) be the amplitude of;,z) immediately after
thet!h oracle step; then the algorithm succeeds with probabilityeif

(a.”) (X)

iz
IVi,2):ZouT="F(X)

for all inputsX, wherezpy T is a bit ofzrepresenting the output.

3.1 Locality Criteria

Classically, it is easy to decide whether a stochastic mattislocally with respect to a grap8: it does
if it moves probability only along the edges@f In the quantum case, however, interference makes the
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guestion much more subtle. In this section we propose thitsia for whether a unitary matrid is
local. Our algorithms will then be implemented using the tmestrictive of these criteria.

The first criterion we callZ-locality (for zero): U is Z-local if, given any pair of non-neighboring
verticesvy, v» in G, U “sends no amplitude” fromr; to vo; that is, the corresponding entriesUnare all
0. The second criteriorG-locality (for composability), says that this is not enough: not onlysht
send amplitude only between neighboring vertices, but gtrba composed of a product of commuting
unitaries, each of which acts on a single edge. The thirdravit is perhaps the most natural one to a
physicist:U is H-local (for Hamiltonian) if it can be obtained by applying a loca#igting, low-energy
Hamiltonian for some fixed amount of time. More formally,Ukt_;- ~ be the entry in thév;, z) column
and|v;-,z*) row of U.

Definition 3.1. U is Z-local ifU; ,_;- » = 0 whenever # i* and(v;, V;-) is not an edge o6.
Definition 3.2. U is C-local if the basis states can be partitioned into ssi#%et. ., P, such that
(i) Uiz = 0whenevety;,z) and|v;-,z") belong to distincP;’s, and
(i) for eachj, all basis states iR; are either from the same vertex or from two adjacent vertices

Definition 3.3. U is H-local ifU = € for some HermitiarH with eigenvalues of absolute value at most
m, such thatd; ,_;- » = 0 whenevei # i* and(v;, Vvi-) is not an edge ifk.

If a unitary matrix is C-local, then it is also Z-local and biekl. For the latter implication, note that
any unitaryU can be written ag™ for someH with eigenvalues of absolute value at mastSo we can
write the unitaryU; acting on eact?; aset'i; then since th&J;’s commute,

|_|Uj =i,

Beyond that, though, how are the locality criteria relatedde they approximately equivalent? If
not, then does a problem’s complexity in our model ever dépmnwhich criterion is chosen? Let
us emphasize that these questionsraneanswered by, for example, the Solovay-Kitaev theorem (see
[22]), that ann x n unitary matrix can be approximated using a number of gatggpmial inn. For
recall that the definition of C-locality requires the edgesvoperations to commute—indeed, without
that requirement, one could produce any unitary matrixlat@b the relevant question, which we leave
open, is whether any Z-local or H-local unitary can be appnexed by a product of, say) (logn)
C-local unitaries. (A product dD (n) such unitaries trivially suffices, but that is far too many.)

4 General Bounds

Given a Boolean functiorf : {0,1}" — {0,1}, the quantum query complexi® (f), defined by Beals
et al. [], is the minimumT for which there exists d -query quantum algorithm that evaluatesvith
probability at least 23 on all inputs. (We will always be interested in ttveo-sided, bounded-error
complexity, sometimes denot€b (f).) Similarly, given a grapl© with n vertices labeled 1..,n, we
let Q(f,G) be the minimumT for which there exists & -query quantum robot o6 that evaluated
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with probability 2/3. Here we require the algorithm steps to be C-local. One tailglo consider the
corresponding measur€¥ (f,G) andQ" (f,G) with Z-local and H-local steps respectively. Clearly
Q(f,G) > Q4 (f,G) andQ(f,G) > Q" (f,G); we conjecture that all three measures are asymptotically
equivalent but were unable to prove this.

Let &g be the diameter dB, and callf nondegeneratd it depends on alh input bits.

Proposition 4.1. For all f,G,

() Q(f)<Q(f,G)<2n-3.

(i) Q(f,G) < (25 +1)Q(f).

(i) Q (f,G) > dg/2if f is nondegenerate.
Proof.

(i) Q(f) <Q(f,g) is obvious. Also, starting from the root, a spanning treeGaran be traversed
in 2(n— 1) — 1 steps (there is no need to return to the root).

(i) We can simulate a query in& steps, by fanning out from the start vertgxand then returning.
Applying a unitary atv; takes 1 step.

(i) There exists a vertex; whose distance tg, is at leastdg/2, andf could depend ow.

We now show that the model is robust.

Proposition 4.2. For nondegenerate f, the following changé 1QG) by at most a constant factor.

() Replacing the initial statévy,0) by an arbitrary (known)y).

(i) Requiring the final state to be localized at some vertewith probability at leastl — ¢, for a
constants > 0.

(iii) Allowing multiple algorithm steps between each omstep (and measuring the complexity by the
number of algorithm steps).

Proof.

(i) We can transformvy,0) to |() (and hencey) to |v1,0)) in &g = O(Q(f,G)) steps, by fanning
out fromvy along the edges of a minimum-height spanning tree.

(i) Assume without loss of generality thaty 1 is accessed only once, to write the output. Then after
ZoyT IS accessed, uncompute (that is, run the algorithm baclsjaodocalize the final state at
vi. The state can then be localized at &in éc = O(Q(f,G)) steps. We can succeed with any
constant probability by repeating this procedure a constamber of times.
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(iii) The oracle stef® is its own inverse, so we can implement a sequéhcHs,, ... of algorithm steps
as follows (wherd is the identity):

U —-0—-1—-0—-Uy—---

O

A function of particular interest i§ = OR(x,...,X,), which outputs 1 if and only ik; = 1 for some
i. We first give a general upper bound @{OR G) in terms of the diameter d&. (Throughout the
paper, we sometimes omit floor and ceiling signs if they ¢yelaaive no effect on the asymptotics.)

Proposition 4.3.

Q(OR.G) =0 (v/nds).

Proof. Let T be a minimum-height spanning tree 1@t rooted atv;. A depth-first search om uses
2n— 2 steps. LetS, be the set of vertices visited by depth-first search in stefisds, S be those
visited in steps + 1 to 20, and so on. Then

Slu"'USZn/GG:V-

Furthermore, for each; there is a classical algorithiy, using at most & steps, that starts &t, ends
atvy, and outputs ‘1’ if and only ik = 1 for somev; € S;. Then we simply perform Grover search at

vy over allAj; since each iteration také¥(dg) steps and there a@(«/Zn/ée) iterations, the number
of steps iSO (v/ndg). O

The bound of Proposition.3is tight:
Theorem 4.4. For all 9, there exists a graph G with diametég =  such that
Q(ORG)=Q <\/n5) :

Proof. Let G be a ‘starfish’ with central vertexy andM = 2(n—1) /d legsLy,..., Ly, each of length
0/2 (see Figure). We use the hybrid argument of Bennett et &. [Suppose we run the algorithm on

the all-zero inpuiXy. Then define thguery magnitudd&’ﬁt) to be the probability of finding the robot in
legL; immediately after the!" query:

ro_
. ViEZj Z

Let T be the total number of queries, andvet T/ (cd) for some constant & c < 1/2. Clearly

‘ 2

O’i(fz) (Xo)

w—1 M

B w—1
q;glrf 1) < qg)lzw.
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0/2

Figure 2: The ‘starfish’ grapfs. The marked item is at one of the tip vertices.

Hence there must exist a l&g- such that

rT q05 wo
z 2(n 1)

Letvi- be the tip vertex oL j-, and letY be the input which is 1 at: and O elsewhere. Then ¥ be a
hybrid input, which isXg during queries 1 td@ — qc5, butY during queriesI —qcd +1toT. Also, let

be the algorithm’s state aftexqueries when run oKg, and let

o) o o

~aD )"

I Z

Then for allg > 1, we claim tha1D(q 1,q) < 4I'(T a0 For by unitarity, the Euclidean distance

between|y® (X4-1)) and [V (X)) can only increase as a result of queries- qcs + 1 through

—(g—1)cd. Butno amplitude from outside;- can reachy;- during that interval, since the distance
is /2 and there are onlgd < 6/2 time steps. Therefore, switching froXg_, to X, can only affect
amplitude that is in_j- immediately after query’ —qcd:

a1 () - (~a1 )

V|

D3 alT79%9) (% ( —4r(T-0),

i,z

It follows that

D(O,W)qul\/D(q—l,q)S qZ Tq“ 2w,/ 10 1 ,/ e 1.

THEORY OF COMPUTING, Volume 1 (2005), pp. 47—-79 57



S. AARONSON, A. AMBAINIS

Here the first inequality uses the triangle inequality, drelthird uses the Cauchy-Schwarz inequality.
Now assuming the algorithm is correct we n&e®,w) = Q (1), which implies thall = Q (\/ né). O

It is immediate that Theorem.4 applies toZ-local unitaries as well a€-local ones: that is,
Q*(ORG) =Q (\/n5>. We believe the theorem can be extendedHttocal unitaries as well, but
a full discussion of this issue would take us too far afield.

5 Search on Grids

Let Lq4(n) be ad-dimensional grid graph of sizet/d x ... x n¥/9.  That is, each vertex is specified
by d coordinatess, ...,ig € {1,...,nY%}, and is connected to the at most Zertices obtainable by
adding or subtracting 1 from a single coordinate (boundaryices have fewer thardzheighbors). We
write simply L4 whenn is clear from context. In this section we present our maintpesresults: that
Q(OR Ly) =0O(y/n) ford > 3, andQ (OR, L,) = O(y/npolylogn) for d = 2.

Before proving these claims, let us develop some intuitiprsitoowing weaker bounds, taking the
cased = 2 for illustration. ClearlyQ(OR,£,) = O (n*4): we simply partition<, (n) into \/n sub-
squares, each a copy 6f(y/n). In 5¢/n steps, the robot can travel from the start vertex to any
subsquareC, searchC classically for a marked vertex, and then return to the statex. Thus, by
searching alk/n of theC'’s in superposition and applying Grover’s algorithm, thbabcan search the
grid in time O (n¥/4) x 5,/n= 0 (n%%).

Once we know that, we might as well partitién (n) into n'/3 subsquares, each a copyfof (n%/3).

Searching any one of these subsquares by the previoustaigdekes timeD ((n2/3)3/4 =0(y/n),

an amount of time that also suffices to travel to the subscaraeback from the start vertex. So using
Grover's algorithm, the robot can sear€ha(n) in time O (\/W ﬁ) =0(n?3). We can continue
recursively in this manner to make the running time apprdga¢tyn). The trouble is that, with each

additional layer of recursion, the robot needs to repeas#ach more often to upper-bound the error
probability. Using this approach, the best bounds we cobldin are roughlyO (1/npolylogn) for
d>3, or \/ﬁzo(m) for d = 2. In what follows, we use the amplitude amplification appfoaf
Grover [L9] and Brassard et all[l] to improve these bounds, in the case of a single marked»ede
O(+/n) for d > 3 (Section5.2) andO (\/ﬁlog‘"V2 n> for d = 2 (Section5.3). Section5.4 generalizes
these results to the case of multiple marked vertices.

Intuitively, the reason the casle= 2 is special is that there, the diameter of the gri®{s/n), which
matches exactly the time needed for Grover search. dEeB, by contrast, the robot can travel across
the grid in much less time than is needed to search it.

5.1 Amplitude Amplification

We start by describing amplitude amplificatiohil] 19], a generalization of Grover search. Létbe a
guantum algorithm that, with probability, outputs a correct answer together with a witness that grove
the answer correct. (For example, in the case of search]ghathm outputs a vertex labeélsuch that
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x = 1.) Amplification generates a new algorithm that callerder 1/\/€ times, and that produces both
a correct answer and a witness with probabifty1). In particular, assum¥ starts in basis stats),
and letm be a positive integer. Then the amplification procedure waskfollows:

(1) Set[go) =U]s).
(2) Fori =1tomset|yi, 1) = USU~W ), where

e W flips the phase of basis stai if and only if |y) contains a description of a correct
witness, and

¢ Sflips the phase of basis stdte if and only if |y) = |s).

We can decompos@lp) as sim |Wsyco + cosa |Wri ), where|Ws, o is a superposition over basis
states containing a correct witness alh; ) is a superposition over all other basis states. Brassard et
al. [11] showed the following:

Lemma5.1([11]). |¢) =sin[(2i + 1) a] |Wsucg + €0S[(2i + 1) a] |Wrail )-

If measuring|yh) gives a correct witness with probabiligy then|sina | = € and|a| > 1/,/. So
takingm= O(1//€) yields sin(2m+ 1) a] =~ 1. For our algorithms, though, the multiplicative constant
under the big-O also matters. To upper-bound this constanprove the following lemma.

Lemma 5.2. Suppose a quantum algorithth outputs a correct answer and witness with probability
exactlye. Then by usin@m-+ 1 calls toU or U~1, where

m < i 1
~ 4arcsing/e 2’

we can output a correct answer and witness with probabilitieast

(1— Me) (2m+1)%e.

Proof. We performm steps of amplitude amplification, which requires-2 1 calls toll or UL, By
Lemmab. 1, this yields the final state

sin[(2m+1) a] [Wsycg +cos|(2m+ 1) a] [Wrail) -
wherea = arcsiny/e. Therefore the success probability is

sir? [(2m-+ 1) arcsiny/e] > sir? [(2m+ 1) V]
2
> ((2m+ 1) \/E_ M83/2>

6
2m+1)*
> (2m+1)%e — %82.
Here the first line uses the monotonicity of %irin the interval[0, 71/2], and the second line uses the
fact that sirk > x — x3/6 for all x > 0 by Taylor series expansion. O
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Note that there is no need to uncompute any garbage let{,byeyond the uncomputation that
happens “automatically” within the amplification proceelur

5.2 Dimension At Least 3

Our goal is the following:
Theorem 5.3.1fd > 3, then QOR Ly) =0 (y/n).

In this section, we prove Theoref3 for the special case of a unique marked vertex; then, in
Sections5.4 and 5.5, we will generalize to multiple marked vertices. Let ®Rbe the problem of
deciding whether there are no marked vertices or exactly them, given that one of these is true.
Then:

Theorem 5.4.1f d > 3, then Q(OR(l),Ld> — (/M)

Choose constan{8 € (2/3,1) andu € (1/3,1/2) such thai3u > 1/3 (for example 8 = 4/5 and
u =5/11 will work). Let ¢y be a large positive integer; then for all positive integBrdet (g =
lr_1 {E%{f{ﬂ . Also lethg = EEQ. Assume for simplicity thah = ng for someR; in other words, that the

hypercubely (ng) to be searched has sides of length Later we will remove this assumption.

Consider the following recursive algorithi. If n = ng, then searclq (ng) classically, returning 1
if a marked vertex is found and O otherwise. Otherwise pauti€ 4 (ng) into nr/nr_1 subcubes, each
one a copy oflq4 (nr_1). Take the algorithm that consists of picking a subcGheniformly at random,
and then runningl recursively orC. Amplify this algorithm(ng/ng_1)* times.

The intuition behind the exponents is tmat 1 ~ nﬁ, so searchind 4 (nr-1) should take abou'lg/2
steps, which dominates thl’é/d steps needed to travel across the hypercube whe. Also, at level

R we want to amplify a number of times that is less thiﬂﬁ/nR_l)l/z by some polynomial amount,
since full amplification would be inefficient. The reason floe constrainBu > 1/3 will appear in the
analysis.

We now provide a more explicit description df, which shows that it can be implemented using
C-local unitaries and only a single bit of workspace. At ainyet, the quantum robot's state will have
the formy; . ai ;|vi,2), wherey; is a vertex ofLqy (nr) andzis a single bit that records whether or not
a marked vertex has been found. Given a subelidet v(C) be the “corner” vertex of; that is, the
vertex that is minimal in altl coordinates. Then the initial state when searcl@ngill be |v(C),0).
Beware, however, that “initial state” in this context justams the states) from Sectiorb.1. Because of
the way amplitude amplification works, will often be invoked orC with other initial states, and even
runin reverse.

For convenience, we willimplemewt using a two-stage recursion: given any subcube, the tagk of
will be to amplify the result of another procedure callédwhich in turn runsA recursively on smaller
subcubes. We will also use the conditional phase WpandSfrom Section5.1. For convenience, we
write Ag, Ur, Wk, Sk to denote the level of recursion that is currently active.u§,ir calls Ug, which
calls Ar_1, which callsUgr_1, and so on down tdl.
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Algorithm 5.5 (Ag). Searches a subcube C of sizefar the marked vertex, and amplifies the result to
have larger probability. Default initial statelv(C), 0).
If R=0then:

(1) Use classical C-local operations to visit aly mertices of C in any order. At each & C, use a
query transformation to map the stdig, z) to |vi, z® X;).

(2) Returnto \(C).
If R> 1then:

(1) Let nk be the smallest integer such tiabg + 1 > (nr/nr_1)*.
(2) callUg.
(3) Fori=1to g, call Wk, thenlUz?, then R, thenUg.

SupposeAr is run on the initial statév(C),0), and letCy,...,C,/n, be theminimal subcube
C—meaning those of sizey. Then the final state aftetr terminates should be

nRr/No
Ti — 3 M@0

if C does not contain the marked vertex. Otherwise the final stadald have non-negligible overlap
with |v(Ci), 1), whereCi- is the minimal subcube i@ that contains the marked vertex. In particular, if
R=0, then the final state should bgC),1) if C contains the marked vertex, ahdC),0) otherwise.

The two phase-flip subroutinédik and &, are both trivial to implement. To appWk, map each
basis statévi,2) to (—1)*|vi,z). To applySk, map eachvi,z) to — |vi,2) if z= 0 andv; = v(C) for some
subcubeC of sizeng, and to|vi, 2) otherwise. Below we give pseudocode T0s.

Algorithm 5.6 (Ug). Searches a subcube C of sizg for the marked vertex. Default initial state:

Iv(C),0).
(1) Partition C into rk/nr—1 smaller subcubes(... ,Chr/nr_1» €aCh Of size g ;.

(2) Forall je{1,...,d}, letV be the set of corner verticed®) that differ from (C) only in the
first j coordinates. Thusd/ {v(C)}, and in generalV;| = ((r/¢r-1)!. For j=1tod, let|V;)

be the state 1

Viy=-=7% 3 NG).0

(R v(GTev;

Apply a sequence of transformationg Zy, ..., Zg where 7 is a unitary that map$Vj_1> to ‘Vj>
by applying C-local unitaries that move amplitude only @dhe | coordinate.

(3) Call Ar-1 recursively. (Note that this searches,C.,C,_/n, , in superposition. Also, the
required amplification is performed for each of these sulksuutomatically by step (3) @fr_1.)

THEORY OF COMPUTING, Volume 1 (2005), pp. 47—-79 61



S. AARONSON, A. AMBAINIS

If Ur is run on the initial statév(C),0), then the final state should be
1 I’IR/no

Vv MR/NR-1 i; ),

where|q@) is the correct final state whefir_; is run on subcub€; with initial state|v(C;),0). A key
point is that there is no need fbig to call Ar_; twice, once to compute and once to uncompute—for
the uncomputation is already built inthg. This is what will enable us to prove an upper bound of

O(/n) instead ofO (,/n2R) = O(,/npolylogn).
We now analyze the running time difx.

Lemma5.7. Ag uses Qng) steps.

Proof. Let T4 (R) andTy (R) be the total numbers of steps usedAyandUr respectively in searching
Lg(nr). Then we havd 4 (0) = O(1), and

Ta (R) < (sz + 1) Tu (R) +2mg

Tu(R) <d*+ T4 (R—1)

forallR> 1. ForWg andSg can both be implemented in a single step, whijeusesd/r = dn,%z/d steps
to move the robot across the hypercube. Combining,

Ta(R) < (2mr+ 1) (g™ + Ta (R 1)) +2mg
< ((nr/nr-1)" +2) <d R+ Ta(R- 1)) +(nr/nr-1)" +1
O ((nr/mr-1)* 1) + ((nr/mr-1)* +2) Ta (R-1)
—0((ne/mr- 1) 1) + (ne/nR-2)* Ta (R-1)
o ((HR/anl)“ M+ (NR/MR_2)" TRy + -+ + (nR/no) ”i/d>

1/d 1/d 1/d
n Ng_ n
:né.O(n“L_F%_F..._Fl_“)

R-1 Mro2 No
:ng'o<n;/dfﬁu+m+ng/dfﬁu+ni/dfﬁu>

R-1
_ k.0 (n;/dﬁu N (né/d—ﬁu)l/ﬁ " (n;/dfﬁu)l/ﬁ >
=0(nk).

Here the second line follows becauser2t 1 < (nr/nr_1)" + 2, the fourth because th@r/nr_1)"
terms increase doubly exponentially, so adding 2 to eachnail affect the asymptotics; the seventh

becausel' = Q ((ni“ﬂ)ﬁ) , the eighth becausg;_; < nﬁ; and the last becaugiu > 1/3 > 1/d, hence

/P <1 O
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Next we need to lower-bound the success probability. SayAkar Ug “succeeds” if a measure-
ment in the standard basis yields the resu(€;-),1), whereC;- is the minimal subcube that contains
the marked vertex. Of course, the marked vertex itself can be found img = O(1) steps.

Lemma 5.8. Assuming there is a unique marked vertéy,succeeds with probabilit® (1/n1 2“).

Proof. Let P4 (R) and Py (R) be the success probabilities gk andUg respectively when searching
L4 (nr). Then clearlyP4 (0) =1, andPy (R) = (nr-1/nr) P4 (R—1) forallR> 1. So by Lemm&.2,

P (R) > (1— - (2mR+1)2Pu(R)> (2mg+ 1)?Py (R)
2 (1
(-

R
> (no/ng)" |1 (1— % (nR_l/nR)1‘2“>
1-2 i 1
> (no/ng)™ ﬂ(l Nl 2;1))
R
no/nR1 2“(1 anl B i 2u>

r=1

(2mg +1)2%P (R—l)) (2mg +1)2%R1P ), (R—1)

(NR/NR- 1)2”nﬁ—: A(R—1)> (nr/NRr-1)? nR lP (R-1)

le OolH le Wl

(Mr-1/MR)* 2“) (Mr-1/mR) P4 (R-1)

Here the third line follows because®+ 1 > (nr_1/ng)" and the functionx— 2x? is nondecreasing in

the interval[0, 1]; the fourth becausB, (R— 1) < 1; the sixth becauser_; < ng; and the last because
B <1andu < 1/2, theng’s increase doubly exponentially, anglis sufficiently large. O

Finally, takeAg itself and amplify it to success probabili@ (1) by running itO(né/z_“) times.
This yields an algorithm for searchirgy (ng) with overall running timeO (n§/2>, which implies that
Q <0R<1>,Ld (nR)) -0 (nl/z) .

All that remains is to handle values pfthat do not equahg for any R. The solution is simple:
first find the largesR such thaihg < n. Then setY = ng [nl/d/ER}d, and embed.q (n) into the larger

hypercubelq (). ClearlyQ (OR(l),Ld (n)> <Q (OR(l),Ld (n’)). Also notice thar’ = O(n) and

thatn’ =0 (né/ﬁ) =0 (ng/z) . Next partitionlq4 (') into n'/ng subcubes, each a copy®f (ng). The
algorithm will now have one additional level of recursiorhioh chooses a subcubef (') uniformly
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at random, runglg on that subcube, and then amplifies the resulting proce(a(rqn’/nR) times. The

total time is now
o<\/nER(( )1/d+n§{2)> _o<\/nERn§{2> =0(vn),

while the success probability &(1). This completes Theorem4.

5.3 Dimension 2
Inthed = 2 case, the best we can achieve is the following:
Theorem 5.9. Q(OR L) =0 (\/ﬁlogf’/2 n> .

Again, we start with the single marked vertex case and pastfiee general case to Sectiégngand
5.5

Theorem 5.10.Q (ORY, £) = O (y/filog*2n).

Ford > 3, we performed amplification on large (greater tI@(TL/nPZ“)) probabilities only once,
at the end. Fod = 2, on the other hand, any algorithm that we construct with ramyzero success
probability will have running timeQ (1/n), simply because that is the diameter of the grid. If we
want to keep the running tim@(,/n), then we can only perforr® (1) amplification steps at the end.
Therefore we need to keep the success probability relgthigh throughout the recursion, meaning that
we suffer an increase in the running time, since amplificatwmhigh probabilities is less efficient.

The proceduredlr, Ur, Wk, and Sk are identical to those in Sectidnz; all that changes are the
parameter settings. For all integd®s> 0, we now letng = €3R, for some odd integefy > 3 to be set
later. Thus,Ag andUg search the square grith (ng) of size (] x (8. Also, letm= ({o— 1) /2; then
Ar appliesm steps of amplitude amplification dr.

We now prove the counterparts of Lemniagand5.8for the two-dimensional case.

Lemma 5.11. Ag uses QR(G ) steps.

Proof. Let T4 (R) and Ty (R) be the time used bylr andUg respectively in searching, (ng). Then
T4(0) =1, and for allR> 1,

TA(R) < (2m+1) Ty (R) + 2m,
Tu(R) < 2nd?+ T4 (R—1).
Combining,
TA(R) < (2m+ 1) ( 20 +Ta(R-1)) +2m
o (205 +Ta(R—1)) +4—1
O (L5 +6oTa(R-1))
O(Reg™).
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Lemma 5.12. Ar succeeds with probabilit@ (1/R).

Proof. Let P4 (R) and Py (R) be the success probabilities gk andUg respectively when searching
Lo(nR). ThenPy(R) = P4(R—1)/43 for all R> 1. So by Lemmeb.2, and using the fact that
2m+ 1=/,

2
Pa(R) > (1— %Pum)) (2m+ 1Py (R

:< _e_gPA(R—1)> %PA(R—l)
3 0 2

—Py(R-1)~ SPAR-1)
—Q(1/R).

This is becaus® (R) iterations of the mapr := xg_1 — %xﬁfl are needed to drop from (say)Rto
1/R, andxp = P, (0) = 1 is greater than /R. O
We can amplifyAg to success probabilit (1) by repeating i (v/R) times. This yields an algo-

rithm for searchingl, (ng) that use<O (R¥2¢§™) = O (,/MrR*2(o) steps in total. We can minimize
this expression subject tK%R = nRr by taking /o to be constant an® to be © (logng), which yields

Q (OR(l),Lg (nR)) =0 <\/n_RIog n§/2>. If nis not of the formégR, then we simply find the smallest

integerR such than < ¢2%, and embed, (n) in the larger gridC, (¢27). Sincel, is a constant, this
increases the running time by at most a constant factor. W maw proved Theorerd. 10

5.4 Multiple Marked Items

What about the case in which there are multifdewith x; = 1? If there arek marked items (wherk
need not be known in advance), then Grover’s algorithm cahdimarked item with high probability
inO («/h/k) queries, as shown by Boyer et al.(]. In our setting, however, this is too much to hope

for—since even if there are many marked vertices, they nadilite in a faraway part of the hypercube.
ThenQ (n¥/9) steps are needed, evenyjfn/k < n'/9. Indeed, we can show a stronger lower bound.

Recall that O is the problem of deciding whether there are no marked \ertiz exactly of them.

Theorem 5.13. For all dimensions d> 2,

\/ﬁ
]

Here, for simplicity, we ignore constant factors dependingd.

Proof. For simplicity, we assume that bok#/® and (n/3%) Y9 are integers. (In the general case, we

can just replacé by [kl/‘ﬂd andn by the largest integer of the fort8m)k which is less tham. This
only changes the lower bound by a constant factor dependfing)o
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We use a hybrid argument almost identical to that of Theofein Divide Ly into n/k subcubes,
each havingk vertices and side lengtkt/d. Let Sbe a regularly-spaced set bf = n/ (Sdk) of these
subcubes, so that any two subcubeSimve distance at leask29 from one another. Then choose a
subcubeCj € Suniformly at random and mark ak vertices inCj. This enables us to consider each
C; e Sitself as asinglevertex (out ofM in total), having distance at leadt’?? to every other vertex.

More formally, given a subcub@; € S, letC; be the set of vertices consisting©f and the § — 1
subcubes surrounding it. (ThLéj, is a subcube of side lengttk89.) Then the query magnitude éﬁ

after thet'" query is
t _
=22

Vi 66] z

whereXo is the all-zero input. LeT be the number of queries, and et= T/ (ck!/9) for some constant
c> 0. Then as in Theorem.4, there must exist a subcull such that

T—qckv/d W 3dkw

w—1 ( )
M. < —
q; J M n

Let Y be the input which is 1 i€+ and O elsewhere; then & be a hybrid input which iy during
queries 1 tol — qck/d, butY during queriesT —qck/9+1toT. Next let

D(q,r):VgGZ

2

ai(;) (Xq) — ai(;) (%)

. (T—qek/®) . 1/d .
Then as in Theorem.4, for all c < 1 we haveD (q— 1,q) < ars;. . For in theck™“ queries from

T — qck/d 4 1 throughT — (q— 1) ck/9, no amplitude originating outsidg- can travel a distande"/
and thereby reac@j:. Therefore switching fronX,_1 to X, can only affect amplitude that is @;-
immediately after querff — qck!/9. It follows that

VDOwW <Y VDa-Lg<2y rj(f ) < w 3k _ 2v3IkZ YT
¢=1 d=1 A ey

HenceT = Q (,/n/kY2-%/4) for constant, since assuming the algorithm is correct we nBga, w) =
Q(1). O

Notice that ifk ~ n, then the bound of Theorem13become£ (n*/4) which is just the diameter of
Lg. Also, ifd =2, then ¥2—1/d =0 and the bound is simp& (1/n) independent dk. The bound of
Theoremb.13can be achieved (up to a constant factor that depends$ fan d > 3, and nearly achieved
for d = 2. We first construct an algorithm for the case whkeas known.

Theorem 5.14.

(i) Ford >3,
n
Q(0RY 24) -0 (fa)
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(i) Ford =2,
Q <OR(k),L2> ~0 (\/ﬁlog3/2 n) .

To prove Theoren®.14 we first divide Lq (n) into n/y subcubes, each of siad/d x ... x yt/d
(wherey will be fixed later). Then in each subcube, we choose onewaerigormly at random.

Lemma 5.15. If y > k, then the probability that exactly one marked vertex issehois at least ky —

(k/y)>.

Proof. Let x be a marked vertex. The probability thais chosen is 1y. Given thatx is chosen, the
probability that one of the other marked verticgss chosen is 0 ik andy belong to the same subcube,
or 1/y if they belong to different subcubes. Therefore, the prdibalithat x alone is chosen is at least

L)L (1K),
y y y y

Since the events<'alone is chosen” are mutually disjoint, we conclude thafpitedability that exactly
one marked vertex is chosen is at least— (k/y)?. O

In particular, fixy so thaty/3 < k < 2y/3; then Lemm&.15implies that the probability of choosing
exactly one marked vertex is at leag®2 The algorithm is now as follows. Asin the lemma, subdivide
Lg(n) into n/y subcubes and choose one location at random from each. Thehealgorithm for
the unique-solution case (Theorémt or 5.10) on the chosen locations only, as if they were vertices of
La(n/y).

The running time in the unique case \/\G{M) ford>3or

o) <\/glog3/2(n/y)> =0 <\/glog3/2 n)

for d = 2. However, each local unitary in the original algorithm nlbecomes a unitary affecting two
verticesv andw in neighboring subcubeS, andC,,. When placed side by sid€,, andC,, form a
rectangular box of sizey3/d x y1/4 x ... x y¥/4. Therefore the distance betweemndw is at most
(d+1)yY/d. It follows that each local unitary in the original algorithtakesO (dy*/?) time in the new
algorithm. Ford > 3, this results in an overall running time of

o) (o) (st
of./2y210g%2n) = o(\/nlog¥2n) .
(/3 7es°2n) =0( g
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5.5 Unknown Number of Marked Items

We now show how to deal with an unknodn Let OR=¥ be the problem of deciding whether there
are no marked vertices at least kof them, given that one of these is true.

Theorem 5.16.
(i) Ford >3,

>k _ Vi
Q(0R™.£4) =0 124755 )

(i) Ford =2,
Q (OR(Z"),L2> ~-0 (\/ﬁlog5/2 n) .

Proof. We use the straightforward ‘doubling’ approach of Boyerlef E]]:
(1) Forj=0tolog, (n/k)

e Run the algorithm of Theoref. 14with subcubes of sizg = 2Jk.

e If a marked vertex is found, then output 1 and halt.
(2) Query a random vertex and output 1 ifvis a marked vertex and O otherwise.

Let k* > k be the number of marked vertices. kif < n/3, then there exists a< log, (n/k) such
thaty; /3 < k" <2y;/3. So Lemméb.15implies that thejth iteration of step (1) finds a marked vertex
with probability at least 29. On the other hand, K* > n/3, then step (2) finds a marked vertex with
probability at least 13. Ford > 3, the time used in step (1) is at most

NG
=0 <k1/2—1/d ’

the sum in brackets being a decreasing geometric seriesd £&, the time iSO <\/ﬁlogs/2 n), since

log,(n/K) \/ﬁ \/ﬁ log,(n/K) 1
J; le/2—1/d = ki/2-1/d 2i(1/2-1/d)

=

each iteration take® (\/ﬁlog3/ 2 n) time and there are at most logterations. In neither case does step
(2) affect the bound, sinde< nimplies thain'/? < ,/n/k%/2-1/d, O

Taking k = 1 gives algorithms for unconstrained OR with running tin@s/n) for d > 3 and
O(y/nlog®?n) for d = 2, thereby establishing Theorems and5.9.
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6 Search on Irregular Graphs

In Sectionl.2, we claimed that our divide-and-conquer approach has thené@age of beingobust it
works not only for highly symmetric graphs such as hypersubat for any graphs having comparable
expansion properties. Let us now substantiate this claim.

Say a family of connected grapk&n = (Vi, En) } is d-dimensionalf there exists a > 0 such that
forall n,/ andv € V,,

IB(v,£)| > min (Kﬁd,n> ,

whereB(v,¢) is the set of vertices having distance at médtom v in G,. Intuitively, G, is d-
dimensional (ford > 2 an integer) if its expansion properties are at least as gsdtiose of the hy-
percubelq (n).2 It is immediate that the diameter &, is at most(n/K)l/d. Note, though, thaGp
might not be an expander graph in the usual sense, since wenaavequired that every sufficiently
smallsetof vertices has many neighbors.

Our goal is to show the following.

Theorem 6.1. If G is d-dimensional, then

(i) For aconstant &> 2,
Q(OR,G) = O(y/npolylogn) .

(i) Ford =2,
Q(OR,G) = y/n2°(vPam),

In proving part (i), the intuition is simple: we want to decposeG recursively into subgraphs
(calledclusterg, which will serve the same role as subcubes did in the hyjbercase. The procedure is
as follows. For some constam > 1, first choosgn/n; | vertices uniformly at random to be designated
as 1pegs Then form ZXclustersby assigning each vertex i@ to its closest 1-peg, as in a Voronoi
diagram. (Ties are broken randomly.) L&C) be the peg of cluste€. Next, split up any 1-cluster
C with more tham; vertices into[|C| /ny | arbitrarily-chosen 1-clusters, each with size at mmsand
with v(C) as its 1-peg. Observe that

3] ef
i; m|- |m|’

wheren = |Cy| + -+ + |Cjqn,|-  Therefore, the splitting-up step can at most double thebmunof
clusters.

In the next iteration, set, = ni/ﬁ, for some constang € (2/d,1). Choose 2n/ny| vertices
uniformly at random as 2-pegs. Then form 2-clusters by agsigeach 1-cluste€ to the 2-peg that
is closest to the 1-peg(C). Given a 2-cluste€’, let |C'| be the number of 1-clusters @. Then as
before, split up any’ with |C'| > ny/ny into [|C| /(n2/m)] arbitrarily-chosen 2-clusters, each with

size at moshy/n; and withv(C’) as its 2-peg. Continue recursively in this manner, settigg: né/fl

5In general, it makes sense to consider non-inteiges well.
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and choosing 21 [n/ng] vertices afk-pegs for eactR. Stop at the maximurR such thang < n. For
technical convenience, saf = 1, and consider each vertexo be the 0-peg of the O-clustév}.

For R > 1, define theadius of an R-clusterC to be the maximum, over alR— 1)-clustersC’ in
C, of the distance fronv(C) to v(C'). Also, call anR-clustergoodif it has radius at mostgr, where

lr= (%nRInn)l/d.
Lemma 6.2. With probabilityl — o(1) over the choice of clusters, all clusters are good.

Proof. Letv be the(R— 1)-peg of an(R— 1)-cluster. ThenB(v,¢)| > k¢4, whereB (v, ) is the ball of
radius/ aboutv. So the probability that has distance greater thdgto the nearedR-peg is at most

dy [N/nR] n/ng
(1—K—£R> < (1——2'n”> <L
n n/ng n?

Furthermore, the total number of pegs is easily seen @(g. It follows by the union bound thavery
(R—1)-peg forevery Rhas distance at mogk to the nearesR-peg, with probability - O(1/n) =
1—o0(1) over the choice of clusters. O

At the end we have a tree of clusters, which can be searchedsnagly just as in the hypercube
case. Lemmd.2 gives us a guarantee on the time needed to move a level doam @rpeg of an
R-cluster to a peg of aR— 1-cluster contained in it) or a level up. Also, l&t(C) be the number of
(R—1)-clusters inR-clusterC; thenK’ (C) < K (R) whereK (R) = 2[ng/ng_1]. If K'(C) < K(R), then
placeK (R) — K’ (C) “dummy” (R— 1)-clusters inC, each of which hasR— 1)-pegv(C). Now, every
R-cluster contains an equal numberrf 1 clusters.

Our algorithm is similar to SectioB.2 but the basis states now have the fomz,C), wherev is
a vertex,zis an answer bit, an@ is the label of the cluster currently being searched. (Uofately,
because multipl&-clusters can have the same peg, a single auxiliary qubibmgelr suffices.)

The algorithmAgr from Section5.2 now does the following, when invoked on the initial state
[v(C),0,C), whereC is anR-cluster. IfR =0, thenAr uses a query transformation to prepare the
state|v(C),1,C) if v(C) is the marked vertex ang(C),0,C) otherwise. IfR> 1 andC is not a
dummy cluster, therlr performsmg steps of amplitude amplification dfg, wheremg is the largest in-
teger such thatilr + 1 < \/nr/ng_1.% If Cis a dummy cluster, theAr does nothing for an appropriate
number of steps, and then returns that no marked item waslfoun

We now describe the subroutifig, for R> 1. When invoked withv(C),0,C) as its initial state,
Ur first prepares a uniform superposition

1
® = K®

It does this by first constructing a spanning tieér C, rooted atv(C) and having minimal depth, and
then moving amplitude along the edgesTogo as to prepargr:). After |@) has been preparetlr
then callsAr-1 recursively, to searc@y, ...,Cy g in superposition and amplify the results. Note that,

K(R)
Zl |V(Ci) ,O,Ci> .

8In the hypercube case, we performed fewer amplificationsderoto lower the running time fronynpolylogn to /.
Here, though, the splitting-up step produces a polyltactor anyway.
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because of the cluster labels, there is no reason why amlliging routed throug8 should not pass
through some other clustéf along the way—but there is also no advantage in our analysillibwing
this.

We now analyze the running time and success probabilirof

Lemma 6.3. Ar uses C(\/n_Rlogl/OI n) steps, assuming that all clusters are good.

Proof. Let T4 (R) and Ty (R) be the time used bylg and Ug respectively in searching ar-cluster.
Then we have

Ta(R) < VMr/Mr-1Tu (R),

Tu(R) <lr+Ta(R-1)
with the base cas&, (0) = 1. Combining,

TA (R) < v/ nR/anl (€R+TA(R— l))
< VMR/MR-1lR+ /NR/NR-20R-1+ -+ /NR/Nol1

A (el (g Inm) e

= /MR (|nl/d n) .0 <n;/d—ﬁ/2 I ni/dfﬁ/2>

= VMR ('nl/d n) -0 (ni/d_ﬁ/z + (ni/d_ﬁ/z) AL (ni/d—ﬁ/z> <1/B>Rl>

=0 (\/n—relogl/"I n) :
where the last line holds becay8e> 2/d and thereforeni/d_ﬁ/2 <1 O

Lemma 6.4. Ar succeeds with probabilit@ (1/polylogng) in searching a graph of size #a ng, as-
suming there is a unique marked vertex.

Proof. For allR > 0, letCr be theR-cluster that contains the marked vertex, andllgtR) andPy (R)
be the success probabilities.ék andUg respectively when searchi@g. Then for allR> 1, we have
Pu(R) =P4(R—1)/K(R), and therefore

2
Pa(R) > (1— @m@) (2me+ 1)°Pu (R

(2mg+1)? P4 (R—1) Pi(R—1)
:<1_ T KW )QmR“)HKT
=Q(Pa(R-1))
= Q(1/polylogng).

Here the third line holds becaug@mg+ 1) ~ ng/ng_1 ~ K (R) /2, and the last line becauge=
O (loglogng). O
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Finally, we repeatAr itself O(polylogng) times, to achieve a constant success probability using
O(\/n_RponIognR) steps in total. Again, ih is not equal tong for any R, then we simply find the
largestR such thatng < n, and then add one more level of recursion that searches amaRetluster
and amplifies the resu@® (« /n/nR> times. The resulting algorithm us€x\/npolylogn) steps, thereby

establishing part (i) of Theorer.1 for the case of a unique marked vertex. The generalization to
multiple marked vertices is straightforward.

Corllary 6.5. If G is d-dimensional for a constant:d 2, then

K v/npolylogy

Proof. Assume without loss of generality that= o(n), since otherwise a marked item is trivially found
in O(nl/d) steps. As in Theorerd.16 we give an algorithn®B consisting of log (n/k) + 1 iterations.
In iteration j = 0, choos€g n/K] verticeswy, ..., W, i uniformly at random. Then run the algorithm for
the unique marked vertex case, but instead of taking alice=inG as 0-pegs, take onlyy, ..., W k-
On the other hand, still choose the 1-pegs, 2-pegs, and saiformly at random from among all
vertices inG. For all R, the number oR-pegs should bé(n/k) /nr]. In general, in iterationj of
B, choose[n/ (2/k) | verticesw, ..., Wy ik uniformly at random, and then run the algorithm for a
unique marked vertex aswfi, ..., W (2ik were the only vertices in the graph.

It is easy to see that, assuming therekewemore marked vertices, with probabili€y(1) there exists
an iterationj such that exactly one afy, ..., wp, iy is marked. Henc& succeeds with probability
Q(1). It remains only to upper-bour@’s running time.

In iteration j, notice that Lemm&.2 goes through if we useg) = (22lkrglIn E)l/d instead of/g.
That is, with probability - O(k/n) = 1— 0(1) over the choice of clusters, eveRycluster has radius
at mostE(R”. So lettingT4 (R) be the running time afig on anR-cluster, the recurrence in Lemria3
becomes

TA(R) < v/ () +Ta (R-1)) = O (Vi (2klog (n/k)) )

o \/ﬁlogl/dE
(21 k)l/Zfl/d

if R =0(n/(2/k)). As usual, the case where there isRsuch thamg = © (n/ (2k)) is trivially
handled by adding one more level of recursion. If we factah&O (1/ polylogng) repetitions ofAr
needed to boost the success probabilittd ), then the total running time of iterationis

o (ﬁpolylogLQ) |

which is

(2iK) 1/2-1/d

ThereforeB’s running time is

o |092(n/k)\/ﬁpo|y|ogn _0 \/ﬁpolylogn
,; (@irEa | TP\ e )
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For thed = 2 case, the best upper bound we can shoWﬁQO(V o) This is obtained by simply
modifying Agr to have a deeper recursion tree. Instead of taking= né/_“l for someu, we take

N = 2v/°9"ng_; = 2RVI%9N, 50 that the total number of levels g/logn|. Lemma6.2 goes through
without modification, while the recurrence for the runniimge becomes

TA (R) < v/ nR/anl (€R+TA(R— l))
< VMR/MR-1lR+ /NR/NR-20R-1+ -+ /NR/Nol1

= O (2\/ Ogﬂ(R/2)1/|n n_|_ . + 2\/ 09”(R/2)m>
— /n20(viogn).

Also, since the success probability decreases by at moststart factor at each level, we have that
Pa(R) = 2’0(\/'@), and hence A van) amplification steps suffice to boost the success probability
to Q(1). Handling multiple marked items adds an additional factologn, which is absorbed into
20(v109n) - This completes Theoref .

6.1 Bits Scattered on a Graph

In Section2, we discussed several ways to pack a given amount of entnbpyispatial region of given
dimensions. However, we said nothing about how the entregisiributedwithin the region. It might
be uniform, or concentrated on the boundary, or distribitiesbme other way. So we need to answer
the following: suppose that in some graphgut of then verticesmightbe marked, and we know which
hthose are. Then how much time is needed to determine whatlieféheh is marked? If the graph

is the hypercubé.y4 for d > 2 or isd-dimensional ford > 2, then the results of the previous sections
imply thatO (/npolylogn) steps suffice. However, we wish to use fewer steps, takingradge of the
fact thath might be much smaller tham Formally, suppose we are given a graplwith n vertices,

of which h are potentially marked. Let OR>¥ be the problem of deciding wheth€rhas no marked
vertices or at least of them, given that one of these is the case.

Proposition 6.6. For all integer constants @& 2, there exists a d-dimensional graph G such that

i\ L/2-1/d
ofom)-afm (1))

Proof. Let G be thed-dimensional hypercubgy (n). Createh/k subcubes of potentially marked ver-
tices, each having vertices and side lengtk!/9. Space these subcubes outdg (n) so that the

distance between any pair of thesz((nk/h)l/d). Then choose a subculzuniformly at random

and mark alk vertices inC. This enables us to consider each subcube as a single Jeatang distance
Q ((nk/h)l/d> to every other vertex. The lower bound now follows by a hylaigument essentially
identical to that of Theorer.13 O

In particular, ifd = 2 thenQ (,/n) time is always needed, since the potentially marked vestice
might all be far from the start vertex. The lower bound of Rigijon 6.6 can be achieved up to a
polylogarithmic factor.
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Proposition 6.7. If G is d-dimensional for a constantd 2, then

h 1/2-1/d h
Q (OR(h~2k),G) =0 (nl/d (E) ponIogE> .

Proof. Assume without loss of generality thiat= o(h), since otherwise a marked item is trivially
found. Use algorithnB from Corollary 6.5, with the following simple change. In iteration choose
[h/ (2'k)] potentially marked vertice®a, ..., Wy ik Uniformly at random, and then run the algo-
rithm for a unique marked vertex aswf, ..., Wy, (2ix)) were the only vertices in the graph. That is, take
Wi, ..., Wjh(2iky] @S 0-pegs; then for aR > 1, chooseh/ (2/kng) | vertices ofG uniformly at random

1/d

asR-pegs. Lemmd.2 goes through if we us@tR’) = (%EijannE) instead offg. So following

Corollary 6.5, the running time of iteration is now

.. \/d h h Y2 h
o) <\/n_R (HZJ k) ponIogR> =0 (nl/d (ﬂ) polylog,

if nr=0 (h/ (2'k)). Therefore the total running time is
log, (h/k) yaf h 1/2-1/d h o (B 1/2-1/d h
O J; n (ﬂ) ponIogR =0(n <E> ponIogR )

Intuitively, Proposition6.7 says that the worst case for search occurs whei h&ential marked
vertices are scattered evenly throughout the graph.

O

7 Application to Disjointness

In this section we show how our results can be used to strengtlseemingly unrelated result in quantum
computing. Suppose Alice has a striNg= x;...x, € {0,1}", and Bob has a striny =y;...yn €
{0,1}". In thedisjointness problemAlice and Bob must decide with high probability whetherrthe
exists an such thatg =y; = 1, using as few bits of communication as possible. BuhrméeyeC and
Wigderson [.2] observed that in the quantum setting, Alice and Bob canestilis problem using only
O(y/nlogn) qubits of communication. This was subsequently improvedHbyer and de Wolf (]

to O(ﬁc‘f’g* ”), wherec is a constant and Idqn is the iterated logarithm function. Using the search
algorithm of Theoren®.3 we can improve this t® (1/n), which matches the celebrat€n,/n) lower
bound of Razborov43.

Theorem 7.1. The quantum communication complexity of the disjointnesisigm is Q(,/n).

Proof. The protocol is as follows. Alice and Bob both store theirtgpin a 3-D cubels (n) (Figure
3); that is, they lekjq = X andyjq = i, wherei = n?3j+nl/3k+1+1 andj k| € {0,...,n/3—1}.
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,A < ) =,

Figure 3: Alice and Bob ‘synchronize’ locations on theirgestive cubes.

To decide whether there exists pk, ) with Xju = yju = 1, Alice simply runs our search algorithm for
an unknown number of marked items. If the search algorithim tise state

> Aikiz|Vik,2),

then the joint state of Alice and Bob will be

> Ajkizc IVik ) ©[2) @ [¢) @ |Vjui ) » (7.1)

where Alice holds the firsjvjq ) and|z), Bob holds the seconfl/j ), and|c) is the communication
channel. Thus, whenever Alice is at locatignk,|) of her cube, Bob is at locatiofj, k, ) of his cube.

1)

)
®)

To simulate a query, Alice sends and an auxiliary qubit holdingj to Bob. Bob performs
|2) — |z&Yju), conditional onxjq = 1. He then returns both bits to Alice, and finally Alice
returns the auxiliary qubit to thi@) state by exclusive-OR’ing it withjy .

To simulate a non-query transformation that does nahgdab/jm > Alice just performs it herself.

By examining Algorithm$.5and5.6, we see that there are two transformations that ch,é\r]é.
We deal with them separately.

First, step 1 of Algorithmb.5 uses a classical-local transformation v ) — |Vj je). This
transformation can be simulated by Alice and Bob each segprapplying|vj ki) — [Vj k1)

Second, step 2 of Algorithra.6 applies transformationsd;, Z,, andZs. For brevity, we restrict
ourselves to discussing;. This transformation maps an initial stdtg ,0) to a uniform su-
perposition ovefvy x;,0) for all (j’,k,I) lying in the sameS; as(j,k,1). We can decompose this
into a sequence of transformations mappigy ) to a|vj k1) + B|Vj.+1k1) for somea, B. This
can be implemented in three steps, using an auxiliary qublite auxiliary qubit is initialized to
|0) and is initially held by Alice. At the end, the auxiliary quls returned td0). The sequence
of transformations is

Virki ) 10) Vi ki) — alvirki) [0) [Virki) + BIVirki) 1) [Viki)
— a|Virk1) [0) [Virki) + BIVirki) 1) [Virgakl)
— a|Vj k1) [0) [Vir k1 ) BIVj ki) 10) Vi)
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The first transformation is performed by Alice who then setidsauxiliary qubit to Bob. The
second transformation is performed by Bob, who then sergsdixiliary qubit back to Alice,
who performs the third transformation.

Since the algorithm use3(,/n) steps, and each step is simulated using a constant amounnef c
munication, the number of qubits communicated in the disj@ss protocol is therefore al€x(,/n).
O

8 Open Problems

As discussed in Sectich 1, a salient open problem raised by this work is to prove mtatiips among
Z-local, C-local, and H-local unitary matrices. In partem) can any Z-local or H-local unitary be
approximated by a product of a small number of C-local uiEg® Also, is it true thaQ(f,G) =
O(Qz(f,G)) = (D(QH (f,G)) forall f,G?

A second problem is to obtain interesting lower bounds inmodel. For example, |G be a
/N x /n grid, and supposé (X) = 1 if and only if every row ofG contains a vertex; with x; = 1.
ClearlyQ(f,G) =0 (n3/4), and we conjecture that this is optimal. However, we werelat show
any lower bound better tha@ (/n).

Finally, what is the complexity of finding a uniqgue markedtegron a 2-D square grid? As men-

tioned in Sectionl.2, Ambainis, Kempe, and RivosI8] showed thatQ (OR(l),Lg) = O(y/nlogn).
Can the remaining factor of logbe removed?
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