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Abstract

Can Grover’s quantum search algorithm speed up
search of a physical region—for example a 2-D grid of
size

√
n×√

n? The problem is that
√
n time seems to

be needed for each query, just to move amplitude across
the grid. Here we show that this problem can be sur-
mounted, refuting a claim to the contrary by Benioff.
In particular, we show how to search a d-dimensional
hypercube in time O(

√
n) for d ≥ 3, or O(

√
n log3 n)

for d = 2. More generally, we introduce a model of
quantum query complexity on graphs, motivated by fun-
damental physical limits on information storage, par-
ticularly the holographic principle from black hole ther-
modynamics. Our results in this model include almost-
tight upper and lower bounds for many search tasks;
a generalized algorithm that works for any graph with
good expansion properties, not just hypercubes; and re-
lationships among several notions of ‘locality’ for uni-
tary matrices acting on graphs. As an application of
our results, we give an O(

√
n)-qubit communication

protocol for the disjointness problem, which improves
an upper bound of Høyer and de Wolf and matches a
lower bound of Razborov.

1 Introduction

The goal of Grover’s quantum search algorithm [13]
is to search an ‘unsorted database’ of size n in a num-
ber of queries proportional to

√
n. Classically, of

course, order n queries are needed. It is sometimes
asserted that, although the speedup of Grover’s algo-
rithm is only quadratic, this speedup is provable, in
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contrast to the exponential speedup of Shor’s factor-
ing algorithm [20]. But is that really true? Grover’s
algorithm is typically imagined as speeding up com-
binatorial search—and we do not know whether every
problem in NP can be classically solved quadratically
faster than in the “obvious” way, any more than we
know whether factoring is in BPP.

But could Grover’s algorithm speed up search of a
physical region? Here the basic problem, it seems to
us, is the time needed for signals to travel across the re-
gion. For if we are interested in the fundamental limits
imposed by physics, then we should acknowledge that
the speed of light is finite, and that a bounded region
of space can store only a finite amount of information,
according to the holographic principle [7]. We discuss
the latter constraint in detail in Section 2; for now, we
say only that it suggests a model in which a ‘quantum
robot’ occupies a superposition over finitely many lo-
cations, and moving the robot from one location to an
adjacent one takes unit time. In such a model, the
time needed to search a region could depend critically
on its spatial layout. For example, if the n entries are
arranged on a line, then even to move the robot from
one end to the other takes n − 1 steps. But what if
the entries are arranged on, say, a 2-dimensional square
grid?

1.1 Summary of Results

This paper gives the first systematic treatment of
quantum search of spatial regions, with ‘regions’ mod-
eled as connected graphs. Our main result is posi-
tive: we show that a quantum robot can search a d-
dimensional hypercube with n vertices in time O (

√
n)

for d ≥ 3, or O(
√
n log3 n) for d = 2. This matches (or

in the case of 2 dimensions, nearly matches) the Ω (
√
n)

lower bound for quantum search, and supports the view
that Grover search of a physical region presents no
problem of principle. Our basic technique is divide-and-
conquer; indeed, once the idea is pointed out, an upper
bound of O

(

n1/2+ε
)

follows readily. However, to ob-
tain the tighter bounds is more difficult; for that we use
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the amplitude-amplification framework of Brassard et
al. [9].

Section 5 presents the main results; Section 5.4
shows further that, if the number of marked items
is at least k, then the search time decreases to
O

(√
nk−1/2+1/d

)

for d ≥ 3 (this upper bound is
tight). Also, Section 7 generalizes our algorithm to
arbitrary graphs that have ‘hypercube-like’ expansion
properties. Here the best bounds we can achieve

are O (
√
npolylogn) for d > 2, or

√
n2O(

√
log n) for

d = 2. Building on these results, Section 7.1 shows
that if a d-dimensional hypercube (or graph with simi-
lar expansion properties) has h ‘possible’ marked items,
at arbitrary known locations, then the search time is

O
(√

h (n/h)
1/d

polylogh
)

for d > 2. Intuitively, this

says that there is no worse scenario than having the h
possible marked items spaced equally throughout the
hypercube.

Section 6 shows, as an unexpected application of
our search algorithm, that the quantum communica-
tion complexity of the well-known disjointness prob-
lem is O (

√
n). This improves an O

(√
nclog

∗ n
)

up-
per bound of Høyer and de Wolf [14], and matches the
Ω (

√
n) lower bound of Razborov [17].

The rest of the paper is about the formal model that
underlies our results. Section 2 sets the stage for this
model, by exploring the ultimate limits on information
storage imposed by properties of space and time. This
discussion serves only to motivate our results; thus, it
can be safely skipped by readers unconcerned with the
physical Universe. In Section 3 we define quantum
query algorithms on graphs, a model similar to quan-
tum query algorithms as defined by Beals et al. [2], but
with the added requirement that unitary operations be
‘local’ with respect to some graph. In Section 3.1 we
address the difficult question, which also arises in work
on quantum random walks [1] and quantum cellular
automata [21], of what ‘local’ means. In Section 4 we
give general facts about our model, including an upper

bound of O
(√

nδ
)

for the time needed to search any

graph with diameter δ, and a matching lower bound
using the hybrid argument of Bennett et al. [5].

1.2 Relation to Previous Work

In a paper on ‘Space searches with a quantum
robot,’ Benioff [4] asked whether Grover’s algorithm
can speed up search of a physical region, as opposed to
a combinatorial search space. His answer was discour-
aging: for a 2-D grid of size

√
n × √

n, Grover’s algo-
rithm is no faster than classical search. The reason is
that, during each of the Θ (

√
n) Grover iterations, the

algorithm must use order
√
n steps just to travel across

the grid and return to its starting point for the diffu-
sion step. On the other hand, Benioff noted, Grover’s
algorithm does yield some speedup for grids of dimen-
sion 3 or higher, since those grids have diameter less
than

√
n.

Our results show that Benioff’s claim is mistaken:
by using Grover’s algorithm more carefully, one can
search a 2-D grid in O (

√
n polylogn) steps. To us this

illustrates why one should not assume an algorithm is
optimal on heuristic grounds. Painful experience—for
example, the “obviously optimal” O

(

n3
)

matrix mul-
tiplication algorithm—is what taught computer scien-
tists to see the proving of lower bounds as more than
a formality.

Our setting is related to that of quantum random
walks on graphs [1, 11]. Most work on quantum walks
is concerned with preparing a (near-) uniform distribu-
tion over vertices, a problem quite different from that of
finding a particular marked vertex. However, Shenvi,
Kempe, and Whaley [19] showed how to use a quantum
walk to find a marked vertex on the Boolean hyper-
cube, with efficiency matching that of Grover’s algo-
rithm. In light of that result, and of intriguing numer-
ical evidence supplied by N. Shenvi, we asked in an ear-
lier version of this paper whether quantum walks can
yield a speedup for searching fixed-dimensional grid
graphs. Recently Childs and Goldstone [11] have stud-
ied our question in the continuous-time setting. Us-
ing sophisticated eigenvalue analysis, they show that a
quantum walk can search a d-dimensional hypercube
for a single marked item in O (

√
n) steps when d > 4,

or O (
√
n logn) steps when d = 4 (assuming one can

use amplitude amplification over multiple runs of the
walk). When d = 3 the running time increases to
O

(

n5/6
)

, again allowing amplitude amplification (A.
Childs, personal communication), whereas when d = 2
no speedup is found. It is still possible that a choice
of Hamiltonian different from Childs and Goldstone’s
would yield better results for d < 4.

Currently, the main drawbacks of the quantum walk
approach are that (1) the running time is not competi-
tive with ours in low dimensions, and (2) all analyses of
quantum walks to date have relied heavily on symme-
tries of the underlying graph. If even minor ‘defects’
are introduced, the analysis becomes much harder. By
contrast, as we show in Section 7, our algorithm relies
only on global properties of the graph being searched.

2 The Physics of Databases

Theoretical computer science generally deals with
the limit as some resource (such as time or memory)
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increases to infinity. What is not always appreci-
ated is that, as the resource bound increases, phys-
ical constraints may come into play that were negli-
gible at ‘sub-asymptotic’ scales. We believe theoreti-
cal computer scientists ought to know something about
such constraints, and to account for them when possi-
ble. For if the constraints are ignored on the ground
that they “never matter in practice,” then the obvious
question arises: why use asymptotic analysis in the
first place, rather than restricting attention to those
instance sizes that occur in practice?

A constraint of particular interest for us is the holo-
graphic principle [7], which arose from black-hole ther-
modynamics. The principle states that the informa-
tion content of any spatial region is upper-bounded
by its surface area (not volume), at a rate of one bit
per Planck area, or about 1.4 × 1069 bits per square
meter. Intuitively, if one tried to build a spherical
hard disk with mass density υ, one could not keep ex-
panding it forever. For as soon as the radius reached
the Schwarzschild bound of r =

√

3/ (8πυ) (in Planck
units, c = G = ~ = k = 1), the hard disk would col-
lapse to form a black hole, and thus its contents would
be irretrievable.

Actually the situation is worse than that: even a pla-
nar hard disk of constant mass density would collapse
to form a black hole once its radius became sufficiently
large, r = Θ (1/υ). (We assume here that the hard
disk is disc-shaped. A linear or 1-D hard disk could
expand indefinitely without collapse.) It is possible,
though, that a hard disk’s information content could
asymptotically exceed its mass. For example, a black
hole’s mass is proportional to the radius of its event
horizon, but the entropy is proportional to the square
of the radius (that is, to the surface area). Admit-
tedly, inherent difficulties with storage and retrieval
make a black hole horizon less than ideal as a hard
disk. However, even a weakly-gravitating system could
store information at a rate asymptotically exceeding its
mass-energy. For instance, an enclosed ball of radia-
tion with radius r can store n = Θ

(

r3/2
)

bits [7, 12],
even though its energy grows only as r. Our results in
Section 7.1 will imply that a quantum robot could (in
principle!) search such a ‘radiation disk’ for a marked
item in time O

(

r5/4
)

= O
(

n5/6
)

. This is some im-
provement over the trivial O (n) upper bound for a 1-D
hard disk, though it falls short of the desired O (

√
n).

In general, if n = rc bits are scattered throughout a
3-D ball of radius r (where c ≤ 3 and the bits’ locations
are known), we show that the time needed to search for
a ‘1’ bit grows as n1/c+1/6 = r1+c/6 (omitting logarith-
mic factors). In particular, if n = Θ

(

r2
)

(saturating

the holographic bound), then the time grows as n2/3 or

r4/3. To achieve a search time of O (
√
npolylogn), the

bits would need to be concentrated on a 2-D surface.
Because of the holographic principle, we see that it

is not only quantum mechanics that yields a Ω (
√
n)

lower bound on the number of steps needed for un-
ordered search. If the items to be searched are laid
out spatially, then general relativity in 3+1 dimensions
independently yields the same bound, Ω (

√
n), up to a

constant factor.1 Interestingly, in d+1 dimensions the
relativity bound would be Ω

(

n1/(d−1)
)

, which for d > 3
is weaker than the quantum mechanics bound. Given
that our two fundamental theories yield the same lower
bound, it is natural to ask whether that bound is tight.
The answer seems to be that it is not tight, since (i) the
entropy on a black hole horizon is not efficiently acces-
sible,2 and (ii) weakly-gravitating systems are subject
to the Bekenstein bound [3], an even stronger entropy
constraint than the holographic bound.3

Yet it is still of basic interest to know whether
n bits in a radius-r ball can be searched in time
o (min {n, r√n})—that is, whether it is possible to do
anything better than either brute-force quantum search
(with the drawback pointed out by Benioff [4]), or clas-
sical search. Our results show that it is possible.

Physicists with whom we discussed these ideas have
raised three questions: (1) whether our complexity
measure is realistic; (2) how to account for time di-
lation; and (3) whether given the number of bits we
are imagining, cosmological bounds are also relevant.
Let us address these questions in turn.

(1) One could argue that to maintain a ‘quantum
database’ of size n requires n computing elements ([22],
though see also [18]). So why not just exploit those
elements to search the database in parallel? Then it
becomes trivial to show that the search time is limited
only by the radius of the database, so the algorithms
of this paper are unnecessary. Our response is that,
while there might be n ‘passive’ computing elements
(capable of storing data), there might be many fewer
‘active’ elements, which we consequently wish to place
in a superposition over locations. This assumption is
unobjectionable from a physical point of view. For a
particle (and indeed any object) really does have an
indeterminate location, not merely an indeterminate

1Admittedly, the holographic principle is part of quantum
gravity and not general relativity per se. All that matters
for us, though, is that the principle seems logically indepen-
dent of quantum-mechanical linearity, which is what produces
the “other” Ω

(√
n
)

bound.
2In the case of a black hole horizon, waiting for the bits to

be emitted as Hawking radiation (if indeed they are) takes time
proportional to r3, which is much too long.

3Assuming a finite number of particle species in Nature, the
entropy upper bound is O

(

r3/2
)

(which is saturated by a ‘radi-
ation disk’) [12].
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internal state (such as spin) at some location. We
leave as an open problem, however, whether our as-
sumption is valid for specific quantum computer archi-
tectures such as ion traps.

(2) So long as we invoke general relativity, shouldn’t
we also consider the effects of time dilation? Those
effects are indeed pronounced near a black hole hori-
zon. Again, though, for our upper bounds we will have
in mind systems far from the Schwarzschild limit, for
which any time dilation is by at most a constant factor
independent of n.

(3) How do cosmological considerations affect our
analysis? Bousso [6] argues that, in a spacetime with
positive cosmological constant Λ > 0, the total num-
ber of bits accessible to any one experiment is at most
3π/ (Λ ln 2), or roughly 10122 given current experimen-
tal bounds [16] on Λ.4 Intuitively, even if the Universe
is spatially infinite, most of it recedes too quickly from
any one observer to be harnessed as computer memory.

One response to this result is to assume an idealiza-
tion in which Λ vanishes, although Planck’s constant
~ does not vanish. As justification, one could argue
that without the idealization Λ = 0, all asymptotic
bounds in computer science are basically fictions. But
perhaps a better response is to accept the 3π/ (Λ ln 2)
bound, and then ask how close one can come to satu-
rating it in different scenarios. Classically, the maxi-
mum number of bits that can be searched is, in a crude
model5, actually proportional to 1/

√
Λ ≈ 1061 rather

than 1/Λ. The reason is that if a region had much
more than 1/

√
Λ bits, then after 1/

√
Λ Planck times—

that is, about 1010 years, or roughly the current age of
the Universe—most of the region would have receded
beyond one’s cosmological horizon. What our results
suggest is that, using a quantum robot, one could come
closer to saturating the cosmological bound—since, for
example, a 2-D region of size 1/Λ can be searched in

time O
(

1√
Λ

polylog 1√
Λ

)

. How anyone could prepare

(say) a database of size much greater than 1/
√

Λ re-
mains unclear, but if such a database existed, it could
be searched!

4Also, Lloyd [15] argues that the total number of bits acces-
sible up till now is at most the square of the number of Planck

times elapsed so far, or about
(

1061
)2

= 10122 . Lloyd’s bound,
unlike Bousso’s, does not depend on Λ being positive. The nu-
merical coincidence between the two bounds reflects the experi-
mental finding [16] that we live in a transitional era, when both
Λ and “dust” contribute significantly to the Universe’s net en-
ergy balance (ΩΛ ≈ 0.7, Ωdust ≈ 0.3). In earlier times dust
(and before that radiation) dominated, and Lloyd’s bound was
tighter. In later times Λ will dominate, and Bousso’s bound
will be tighter. Why we should live in such a transitional era is
unknown.

5Specifically, neglecting gravity and other forces that could
counteract the effect of Λ.

3 The Model

Much of what is known about the power of quantum
computing comes from the black-box or query model
[2, 5, 13, 20], in which one counts only the number of
queries to an oracle, not the number of computational
steps. We will take this model as the starting point for
a formal definition of quantum robots. Doing so will
focus attention on our main concern: how much harder
is it to evaluate a function when its inputs are spatially
separated? As it turns out, all of our algorithms will
be efficient as measured by the number of gates and
auxiliary qubits needed to implement them.

For simplicity, we assume that a robot’s goal is to
evaluate a Boolean function f : {0, 1}n → {0, 1}, which
could be partial or total. A ‘region of space’ is a
connected undirected graph G = (V,E) with vertices
V = {v1, . . . , vn}. Let X = x1 . . . xn ∈ {0, 1}n be an
input to f ; then each bit xi is available only at vertex
vi. We assume the robot knowsG and the vertex labels
in advance, and so is ignorant only of the xi bits. We
thus sidestep a major difficulty for quantum walks [1],
which is how to ensure that a process on an unknown
graph is unitary.

At any time, the robot’s state has the form
∑

αi,z |vi, z〉. Here vi ∈ V is a vertex, representing
the robot’s location; and z is a bit string (which can
be arbitrarily long), representing the robot’s internal
configuration. The state evolves via an alternating
sequence of T algorithm steps and T oracle steps:

U (1) → O(1) → · · · → U (T ) → O(T ).

An oracle step O(t) maps each basis state |vi, z〉 to
|vi, z ⊕ xi〉, where xi is exclusive-OR’ed into the first
bit of z. An algorithm step U (t) can be any unitary
matrix that (1) does not depend on X , and (2) acts ‘lo-
cally’ on G. How to make the second condition precise
is the subject of Section 3.1.

The initial state of the algorithm is |v1, 0〉. Let

α
(t)
i,z (X) be the amplitude of |vi, z〉 immediately after

the tth oracle step; then the algorithm succeeds with
probability 1 − ε if

∑

|vi,z〉 : zOUT =f(X)

∣

∣

∣
α

(T )
i,z (X)

∣

∣

∣

2

≥ 1 − ε

for all inputs X , where zOUT is a bit of z representing
the output.

3.1 Locality Criteria

Classically, it is easy to decide whether a stochas-
tic matrix acts locally with respect to a graph G: it
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does if it moves probability only along the edges of G.
In the quantum case, however, interference makes the
question much more subtle. In this section we propose
three alternative criteria for whether a unitary matrix
U is local. Our algorithms can be implemented using
the most restrictive of these criteria, whereas our lower
bounds apply to all three of them.

The first criterion we call Z-locality (for zero): U
is Z-local if, given any pair of non-neighboring vertices
v1, v2 in G, U “sends no amplitude” from v1 to v2; that
is, the corresponding entries in U are all 0. The second
criterion, C-locality (for composability), says that this
is not enough: not only must U send amplitude only be-
tween neighboring vertices, but it must be composed of
a product of commuting unitaries, each of which acts on
a single edge. The third criterion is perhaps the most
natural one to a physicist: U is H-local (for Hamilto-
nian) if it can be obtained by applying a locally-acting,
low-energy Hamiltonian for some fixed amount of time.
More formally, let Ui,z→i∗,z∗ be the entry in the |vi, z〉
column and |vi∗ , z

∗〉 row of U .

Definition 1 U is Z-local if Ui,z→i∗,z∗ = 0 whenever
i 6= i∗ and (vi, vi∗) is not an edge of G.

Definition 2 U is C-local if the basis states can be
partitioned into subsets P1, . . . , Pq such that

(i) Ui,z→i∗,z∗ = 0 whenever |vi, z〉 and |vi∗ , z
∗〉 belong

to distinct Pj ’s, and

(ii) for each j, all basis states in Pj are either from
the same vertex or from two adjacent vertices.

Definition 3 U is H-local if U = eiH for some Her-
mitian H with eigenvalues of absolute value at most π,
such that Hi,z→i∗,z∗ = 0 whenever i 6= i∗ and (vi, vi∗)
is not an edge in E.

If a unitary matrix is C-local, then it is also Z-local
and H-local. Beyond that, though, how are the locality
criteria related? Are they approximately equivalent?
If not, then does a problem’s complexity in our model
ever depend on which criterion is chosen? A key ques-
tion, which we leave open, is whether any Z-local or H-
local unitary can be approximated by a product of, say,
O (logn) C-local unitaries. (A product of O (n) such
unitaries trivially suffices, but that is far too many.)
In the full version of the paper, we prove many weaker
relations among the locality criteria (as well as some
weak separations), and also show that the criteria are
robust under various changes to the definitions.

4 General Bounds

Given a Boolean function f : {0, 1}n → {0, 1}, the
quantum query complexity Q (f), defined by Beals et
al. [2], is the minimum T for which there exists a T -
query quantum algorithm that evaluates f with prob-
ability at least 2/3 on all inputs. (We will always be
interested in the two-sided, bounded-error complexity,
sometimes denoted Q2 (f).) Similarly, given a graph
G with n vertices labeled 1, . . . , n, we define Q (f,G)
to be the minimum T for which there exists a T -query
quantum robot on G that evaluates f with probability
2/3. Here the algorithm steps must be C-local.

Let δG be the diameter of G, and call f nondegen-
erate if it depends on all n input bits.

Proposition 4 For all f,G,

(i) Q (f,G) ≤ 2n− 3.

(ii) Q (f,G) ≤ (2δG + 1)Q (f).

(iii) Q (f,G) ≥ Q (f).

(iv) Q (f,G) ≥ δG/2 if f is nondegenerate.

Our model is robust in the following senses (the
proof is omitted from this abstract).

Proposition 5 For nondegenerate f , the following
change Q (f,G) by at most a constant factor.

(i) Replacing the initial state |v1, 0〉 by an arbitrary
(known) |ψ〉.

(ii) Requiring the final state to be localized at some
vertex vi with probability at least 1 − ε.

(iii) Allowing multiple algorithm steps between each or-
acle step (and measuring the complexity by the
number of algorithm steps).

A function of particular interest is f =
OR(x1, . . . , xn), which outputs 1 if and only if xi = 1
for some i. We first give a general upper bound on
Q (OR, G) in terms of the diameter of G. (Through-
out the paper, we omit floor and ceiling signs when
they have no effect on the asymptotics.)

Proposition 6 Q (OR, G) = O
(√

nδG
)

.

Proof. Let τ be a minimum-height spanning tree
for G, rooted at v1. A depth-first search on τ uses
2n − 2 steps. Let S1 be the set of vertices visited
by DFS in steps 1 to δG, S2 be those visited in steps
δG +1 to 2δG, and so on. Then S1 ∪ · · · ∪S2n/δG

= V .
Furthermore, for each Sj there is a classical algorithm
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Aj , using at most 3δG steps, that starts at v1, ends
at v1, and outputs ‘1’ if and only if xi = 1 for some
vi ∈ Sj . Then we simply perform Grover search at v1
over all Aj ; since each iteration takes O (δG) steps and

there are O
(

√

2n/δG

)

iterations, the number of steps

is O
(√
nδG

)

.
The bound of Proposition 6 is tight:

Theorem 7 For all δ, there exists a G for which δG =

δ and Q (OR, G) = Ω
(√

nδ
)

.

Proof Sketch. We let G be a ‘starfish’ with a cen-
tral vertex v and 2 (n− 1) /δ legs radiating outward
from v, each of length δ/2. A marked item is placed
at the tip vertex of one of the legs. Intuitively, this
turns the problem into a standard Grover search of a
list of size 2 (n− 1) /δ, but where each query takes δ
steps—δ/2 to move the robot to a tip vertex, and δ/2
to move it back to v. Thus the total number of steps

needed is Ω
(

δ
√

n/δ
)

= Ω
(√

nδ
)

. This intuition can

be formalized by a relatively standard hybrid argument
along the lines of Bennett et al. [5], which we omit from
this abstract.

5 Search on Grids

Let Ld (n) be a d-dimensional grid graph of size
n1/d×· · ·×n1/d. That is, each vertex is specified by d
coordinates i1, . . . , id ∈

{

1, . . . , n1/d
}

, and is connected
to the at most 2d vertices obtainable by adding or sub-
tracting 1 from a single coordinate (boundary vertices
have fewer than 2d neighbors). We write simply Ld

when n is clear from context. In this section we present
our main positive results: that Q (OR,Ld) = Θ (

√
n)

for d ≥ 3, and Q (OR,L2) = O (
√
n polylogn) for

d = 2.
Before proving these claims, let us develop some

intuition by showing weaker bounds, taking the case
d = 2 for illustration. Clearly Q (OR,L2) =
O

(

n3/4
)

: we simply divide L2 (n) into
√
n subsquares

S (1) , . . . , S (
√
n), each isomorphic to L2 (

√
n). In

5
√
n steps, the robot can travel from the start vertex

to any S (i), search S (i) classically for a marked item,
and then return to the start vertex. Thus, by search-
ing all

√
n of the S (i)’s in superposition and applying

Grover’s algorithm, the robot can search the grid in
time O

(

n1/4
)

× 5
√
n = O

(

n3/4
)

.
Once we know that, we might as well divide L2 (n)

into n1/3 subsquares, each isomorphic to L2

(

n2/3
)

.
Searching any one of these subsquares by the previ-

ous algorithm takes time O
(

(

n2/3
)3/4

)

= O (
√
n),

an amount of time that also suffices to travel to the

subsquare and back from the start vertex. So us-
ing Grover’s algorithm, the robot can search L2 (n)

in time O
(√

n1/3 · √n
)

= O
(

n2/3
)

. We can con-

tinue recursively in this manner to make the running
time approach O (

√
n). The trouble is that, with each

additional layer of recursion, the robot needs to re-
peat the search more often to upper-bound the error
probability. Using this approach, the best bounds we
could obtain are roughly O (

√
npolylogn) for d ≥ 3,

or
√
n2O(

√
log n) for d = 2. In what follows, we use

the amplitude amplification approach of Brassard et
al. [9] to improve these bounds, in the case of a single
marked item, to O (

√
n) for d ≥ 3 (Section 5.2) and

O
(√

n log2 n
)

for d = 2 (Section 5.3). Section 5.4
generalizes these results to the case of multiple marked
items.

Intuitively, the reason the case d = 2 is special is
that there, the diameter of the grid is Θ (

√
n), which

matches exactly the time needed for Grover search.
For d ≥ 3, by contrast, the robot can travel across
the grid in much less time than is needed to search it.

5.1 Amplitude Amplification

We start by describing amplitude amplification [9], a
generalization of Grover search. Let A be a quantum
algorithm that, with probability ε, outputs a correct
answer together with a witness that proves the answer
correct. (For example, in the case of search, the al-
gorithm outputs a vertex label i such that xi = 1.)
Amplification is a method that generates a new algo-
rithm A′ that calls A order 1/

√
ε times, and produces

both a correct answer and a witness with probability
Ω (1). In the full version, we prove

Lemma 8 If we are given a quantum algorithm
with success probability ε, then by executing it
2m + 1 times, where m ≤ π/ (4 arcsin

√
ε) −

1/2, we can achieve success probability at least
(

1 − (2m+ 1)2 ε/3
)

(2m+ 1)2 ε.

Intuitively, this lemma says that amplification to
small probabilities is more efficient than amplification
to larger probabilities. If (2m+ 1)2 ε is small, then
2m+ 1 repetitions increase the probability by a factor
of almost (2m+ 1)

2
. Otherwise, the increase in prob-

ability is just by a factor of Ω
(

(2m+ 1)
2
)

.

5.2 Dimension At Least 3

Our goal is the following:

Theorem 9 If d ≥ 3, then Q (OR,Ld) = Θ (
√
n).
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In this section, we prove Theorem 9 for the special
case of a unique marked item; then, in Section 5.4, we
will generalize to multiple marked items. Let OR(k) be
the problem of deciding whether there are no marked
items or exactly k of them, given that one of these is
true. Then:

Theorem 10 If d ≥ 3, then Q
(

OR(1),Ld

)

= Θ (
√
n).

Consider the following recursive algorithm A. If the
number of vertices n is at most some constant n0, then
search Ld (n) classically, returning 1 if a marked item
is found and 0 otherwise. Otherwise subdivide Ld (n)
into n1/5 subcubes S (1) , . . . , S

(

n1/5
)

, each isomorphic

to Ld

(

n4/5
)

. Take the algorithm that consists of pick-
ing an S (i) uniformly at random, and then running A
recursively on S (i). Amplify this algorithm m times
for the smallest m such that 2m+ 1 ≥ n1/11.

The above was a ‘high-level description’ of A; in the
full version, we give explicit pseudocode to show that
A can be implemented using C-local unitaries. Here
we content ourselves to analyze A’s running time.

Lemma 11 A finds the unique marked item (if it ex-
ists) with probability Ω

(

n−1/11
)

in time O
(

n5/11
)

.

Proof. Let T (n) be the number of steps used by A
to search Ld (n). Then we obtain the recurrence

T (n) ≤ n1/11
(

T
(

n4/5
)

+ cn1/d
)

for some constant c. Since cn1/d < n2/5 for sufficiently
large n, this resolves to

T (n) = O
(

n(1/11)[1+(4/5)+(4/5)2+··· ]
)

= O
(

n5/11
)

.

Now let P (n) be the probability that A finds the
unique marked item in Ld (n). For the unamplified
version, we obtain the recurrence

P (n) ≥ n−1/5P
(

n4/5
)

.

We now apply Lemma 8 to find the success probability
of the amplified version. Since

(2m+ 1)2 ε ≥ n2/11n−1/5P
(

n4/5
)

= n−1/55P
(

n4/5
)

,

we obtain the recurrence

P (n) ≥
(

1 − 1

3
n−1/55P

(

n4/5
)

)

n−1/55P (n4/5).

Notice that if we consider the simpler recurrence
P ′(n) ≥ n−1/55P ′(n4/5), then

P ′(n) ≥ n(−1/55)[1+(4/5)+(4/5)2+··· ] = Ω
(

n−1/11
)

.

We claim that the multiplier of 1 − 1
3n

−1/55P
(

n4/5
)

does not affect the result substantially. Since
P (n4/5) ≤ 1,

1 − 1

3
n−1/55P (n4/5) ≥ 1 − 1

3
n−1/55.

If we take the product of this expression over all n that
appear in the algorithm (n, n4/5, and so on down to
n0), the product is at least a constant.

Finally, we take A and amplify it to success proba-
bility Ω (1) by running it O(n1/22) times. This gives an
algorithm with overall running time O

(

n5/11+1/22
)

=

O
(

n1/2
)

, establishing Theorem 10.

5.3 Dimension 2

The d = 2 case is trickier; here the best we can
achieve is the following:

Theorem 12 Q (OR,L2) = O
(√
n log3 n

)

.

Again, we start with the single marked item case
and postpone the general case to Section 5.4.

Theorem 13 Q
(

OR(1),L2

)

= O
(√

n log2 n
)

.

For d ≥ 3, we performed amplification on large
(greater than O

(

n−1/11
)

) probabilities only once, at
the end. For d = 2, on the other hand, any algorithm
that we construct with any nonzero success probability
will have running time Ω (

√
n), simply because that is

the diameter of the grid. If we want to keep the run-
ning time O(n1/2+ε), then we can perform only O (nε)
amplification steps at the end. Therefore we need to
keep the success probability relatively high throughout
the recursion, meaning that we suffer an increase in the
running time, since amplification to high probabilities
is less efficient.

Our approach is as follows. We consider a sequence
of algorithms, each of which has success probability
Ω (1/ logn). The Rth algorithm AR searches a square

grid L2

(

logR n
)

, of size logR/2 n× logR/2 n. If R = 1,

then A1 just chooses one of the logn vertices uniformly
at random, visits that vertex, and accepts if and only
if it contains a marked item. If R > 1, then AR

subdivides the grid into log n subsquares, each isomor-

phic to L2

(

logR−1 n
)

. It then chooses a subsquare

uniformly at random and runs AR−1 on it. Finally
(in the R > 1 case only) it applies m iterations of
amplitude amplification to this process, m being the
smallest integer such that 2m + 1 ≥

√
logn. In the

full version we show that if R < logn, then AR finds
the unique marked item with probability Ω(1/ logn)
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in time O
(

R log(R+1)/2 n
)

. The proof is similar to

that of Lemma 11. Increasing the size to
√
n×√

n re-
quires R = logn/ log logn levels of recursion. The run-

ning time of the resulting algorithm is O
(√

n log3/2 n
)

.

To amplify the success probability to Ω (1), we need
O

(√
logn

)

repetitions of the whole algorithm, hence
the bound of Theorem 13.

5.4 Multiple Marked Items

What about the case in which there are multiple i’s
with xi = 1? If there are k marked items (where k need
not be known in advance), then Grover’s algorithm can

find a marked item with high probability in O
(

√

n/k
)

queries, as shown by Boyer et al. [8]. In our setting,
however, this is too much to hope for—since even if
there are many marked items, they might all be in a
faraway part of the hypercube. Then Ω

(

n1/d
)

steps

are needed, even if
√

n/k < n1/d. Indeed, in the full
version we prove a stronger lower bound. Recall that
OR(k) is the problem of deciding whether there are no
marked items or exactly k of them. Then we show

that for d ≥ 2, Q
(

OR(k),Ld

)

= Ω
(√
n/k1/2−1/d

)

.

Notice that if k ≈ n, then this bound becomes
Ω

(

n1/d
)

which is just the diameter of Ld. Also, if
d = 2, then 1/2 − 1/d = 0 and the bound is simply
Ω (

√
n) independent of k. The bound can be achieved

for d ≥ 3, and nearly achieved for d = 2. The main
idea is to reduce OR to OR(1). In the case where k is
known, the algorithm is as follows. Choose γ so that
γ/3 < k < 2γ/3. Subdivide Ld (n) into n/γ subcubes.
In each subcube, choose one vertex uniformly at ran-
dom. Then run the algorithm for the unique-solution
case (Theorem 10 or 13) on the chosen locations only,
as if they were vertices of Ld (n/γ). It can be shown
that, with probability at least 2/9, there is exactly one
marked vertex among the chosen vertices. Then the
unique-solution algorithm finds this vertex. The run-
ning time works out to be O

(√
n/k1/2−1/d

)

for d ≥ 3,

or O
(√
n log2 n

)

for d = 2.

What if k is unknown? Let OR(≥k) be the prob-
lem of deciding whether there are no marked items or
at least k of them, given that one of these is true.
Then the straightforward ‘doubling’ approach of Boyer

et al. [8] yields Q
(

OR(≥k),Ld

)

= O
(√
n/k1/2−1/d

)

andQ
(

OR(≥k),L2

)

= O
(√
n log3 n

)

, completing The-

orems 9 and 12.

6 Application to Disjointness

In this section we show how our results can be used
to strengthen a seemingly unrelated result in quantum
computing. Suppose Alice has a stringX = x1 . . . xn ∈
{0, 1}n, and Bob has a string Y = y1 . . . yn ∈ {0, 1}n.
In the disjointness problem, Alice and Bob must de-
cide with high probability whether there exists an i
such that xi = yi = 1, using as few bits of communica-
tion as possible. Buhrman, Cleve, and Wigderson [10]
observed that in the quantum setting, Alice and Bob
can solve this problem using only O (

√
n logn) qubits

of communication. This was subsequently improved
by Høyer and de Wolf [14] to O

(√
nclog

∗ n
)

, where c
is a constant and log∗ n is the iterated logarithm func-
tion. Using the search algorithm of Theorem 9,6 we
can improve this to O (

√
n), which matches the cele-

brated Ω (
√
n) lower bound of Razborov [17].

Theorem 14 The quantum communication complex-
ity of the disjointness problem is O (

√
n).

Proof. The protocol is as follows. Alice and
Bob both store their inputs in a 3-D cube L3 (n);
that is, they let xjkl = xi and yjkl = yi, where
i = n2/3j+n1/3k+ l+1 and j, k, l ∈

{

0, . . . , n1/3 − 1
}

.
Throughout, they maintain a joint state of the form

∑

αj,k,l,zA,zB
|vjkl, zA〉 ⊗ |vjkl , zB〉 ,

so if Alice’s state is measured to be at location (j, k, l)
of her cube, then Bob’s state is at location (j, k, l) of
his cube. To decide whether there exists an (j, k, l)
with xjkl = yjkl = 1, Alice simply runs the C-local
implementation of our search algorithm, but with two
changes. First, at each oracle step, Alice inverts her
phase if and only if xjkl = yjkl = 1; this requires 2
qubits of communication from Bob, to send yjkl to Al-
ice and then to erase it. Second, at each level of the
recursion, after Alice prepares a uniform superposition
over ‘destination vertices,’ she sends her destination
vertex to Bob, requiring log

(

n1/5
)

qubits. That way,
for each basis state of Alice’s that moves to subcube
S of Alice’s cube, a corresponding basis state of Bob’s
can move to subcube S of Bob’s cube. Let C (n) be
the total number of qubits communicated. Then we
obtain a recurrence analogous to that for the running
time T (n) in Lemma 11:

C (n) ≤ n1/11
(

C
(

n4/5
)

+O
(

log
(

n1/5
)))

.

6Actually, the communication protocol depends only on the
recursive structure of our algorithm, not on its being local with
respect to a cube. But without the requirement of locality, we
wouldn’t have come up with the algorithm!
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This resolves to C (n) = O
(

n5/11
)

, for a protocol

that succeeds with probability Ω
(

n−1/11
)

. Amplifying

O
(

n1/22
)

times boosts the success probability to Ω (1)
at the cost of increasing C (n) to O (

√
n).

7 Search on Irregular Graphs

In Section 1.2, we claimed that our divide-and-
conquer approach has the advantage of being robust :
it works not only for highly symmetric graphs such
as hypercubes, but for any graphs having comparable
expansion properties. Let us now substantiate this
claim.

Say a family of connected graphs {Gn = (Vn, En)}
is d-dimensional if there exists a β > 0 such that for
all n, r and v ∈ Vn, |B (v, r)| ≥ min

(

βrd, n
)

, where
B (v, r) is the induced subgraph of vertices having dis-
tance at most r from v in Gn. Intuitively, Gn is
d-dimensional (for d ≥ 2 an integer) if its expansion
properties are at least as good as those of the hyper-
cube Ld (n).7 It is immediate that the diameter of

Gn is at most (n/β)
1/d

. Note, though, that Gn might
not be an ‘expander graph’ in the usual sense, since we
have not required that every sufficiently small set of
vertices has many neighbors.

In the full version of the paper we show that if G
is d-dimensional, then Q (OR, G) = O (

√
npolylogn)

for a constant d > 2, and Q (OR, G) =
√
n2O(

√
log n)

for d = 2. To show this we describe an algorithm
A∗, which generalizes the algorithm A of Section 5.2.
The intuition is simple: we want to decompose G re-
cursively into subgraphs (called clusters), which will
serve the same role as subcubes did in A. However,
the most obvious ways of implementing this idea fail.
The reason is that our definition of d-dimensionality is
quite permissive; it allows (for example) graphs that
have wildly different expansion properties in different
regions. Thus, if we take the clusters to be (possi-
bly overlapping) Hamming balls of a fixed radius, then
some clusters could have many more vertices than we
want.

Our solution is to create the clusters bottom-up
rather than top-down. We first choose vertices uni-
formly at random to be designated as 1-pegs. We then
form 1-clusters by assigning each vertex to its closest
1-peg, as in a Voronoi diagram. For each 1-cluster C
that has too many vertices, we split C up arbitrarily
into several 1-clusters, each having the same 1-peg. In
the next iteration, we choose random 2-pegs and use
them to aggregate the 1-clusters into 2-clusters. We
then form 3-clusters, 4-clusters, and so on.

7In general, it makes sense to consider non-integer d as well.

When this process is finished we have a tree of sub-
graphs, which a robot can search recursively exactly
as in the hypercube case. Because of the splitting-
up step, there may be more than one cluster with the
same peg. This does not cause problems with unitar-
ity, however, since we can just label each basis state
with its corresponding cluster.

7.1 Bits Scattered on a Graph

In Section 2, we discussed several ways to pack a
given amount of entropy into a spatial region of given
dimensions. However, we said nothing about how
the entropy is distributed within the region. It might
be uniform, or concentrated on the boundary, or dis-
tributed in some other way. So we need to answer
the following: suppose that in some graph, h out of
the n vertices might contain a marked item, and we
know which h those are. Then how many queries are
needed to determine whether any of the h does contain
a marked item? If the graph is the hypercube Ld for
d ≥ 2 or is d-dimensional for d > 2, then the results
of the previous sections imply that O (

√
n polylogn)

queries suffice. However, we wish to use fewer queries,
taking advantage of the fact that h might be much
smaller than n. Formally, given a graph G where (say)

exactly h of the vertices have self-loops, let OR[h] be
problem of deciding whether any of the vertices with
self-loops contains a marked item.

In the full version we show that, for all integer con-
stants d ≥ 2, there exists a d-dimensional graph G

such that Q
(

OR[h], G
)

= Ω
(√

h (n/h)
1/d

)

. In par-

ticular, if d = 2 then Ω (
√
n) time is always needed,

since the vertices with self-loops might be far from
the start vertex. Somewhat surprisingly, this lower
bound can be achieved up to a polylogarithmic fac-
tor. We show that if G has h self-loops, and is d-

dimensional for a constant d > 2, then Q
(

OR[h], G
)

=

O
(√

h (n/h)
1/d

polylogh
)

. Intuitively, this says that

the worst case for search occurs when the h poten-
tial marked items are scattered evenly throughout the
graph.

8 Open Problems

As discussed in Section 3.1, a salient open problem
raised by this work is to prove relationships among Z-
local, C-local, and H-local unitary matrices.

A second problem is to obtain interesting lower
bounds in our model. For example, let G be a

√
n×√

n
grid, and suppose f (X) = 1 if and only if every row
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of G contains a vertex vi with xi = 1. Clearly
Q (f,G) = O

(

n3/4
)

, and we conjecture that this is
optimal. However, we were unable to show any lower
bound better than Ω (

√
n).

Finally, can the O (
√
n polylogn) bound for search

on a 2-D grid be improved, perhaps even to O (
√
n)?
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