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ABSTRACT
We achieve essentially the largest possible separation be-
tween quantum and classical query complexities. We do
so using a property-testing problem called Forrelation,
where one needs to decide whether one Boolean function
is highly correlated with the Fourier transform of a sec-
ond function. This problem can be solved using 1 quan-
tum query, yet we show that any randomized algorithm
needs Ω(

√
N/ logN) queries (improving an Ω(N1/4) lower

bound of Aaronson). Conversely, we show that this 1 versus

Ω̃(
√
N) separation is optimal: indeed, any t-query quantum

algorithm whatsoever can be simulated by an O(N1−1/2t)-
query randomized algorithm. Thus, resolving an open ques-
tion of Buhrman et al. from 2002, there is no partial Boolean
function whose quantum query complexity is constant and
whose randomized query complexity is linear. We conjec-
ture that a natural generalization of Forrelation achieves
the optimal t versus Ω(N1−1/2t) separation for all t. As
a bonus, we show that this generalization is BQP-complete.
This yields what’s arguably the simplest BQP-complete prob-
lem yet known, and gives a second sense in which Forre-
lation “captures the maximum power of quantum compu-
tation.”

1. BACKGROUND
Since the work of Simon [15] and Shor [14] two decades

ago, we have had powerful evidence that quantum computers
can achieve exponential speedups over classical computers.
Of course, for problems like Factoring, these speedups are
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conjectural at present: we cannot rule out that a fast clas-
sical factoring algorithm might exist. But in the black-box
model, which captures most known quantum algorithms, ex-
ponential and even larger speedups can be proved. We know,
for example, that Period-Finding (a natural abstraction
of the problem solved by Shor’s algorithm) is solvable with

only O (1) quantum queries, but requiresNΩ(1) classical ran-
domized queries, where N is the number of input elements
[8, 6, 12]. We also know that Simon’s Problem is solv-

able with O (logN) quantum queries, but requires Ω(
√
N)

classical queries; and that a similar separation holds for the
Glued-Trees problem introduced by Childs et al. [7, 11].1

To us, these results raise an extremely interesting ques-
tion:

• “The Speedup Question.” Within the black-box
model, just how large of a quantum speedup is possi-
ble? For example, could there be a function of N bits
with a quantum query complexity of 1, but a classical
randomized query complexity of Ω(N)?

One may object: once we know that exponential and
even larger quantum speedups are possible in the black-box
model, who cares about the exact limit? In our view, the
central reason to study the Speedup Question is that do-
ing so can help us better understand the nature of quan-
tum speedups themselves. For example, can all exponential
quantum speedups be seen as originating from a common
cause? Is there a single problem or technique that captures
the advantages of quantum over classical query complexity,
in much the same way that random sampling could be said
to capture the advantages of randomized over deterministic
query complexity?

As far as we know, the Speedup Question was first posed
by Buhrman et al. [5] around 2002, in their study of quan-
tum property-testing. Specifically, Buhrman et al. asked
whether there is any property of N-bit strings that exhibits
a “maximal” separation: that is, one that requires Ω(N)
queries to test classically, but only O (1) quantumly. The
best separation they could find, based on Simon’s problem,
was “deficient” on both ends: it required Ω(

√
N) queries to

test classically, and O(logN log logN) quantumly.
Since then, there has been only sporadic progress on the

Speedup Question. In 2009, Aaronson [1] introduced the
Forrelation problem—a problem that we will revisit in
this paper—and showed that it was solvable with only 1

1However, in all these cases the queries are non-Boolean.
If we insist on Boolean queries, then the quantum query
complexities get multiplied by an O(logN) factor.



quantum query, but required Ω(N1/4) classical randomized
queries. In 2010, Chakraborty et al. [6] argued that Period-

Finding gives a different example of an O(1) versus Ω̃(N1/4)
quantum/classical gap; there, however, we only get an O(1)-
query quantum algorithm if we allow non-Boolean queries.

Earlier, in 2001, de Beaudrap, Cleve, and Watrous [4] had
given what they described as a black-box problem that was
solvable with 1 quantum query, but that required Ω(N1/4)

or Ω(
√
N) classical randomized queries (depending on how

one defines the “input size” N). However, de Beaudrap et
al. were not working within the usual model of quantum
query complexity. Normally, one provides “black-box ac-
cess” to a function f , meaning that the quantum algorithm
can apply a unitary transformation that maps basis states
of the form |x, y〉 to basis states of the form |x, y ⊕ f(x)〉 (or
|x〉 to (−1)f(x) |x〉, if f is Boolean). By contrast, for their
separation, de Beaudrap et al. had to assume the ability to
map basis states of the form |x, y〉 to basis states of the form
|x, π(y + sx)〉, for some unknown permutation π and hidden
shift s.

2. OUR RESULTS
This paper has two main contributions—the largest quan-

tum black-box speedup yet known, and a proof that that
speedup is essentially optimal—as well as many smaller re-
lated contributions.

2.1 Maximal Quantum/Classical Separation
We undertake a detailed study of the Forrelation prob-

lem, which Aaronson [1] introduced for a different purpose
than the one that concerns us here (he was interested in an
oracle separation between BQP and the polynomial hierar-
chy).2 In Forrelation, we are given access to two Boolean
functions f, g : {0, 1}n → {−1, 1}. We want to estimate the
amount of correlation between f and the Fourier transform
of g—that is, the quantity

Φf,g :=
1

23n/2

∑

x,y∈{0,1}n

f (x) (−1)x·y g (y) .

It is not hard to see that |Φf,g | ≤ 1 for all f, g. The problem
is to decide, say, whether |Φf,g | ≤ 1

100
or Φf,g ≥ 3

5
, promised

that one of these is the case.3 Here and throughout this
paper, the “input size” is taken to be N := 2n.

One can give (see Section 4.3) a quantum algorithm that
solves Forrelation, with bounded probability of error, us-
ing only 1 quantum query. Intuitively, however, the prop-
erty of f and g being “forrelated” (that is, having large Φf,g

value) is an extremely global property, which should not be
apparent to a classical algorithm until it has queried a sig-
nificant fraction of the entire truth tables of f and g. And
indeed, improving an Ω(N1/4) lower bound of Aaronson [1],
in Section 4.1 we show the following:

2Also, in [1], the problem was called “Fourier Checking.”
3The reason for the asymmetry—i.e., for promising that Φf,g

is positive if its absolute value is large, but not if its absolute
value is small—is a bit technical. On the one hand, we want
the “unforrelated” case to encompass almost all randomly-
chosen functions f, g. On the other hand, we also want
Forrelation to be solvable using only 1 quantum query. If
we had promised |Φf,g | ≥ 3

5
, rather than Φf,g ≥ 3

5
, then we

would only know a 2-query quantum algorithm. In any case,
none of these choices make a big difference to our results.

Theorem 1. Any classical randomized algorithm for For-

relation must make Ω(
√

N
logN

) queries.

Theorem 1 yields the largest quantum versus classical sep-
aration yet known in the black-box model. As we show in
the full version, Theorem 1 also implies the largest property-
testing separation yet known—for with some work, one can
recast Forrelation (or rather, its negation) as a property
that is testable with only 1 query quantumly, but that re-

quires Ω(
√

N
logN

) queries to test classically.
We deduce Theorem 1 as a consequence of a more gen-

eral result: namely, a lower bound on the classical query
complexity of a problem called Gaussian Distinguishing.
Here we are given oracle access to a collection of N (0, 1)
real Gaussian random variables, x1, . . . , xM . We are asked
to decide whether the variables are all independent, or al-
ternatively, whether they lie in a known low-dimensional
subspace of RM : one that induces a covariance of at most ε
between each pair of variables, while keeping each variable
an N (0, 1) Gaussian individually. We show the following:

Theorem 2. Gaussian Distinguishing requires

Ω
(

1/ε
log(M/ε)

)
classical randomized queries.

Theorem 1 is then simply a (discretized) special case of

Theorem 2, with M = 2N and ε = 1/
√
N , the latter coming

from the inner product between a standard basis vector and
a Fourier basis vector. Beyond that, it seems to us that
Theorem 2 could have independent applications in statistics
and machine learning.

2.2 Proof of Optimality
We show that the quantum/classical query complexity

separation achieved by the Forrelation problem is close
to the best possible. More generally:

Theorem 3. Let Q be any quantum algorithm that makes
t = O (1) queries to an N-bit string X ∈ {0, 1}N . Then
we can estimate Pr [Q accepts X], to constant additive error

and with high probability, by making only O(N1−1/2t) clas-
sical randomized queries to X.4 Moreover, the randomized
queries are nonadaptive.

So for example, every 1-query quantum algorithm can
be simulated by an O(

√
N)-query classical randomized al-

gorithm, every 2-query quantum algorithm can be simu-
lated by an O(N3/4)-query randomized algorithm, and so
on. Theorem 3 resolves the open problem of Buhrman et
al. [5] in the negative: it shows that there is no problem
(property-testing or otherwise) with a constant versus linear
quantum/classical query complexity gap. Theorem 3 does

not rule out the possibility of an O (logN) versus Ω̃ (N) gap,
and indeed, we conjecture that such a gap is possible.

Once again, we deduce Theorem 3 as a consequence of a
more general result, which might have independent applica-
tions to classical sublinear algorithms. Namely:

Theorem 4. Every degree-k real polynomial p : {−1, 1}N →
R that is

4The reason for the condition t = O (1) is that, in the

bound O(N1−1/2t), the big-O hides a multiplicative factor
of exp (t). Thus, we can obtain a nontrivial upper bound
on query complexity as long as t = o(

√
logN).



(i) bounded in [−1, 1] at every Boolean point, and

(ii) “block-multilinear” (that is, the variables can be parti-
tioned into k blocks, such that every monomial is the
product of one variable from each block),

can be approximated to within ±ε, with high probability, by

nonadaptively querying only O(
(
N/ε2

)1−1/k
) of the vari-

ables.

In the statement of Theorem 4, we strongly conjecture
that condition (ii) can be removed. If so, then we would ob-
tain a sublinear algorithm to estimate any bounded, constant-
degree real polynomial. In the full version, we show that
condition (ii) can indeed be removed in the special case
k = 2.

2.2.1 k-fold Forrelation
Next, we study a natural generalization of Forrelation.

In k-fold Forrelation, we are given access to k Boolean
functions f1, . . . , fk : {0, 1}n → {−1, 1}. We want to esti-
mate the “twisted sum”

Φf1,...,fk :=
1

2(k+1)n/2

∑

x1,...,xk∈{0,1}n

f1 (x1) (−1)x1·x2

f2 (x2) (−1)x2·x3

· · · (−1)xk−1·xk fk (xk)

It is not hard to show that |Φf1,...,fk | ≤ 1 for all f1, . . . , fk.
The problem is to decide, say, whether |Φf1,...,fk | ≤ 1

100
or

Φf1,...,fk ≥ 3
5
, promised that one of these is the case.

One can give (see Section 4.3) a quantum algorithm that
solves k-fold Forrelation, with bounded error probabil-
ity, using only ⌈k/2⌉ quantum queries. In Section 4.4, we
show, conversely, that k-fold Forrelation “captures the
full power of quantum computation”:

Theorem 5. If f1, . . . , fk are described explicitly (say, by
circuits to compute them), and k = poly (n), then k-fold
Forrelation is a BQP-complete promise problem.

This gives us a particularly“self-contained”complete prob-
lem for quantum computation. Not only can one state
the k-fold Forrelation problem without any notions from
quantum mechanics, one does not need any nontrivial math-
ematical notions, like the condition number of a matrix or
the Jones polynomial of a knot.

We conjecture, moreover, that k-fold Forrelation achieves

the optimal k/2 versus Ω̃(N1−1/k) quantum/classical query
complexity separation for all even k. If so, then there are
two senses in which k-fold Forrelation captures the power
of quantum computation.

2.3 Other Results
In the full version of this paper, we also include several

other results.
First, we study the largest possible quantum versus classi-

cal separations that are achievable for approximate sampling
and relation problems. We show that there exists a sam-
pling problem—namely, Fourier Sampling of a Boolean
function—that is solvable with 1 quantum query, but re-
quires Ω(N/ logN) classical queries. By our previous re-
sults, this exceeds the largest quantum/classical gap that is
possible for decision problems.

Second, we generalize our result that every 1-query quan-
tum algorithm can be simulated using O(

√
N) randomized

queries, to show that every bounded degree-2 real polyno-
mial p : {−1, 1}N → [−1, 1] can be estimated using O(

√
N)

randomized queries. We conjecture that this can be gener-
alized, to show that every bounded degree-k real polynomial
can be estimated using O(N1−1/k) randomized queries.

Third, we extend our Ω(
√

N
logN

) randomized lower bound

for the Forrelation problem, to show a Ω(
√

N

log7/2 N
) lower

bound for k-fold Forrelation for any k ≥ 2. We con-

jecture that the right lower bound is Ω̃(N1−1/k), but even

generalizing our Ω̃(
√
N) lower bound to the k-fold case is

nontrivial.

3. QUERY COMPLEXITY
Briefly, by the query complexity of an algorithm A, we

mean the number of queries that A makes to its input z =
(z1, . . . , zN), maximized over all valid inputs z.5 The query
complexity of a function F is then the minimum query com-
plexity of any algorithm A (of a specified type—classical,
quantum, etc.) that outputs F (z), with bounded probabil-
ity of error, given any valid input z.

One slightly unconventional choice that we make is to de-
fine “bounded probability of error” to mean “error probabil-
ity at most 1/2 − ε, for some constant ε > 0” rather than
“error probability at most 1/3.” The reason is that we will
be able to design a 1-query quantum algorithm that solves
the Forrelation problem with error probability 2/5, but
not one that solves it with error probability 1/3. Of course,
one can make the error probability as small as one likes using
amplification, but doing so increases the query complexity
by a constant factor.

We assume throughout this paper that the input z ∈
{−1, 1}N is Boolean, and we typically work in the {−1, 1}
basis for convenience. In the classical setting, each query
returns a single bit zi, for some index i ∈ [N ] specified by
A. In the quantum setting, each query performs a diagonal
unitary transformation

|i, w〉 → zi |i, w〉 ,
where w represents “workspace qubits” that do not partici-
pate in the query.6 Between two queries, A can apply any
unitary transformation it likes that does not depend on z.

In this paper, the input z = (z1, . . . , zN ) will typically
consist of the truth tables of one or more Boolean func-
tions: for example, f, g : {0, 1}n → {−1, 1}, or f1, . . . , fk :
{0, 1}n → {−1, 1}. Throughout, we use n for the num-
ber of input bits that these Boolean functions take (which
roughly corresponds to the number of qubits in a quantum
algorithm), and we use N = 2n for the number of bits being
queried in superposition. (Strictly speaking, we should set
N = k ·2n, where k is the number of Boolean functions. But
this constant-factor difference will not matter for us.) Thus,
for the purposes of query complexity, N is the “input size,”
in terms of which we state our upper and lower bounds.

5If we are talking about a partial Boolean function, then a
“valid” input is simply any input that satisfies the promise.
6For Boolean inputs z, this is well-known to be ex-
actly equivalent to a different definition of a quantum
query, wherein each basis state |i, a, w〉 gets mapped to
|i, a⊕ zi, w〉. Here a represents a 1-qubit “answer register.”



4. TECHNIQUES

4.1 Randomized Lower Bound
Proving that any randomized algorithm for Forrelation

requires Ω(
√

N
logN

) queries is surprisingly involved. As we
mentioned in Section 2.1, the first step, following the work of
Aaronson [1], is to convert Forrelation into an analogous
problem involving real Gaussian variables. In Real For-
relation, we are given oracle access to two real functions
f, g : {0, 1}n → R, and are promised either that (i) every
f (x) and g (y) value is an independent N (0, 1) Gaussian, or
else (ii) every f (x) value is an independent N (0, 1) Gaus-

sian, while every g (y) value equals f̂ (y) (i.e., the Fourier
transform of f evaluated at y). The problem is to decide
which holds. Using a rounding reduction, we show that
any query complexity lower bound for Real Forrelation
implies the same lower bound for Forrelation itself.

More formally, in the full version we prove the following.

Theorem 6. Suppose real functions f, g : {0, 1}n → R

are drawn according to the measure (ii) above. Define
Boolean functions F,G : {0, 1}n → {−1, 1} by F (x) :=
sgn (f (x)) and G (y) := sgn (g (y)). Then

Ef,g [ΦF,G] =
2

π
±O

(
logN

N

)
.

Earlier, Aaronson [1, Theorem 9] proved a variant of The-
orem 6, but with a badly suboptimal constant: he was only
able to show that

E [ΦF,G] ≥ cos

(
2 arccos

√
2

π

)
− o (1) ≈ 0.273,

compared to the exact value of 2/π ≈ 0.637 that we get
here.

Theorem 6 has the following corollary, as we prove in the
full version.

Corollary 7. Suppose there exists a T -query algorithm
that solves Forrelation with bounded error. Then there
also exists an O (T )-query algorithm that solves Real For-
relation with bounded error.

So to prove a lower bound for Forrelation, it suffices
to prove the same lower bound for Real Forrelation.
Furthermore, because the Real Forrelation problem is
to distinguish two probability distributions, we can assume
without loss of generality that any algorithm for the latter
is deterministic.

Making the problem continuous allows us to adopt a ge-
ometric perspective. In this perspective, we are given or-
acle access to a real vector v ∈ R2N , whose 2N coordi-
nates consist of all values f (x) and all values g (y) (recall
that N = 2n). We are trying to distinguish the case

where v is simply an N (0, 1)2N Gaussian, from the case
where v is confined to an N-dimensional subspace of R2N—
namely, the subspace defined by g = f̂ . Now, suppose that
values f (x1) , . . . , f (xt) and g (y1) , . . . , g (yu) have already
been queried. Then we can straightforwardly calculate the
Bayesian posterior probabilities for being in case (i) or case
(ii). For case (i), the probability turns out to depend solely
on the squared 2-norm of the vector of empirical data seen
so far:

Pr [case (i)] ∝ exp

(
−∆i

2

)
,

where

∆i = f (x1)
2 + · · ·+ f (xt)

2 + g (y1)
2 + · · ·+ g (yu)

2 .

For case (ii), by contrast, the probability is proportional
to exp(−∆ii/2), where ∆ii is the minimum squared 2-norm
of any point f ∈ RN compatible with all the data seen
so far, as well as with the linear constraint g = f̂ . Let

V =
{
|1〉 , . . . , |N〉 , |1̂〉, . . . , |N̂〉

}
be the set of 2N unit vec-

tors in RN that consists of all N elements of the standard
basis, together with allN elements of the Fourier basis. (For
convenience, we will often use ket notation, even to repre-
sent vectors that are not quantum states.) Then ∆ii, in
turn, can be calculated using a process of Gram-Schmidt
orthogonalization, on the vectors in V corresponding to the
f -values and g-values that have been queried so far.

More formally, given an arbitrary collection of linearly-
independent unit vectors |v1〉 , |v2〉 . . ., the Gram-Schmidt
process produces orthonormal vectors by recursively project-
ing each |vi〉 onto the orthogonal complement of the sub-
space spanned by |v1〉 up to |vi−1〉, and then normalizing
the result. That is:

|zi〉 = |vi〉 −
i−1∑

j=1

〈vi|wj〉 |wj〉 ,

|wi〉 = βi |zi〉

where βi = 1√
〈zi|zi〉

is a normalizing constant. Note that

〈zi|zi〉 ≤ 1 (since |zi〉 is the projection of a unit vector onto
a subspace), and hence βi ≥ 1.

To calculate ∆ii, we need to understand the behavior of
the Gram-Schmidt process when the |vi〉’s are already very
close to orthogonal. We can control that behavior with the
help of the following lemma, proved in the full version.

Lemma 8 (Gram-Schmidt Lemma). Let |v1〉 , . . . , |vt〉
be unit vectors with |〈vi|vj〉| ≤ ε for all i 6= j, and suppose
t ≤ 0.1/ε (so in particular, ε ≤ 0.1). Let |wi〉 and βi be as
above. Then for all i > j, we have

|〈vi|wj〉| ≤ ε+ 2jε2,

βi ≤ 1 + 2iε2.

So in particular, under the stated hypothesis, |〈vi|wj〉| ≤ 1.2ε
and βi ≤ 1 + 0.2ε.

For recall: our goal is to show that, with high probability,
∆i and ∆ii remain close to each other, even after a large
number of queries have been made—meaning that the algo-
rithm has not yet succeeded in distinguishing case (i) from
case (ii) with non-negligible bias. To show this, we need to
use the fact that the vectors in V are nearly-orthogonal: that
is, for all |v〉 , |w〉 ∈ V, we have |〈v|w〉| ≤ 1√

N
. Intuitively,

this means that, if we restrict attention to any small sub-
set S of f -values and g-values, then while correlations exist
among those values, the correlations are weak : “to a first
approximation,” we have simply asked for the projections of
a Gaussian vector onto |S| orthogonal directions, and have
therefore received |S| uncorrelated answers.

From this perspective, the key question is: how many
values can we query until the “orthogonal approximation”
breaks down (meaning that we notice the correlations)? In



his previous work, Aaronson [1] showed that the approxi-

mation holds until Ω(N1/4) queries are made. Indeed, he
proved a stronger statement: even if the x’s and y’s are
chosen nondeterministically, still Ω(N1/4) values must be
revealed until we have a certificate showing that we are in
case (i) or case (ii) with high probability.

To improve the lower bound from Ω(N1/4) to the optimal

Ω̃(
√
N), there are several hurdles to overcome.

Aaronson had assumed, conservatively, that the devia-
tions from orthogonality all “pull in the same direction.”
As a first step, we notice instead that the deviations fol-
low an unbiased random walk, with some positive and others
negative—the martingale property arising from the fact that
the algorithm can control which x’s and y’s to query, but not
the values of f (x) and g (y). We then use a Gaussian gener-
alization of Azuma’s inequality to upper-bound the sum of
the deviations. Doing this improves the lower bound from

Ω(N1/4) to Ω̃(N1/3), but we then hit an apparent barrier.

In this work, we explain the Ω(N1/3) barrier, by exhibit-
ing a “model problem” that is extremely similar to Real
Forrelation (in particular, has exactly the same near-

orthogonality property), yet is solvable with only O(N1/3)
queries, by exploiting adaptivity.

In more detail, recall the generalization of Real Forre-
lation that we call Gaussian Distinguishing. Here we
are given a finite set V of unit vectors in RN , called “test vec-

tors.” (In our case, V happens to equal
{
|1〉 , |1̂〉, . . . , |N〉 , |N̂〉

}
.)

In each step, we are allowed to pick any test vector |v〉 ∈ V
that hasn’t been picked in previous steps. We then “query”
|v〉, getting back a real-valued response av ∈ R. The prob-
lem is to distinguish the following two cases, with constant
bias:

(i) Each av is drawn independently from N (0, 1).

(ii) Each av equals 〈Ψ|v〉, where |Ψ〉 ∈ RN is a vector

drawn from N (0, 1)N that is fixed throughout the al-
gorithm.

In our case (Real Forrelation), we have M = 2N and

ε = 1/
√
N . Thus, one might hope one could prove a general

lower bound on Gaussian Distinguishing, only depending

on ε, of the form Ω̃ (1/ε). Unfortunately, this is impos-

sible: one does not have a Ω̃ (1/ε) lower bound on query

complexity independent of M , but at best a Ω((1/ε)2/3)
lower bound.7 In the context of Real Forrelation, this
means that, if the only thing we knew about V was that

7Here is the example that shows this: let |1〉 , . . . , |n〉 be or-
thogonal unit vectors. Then for all 2n strings z = z1 · · · zn ∈
{−1, 1}n, let |wz〉 be a vector such that 〈wz|i〉 = zi/n

3/2

for all i ∈ [n], and also such that the projections of the
|wz〉’s onto the orthogonal complement of |1〉 , . . . , |n〉 are
all orthogonal to one another. Let V = {|1〉 , . . . , |n〉} ∪
{|wz〉}z∈{−1,1}n . Then the inner product between any two

distinct vectors in V is upper-bounded by ε = 1/n3/2 in ab-
solute value (the inner product between any two |wz〉’s is

at most n/(n3/2)2 = 1/n2). On the other hand, here is
an algorithm that solves Gaussian Distinguishing using
only O (n) ≪ 1/ε queries: first query |1〉 , . . . , |n〉 to ob-
tain a1, . . . , an. Let |ϕ〉 := a1 |1〉 + · · · + an |n〉. Next,
find n distinct vectors |wz〉 that each have inner product

Θ
(
n/n3/2

)
= Θ(1/

√
n) with |ϕ〉 (such vectors can always

|〈v|w〉| ≤ 1/
√
N for all distinct |v〉 , |w〉 ∈ V (so in par-

ticular, we had no upper bound on V’s cardinality), then
we could not hope to prove any lower bound better than
Ω(N1/3).8

However, we then break this barrier, by using the fact
that, for Real Forrelation (but not for the model prob-

lem), the total number of vectors in V is only NO(1). This
fact lets us use the Gaussian Azuma’s inequality a second
time, to upper-bound not only the sum of all the deviations
from orthogonality, but the individual deviations themselves.

Implementing this yields a lower bound of Ω̃(N2/5): better

than Ω̃(N1/3), but still not all the way up to Ω̃(
√
N). How-

ever, we then notice that we can apply Azuma’s inequal-
ity recursively—once for each layer of the Gram-Schmidt
orthogonalization process—to get better and better upper
bounds on the deviations from orthogonality. Doing so gives

us a sequence of lower bounds Ω̃(N3/7), Ω̃(N4/9), Ω̃(N5/11),

etc., with the ultimate limit of the process being Ω(
√

N
logN

).
Our argument actually proves a general lower bound for

Gaussian Distinguishing, which works whenever |V| is not
too large, and every pair of vectors in V is sufficiently close
to orthogonal. Here is our general result:

Theorem 9. Suppose |V| ≤ M , and |〈v|w〉| ≤ ε for all
distinct vectors |v〉 , |w〉 ∈ V. Then any classical algorithm

for Gaussian Distinguishingmust make Ω
(

1/ε
log(M/ε)

)
queries.

4.2 Randomized Upper Bound
Why did we have to work so hard to prove a Ω̃(

√
N) lower

bound on the randomized query complexity of Forrela-
tion? Our other main result provides one possible expla-
nation: namely, we are here scraping up against the“ceiling”
of the possible separations between randomized and quan-
tum query complexity. In particular, any quantum algo-
rithm that makes 1 query to a Boolean input X ∈ {0, 1}N ,
can be simulated by a randomized algorithm (in fact, a non-

adaptive randomized algorithm) that makes O(
√
N) queries

to X. More generally, any quantum algorithm that makes
t = O (1) queries to X, can be simulated by a nonadaptive

randomized algorithm that makes O(N1−1/2t) queries to X.
The proof of this result consists of three steps. The first

involves the simulation of quantum algorithms by low-degree
polynomials. In 1998, Beals et al. [3] famously observed
that, if a quantum algorithm makes t queries to a Boolean
input X ∈ {−1, 1}N , then p (X), the probability that the
algorithm accepts X, can be written as a multilinear poly-
nomial in X of degree at most 2t. We extend this result
of Beals et al., in a way that might be of independent in-
terest for quantum lower bounds. Namely, we observe that
every t-query quantum algorithm gives rise, not merely to

be found, so long as |ai| = Ω(1) for Ω (n) values of i), and
query all of them, letting b1, . . . , bn be the results. In case
(i), we have E [b1 + · · ·+ bn] and Var [b1 + · · ·+ bn] = n.
But in case (ii), we have E [b1 + · · ·+ bn] = Θ (

√
n) and

Var [b1 + · · ·+ bn] = O (n), allowing the two cases to be dis-
tinguished with constant bias.
8In fact one can prove a Ω̃(N1/3) lower bound even un-
der this restriction—and more generally, in the statement of

Theorem 9, one can replace the lower bound Ω
(

1/ε
log(M/ε)

)

by Ω
(

(1/ε)2/3

(log 1/ε)1/3

)
, independent of M . We show how to do

this in the full version.



a multilinear polynomial, but to a block-multilinear polyno-
mial. By this, we mean a degree-2t polynomial q that takes
as input 2t blocks of N variables each, and whose every
monomial contains exactly one variable from each block. If
we repeat the input X ∈ {−1, 1}N across all 2t blocks, then
q (X, . . . ,X) represents the quantum algorithm’s acceptance
probability on X. However, the key point is that q (Y ) is

bounded in [−1, 1] for any Boolean input Y ∈ {−1, 1}2tN .
More formally:

Lemma 10. Let A be a quantum algorithm that makes t
queries to a Boolean input x ∈ {−1, 1}N . Then there exists
a degree-2t block-multilinear polynomial p : R2tN → R, with
2t blocks of N variables each, such that

(i) the probability that A accepts x equals p (x, . . . , x) (with
x repeated 2t times), and

(ii) p (z) ∈ [−1, 1] for all z ∈ {−1, 1}2tN .

Proof. Assume for simplicity (and without loss of gen-
erality) that A involves real amplitudes only. For all j ∈ [t]
and i ∈ [N ], let xj,i be the value of xi that A’s oracle returns
in response to its jth query. Of course, in any “normal” run
of A, we will have xj,i = xj′,i for all j, j

′: that is, the value of
xi will be consistent across all t queries. But it is perfectly
legitimate to ask what happens if x changes from one query
to the next. In any case, A will have some normalized final
state, of the form

∑

i,w

αi,w (x1,1, . . . , xt,N) |i, w〉 .

Furthermore, following Beals et al. [3], it is easy to see that
each amplitude αi,w can be written as a degree-t block-
multilinear polynomial in the tN variables x1,1, . . . , xt,N ,
with one block of N variables, Rj = {xj,1, . . . , xj,N}, cor-
responding to each of the t queries. Next, for all j ∈ [t] and
i ∈ [N ], we create a second variable xt+j,i, which just like
xj,i, represents the value of xi that A’s oracle returns in re-
sponse to its jth query. Let Acc be the set of all accepting
basis states, and consider the polynomial

p (x1,1, . . . , x2t,N )

:=
∑

(i,w)∈Acc

αi,w (x1,1, . . . , xt,N)αi,w (xt+1,1, . . . , x2t,N) .

By construction, p is a degree-2t block-multilinear polyno-
mial in the 2tN variables x1,1, . . . , x2t,N , with one block of
N variables, Rj = {xj,1, . . . , xj,N}, for each j ∈ [2t]. Fur-

thermore, if we repeat the same input x ∈ {−1, 1}N across
all 2t blocks, then

p (x, . . . , x) =
∑

(i,w)∈Acc

α2
i,w (x, . . . , x)

is simply the probability that A accepts x. Finally, even if
x1,1, . . . , x2t,N ∈ {−1, 1}2tN is completely arbitrary, p still
represents an inner product between two vectors. Since
both of these vectors have norm at most 1, their inner prod-
uct is bounded in [−1, 1].

This leads to a new complexity measure for Boolean func-

tions f : the block-multilinear approximate degree b̃mdeg (f),
which lower-bounds the quantum query complexity Q (f)

just as d̃eg (f) does, but which might provide a tighter lower
bound in some cases.

Once we have our quantum algorithm’s acceptance prob-
ability in the form of a block-multilinear polynomial p, the
second step is to preprocess p, to make it easier to estimate
using random sampling. The basic problem is that p might
be highly “unbalanced”: certain variables might be hugely
influential. Such variables are essential to query, but exam-
ining the form of p does not make it obvious which variables
these are. To deal with this, we repeatedly perform an
operation called “variable-splitting,” which consists of iden-
tifying an influential variable xi, then replacing every occur-
rence of xi in p by 1

m
(xi,1 + · · ·+ xi,m), where xi,1, . . . , xi,m

are newly-created variables set equal to xi. Observe that
variable-splitting preserves the property that p is bounded
in [−1, 1] at all Boolean points—for, regardless of how we
set xj,l1 , . . . , xj,lm , the new value will simply equal the value

of p with xj,l set to
xj,l1

+···+xj,lm

m
, which in turn is a convex

combination of p with xj,l set to −1 and p with xj,l set to 1.
The point of doing this is that each xi,j will be less influen-
tial in p than xi itself was, thereby yielding a more balanced
polynomial. We show that variable-splitting can achieve
the desired balance by introducing at most exp (t) · O (N)
new variables, which is linear in N for constant t.

More formally, suppose

p (x1,1, . . . , xk,N ) =
∑

i1,...,ik∈[N]

ai1,...,ikx1,i1 · · · xk,ik

is a bounded block-multilinear polynomial of degree k. Set
δ := ε2/N . Then by repeatedly splitting variables, we wish
to achieve the following requirement: for every nonempty set
S ⊆ [k],

ΛS :=
∑

(ij )j∈S


 ∑

(ij )j/∈S

ai1,...,ik




2

≤ δ. (1)

Our key lemma is the following.

Lemma 11. Let S ⊆ [k] be nonempty. Then there is a se-
quence of variable-splittings that introduces at most 1/δ new
variables, and that produces a polynomial p′ that satisfies
ΛS ≤ δ.

Proof. We start with the case S = [k]. Then we have
to ensure

∑

i1,...,ik∈[N]

a2
i1,...,ik

≤ δ, (2)

where a2
i1,...,ik

is the coefficient of x1,i1 . . . xk,ik . Let

Vi :=
∑

i2,...,ik∈[N]

a2
i1,i2,...,ik

.

We now randomly set each xj,ij for j ≥ 2, to be 1 or −1
with independent probability 1/2. Let

Xi :=
∑

i2,...,ik∈[N]

ai1,i2...,ikx2,i2 · · ·xk,ik .

Then E[X2
i ] = Vi. By the concavity of the square root

function, this means E[|Xi|] ≥
√
Vi. Hence

E[|X1|+ · · ·+ |XN |] ≥
√
V1 + · · ·+

√
VN .



If we set x1,i = 1 whenever Xi ≥ 0 and x1,i = −1 otherwise,
we get

p(x1,1, . . . , xk,N) =

N∑

i=1

x1,iXi =

N∑

i=1

|Xi| .

Since p(x1,1, . . . , xk,N) is bounded in [−1, 1] at all Boolean
points, this means that

√
V1 + · · ·+

√
VN ≤ 1.

We now perform a sequence of variable-splittings. For each
i ∈ [N ], let mi :=

⌊√
Vi/δ

⌋
, so that

δmi ≤
√
Vi < δ (mi + 1) .

Then we split x1,i into mi + 1 variables. This replaces
each term ai1,...,ikx1,i1 · · ·xk,ik with mi +1 terms that each
equal 1

mi+1
ai1,...,ikx1,i1 · · ·xk,ik . Therefore, this variable-

splitting reduces Vi to Vi/ (mi + 1), and decreases the sum
(2) by mi

mi+1
Vi.

After we have performed such variable-splittings for each
i, the sum (2) becomes

N∑

i=1

Vi

mi + 1
≤

N∑

i=1

Vi√
Vi/δ

= δ
(√

V1 + · · ·+
√
VN

)

≤ δ.

The number of new variables that get introduced equals

N∑

i=1

mi ≤
N∑

i=1

√
Vi

δ
≤ 1

δ
.

The case S ⊂ [k] reduces to the case S = [k] in the fol-
lowing way. For typographical convenience, assume that
S = [ℓ] for some ℓ. Then substituting xi,j = 1 for i > ℓ
transforms the polynomial p(x1,1, . . . , xk,N) into the poly-
nomial

p′(x1,1, . . . , xℓ,N) =
∑

i1,...,iℓ∈[N]

āi1,...,iℓx1,i1 · · ·xℓ,iℓ

where

āi1,...,iℓ :=
∑

iℓ+1,...,ik∈[N]

ai1,...,ik .

The statement of Lemma 11 now becomes
∑

i1,...,iℓ∈[N]

ā2
i1,...,iℓ

≤ δ

which can be achieved similarly to the previous case.

Lemma 11 has the following consequence.

Corollary 12. There is a sequence of variable-splittings
that introduces at most 2k/δ new variables, and that produces
a polynomial p′ that satisfies ΛS ≤ δ for every nonempty
subset S ⊆ [k].

Proof. We simply apply the procedure of Lemma 11
once for each nonempty S ⊆ [k], in any order. Since there
are 2k−1 possible choices for S, and since each iteration adds
at most 1/δ variables, the total number of added variables is
at most 2k/δ. Furthermore, we claim that later iterations

can never “undo” the effects of previous iterations. This is
because, if we consider how the quantity

ΛS =
∑

(ij)j∈S


 ∑

(ij)j /∈S

ai1,...,ik




2

is affected by variable-splittings applied to the variables in
the jth block, there are only two possibilities: if j ∈ S
then ΛS can decrease, while if j /∈ S then ΛS remains un-
changed.

We then apply Corollary 12 with the choice δ = ε2/N .
This introduces at most 2kN/ε2 = O

(
N/ε2

)
new variables,

and achieves ΛS ≤ ε2/N for every S.
From now on, we use n to denote the “new” number of

variables per block, which is a constant factor greater than
the “old” number N .

Once we have a balanced polynomial q, the last step is to
give a query-efficient randomized algorithm to estimate its
value. Our algorithm is the simplest one imaginable: we
simply choose O(n1−1/2t) variables uniformly at random,
query them, then form an estimate q̃ of q by summing only
those monomials all of whose variables were queried. In
more detail, let

bi1,...,ik := ai1,...,ikx1,i1 · · ·xk,ik .

Then

q(x1,1, . . . , xk,n) =
∑

i1,...,ik

bi1,...,ik .

We can estimate this sum in the following way. For each i, ji
independently, let yi,ji be a {0, 1}-valued random variable
with Pr[yi,ji = 1] = 1

n1/k . We then take

P := bi1,...,iky1,i1 · · · yk,ik
as our estimator.

Clearly, this is an unbiased estimator of q(x1,1, . . . , xk,n),
with expectation

E[P ] =
q(x1, . . . , xn)

n
.

The result we need to prove is that Var[P ] = O(δ/n). If this
is true, then performing O (1) repetitions of P allows us to

estimate q(x1,1, . . . , xk,n) with precision
√
δn =

√
(ε2/n) · n =

ε. This estimation can be carried out with O(n1−1/k)
queries because, to calculate P , we only need the values
of xi,j with yi,j = 1, and the number of such variables is
O(n1−1/k), with a very high probability.

The hard part, done in the full version, is of course to
show that the variance is bounded. The proof of this makes
heavy use of the balancedness property that was ensured by
the preprocessing step.

Examining our estimation algorithm, an obvious question
is whether it was essential that q be block-multilinear, or
whether the algorithm could be extended to all bounded
low-degree polynomials. In the full version, we take a first
step toward answering that question, by giving an O(

√
N)-

query randomized algorithm to estimate any bounded degree-
2 polynomial in N Boolean variables. Once we drop block-
multilinearity, our variable-splitting procedure no longer works,
so we rely instead on Fourier-analytic results of Dinur et al.
[9] to identify influential variables which we then split.
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Figure 1: A quantum circuit that can be taken to de-

fine the k-fold Forrelation problem. The circuit con-

sists of k query transformations Uf1 , . . . , Ufk , which

map each basis state |x〉 to fi (x) |x〉, sandwiched be-

tween rounds of Hadamard gates.

4.3 k-fold Forrelation
The Forrelation and k-fold Forrelation problems were

defined in Sections 2.1 and 2.2.1 respectively. Informally,
though, one could define k-fold Forrelation simply as the
problem of simulating the quantum circuit shown in Fig-
ure 1—and in particular, of estimating the amplitude, call
it α0···0, with which this circuit returns |0〉⊗n as its out-
put. Observe that α0···0 is precisely the quantity Φf1,...,fk

defined in Section 2.2.1. From this, it follows that we
can decide whether |Φf1,...,fk | ≤ 1

100
or Φf1,...,fk ≥ 3

5
with

bounded probability of error, and thereby solve the k-fold
Forrelation problem, by making only k quantum queries
to f1, . . . , fk.

Slightly more interesting is that we can improve the quan-
tum query complexity further, to ⌈k/2⌉:

Proposition 13. The k-fold Forrelation problem is solv-
able, with error probability 0.4, using ⌈k/2⌉ quantum queries
to the functions f1, . . . , fk : {0, 1}n → {−1, 1}, as well as
O (nk) quantum gates.

Proof. Let H be the Hadamard gate, and let Ufi be the
query transformation that maps each computational basis
state |x〉 to fi (x) |x〉. Then to improve from k to ⌈k/2⌉
queries, we modify the circuit of Figure 1 in the following
way. In addition to the initial state |0〉⊗n, we prepare a con-

trol qubit in the state |+〉 = |0〉+|1〉√
2

. Then, conditioned on

the control qubit being |0〉, we apply the following sequence
of operations to the initial state:

H⊗n → Uf1 → H⊗n → Uf2 → · · · → H⊗n → Uf⌈k/2⌉
→ H⊗n .

Meanwhile, conditioned on the control qubit being |1〉, we
apply the following sequence of operations:

H⊗n → Ufk → H⊗n → Ufk−1
→ · · · → H⊗n → Uf⌈k/2⌉+1

.

Finally, we measure the control qubit in the {|+〉 , |−〉} basis,
and “accept” (i.e., say that Φf1,...,fk is large) if and only if
we find it in the state |+〉. It is not hard to see that the
probability that this circuit accepts is exactly

1 + Φf1,...,fk

2
.

Thus, consider an algorithm A that rejects with probability
1/4, and runs the circuit with probability 3/4. We have

Pr [A accepts] =
3

4

(
1 + Φf1,...,fk

2

)
.

If |Φf1,...,fk | ≤ 1
100

then the above is less than 0.4, while if

Φf1,...,fk ≥ 3
5
then it is at least 0.6.
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Figure 2: A 2-qubit gadget for converting an even

number of layers of Hadamard gates into an odd

number.

Purely from the unitarity of the quantum algorithm to
compute Φf1,...,fk , we can derive some interesting facts about
Φf1,...,fk itself: for example, that |Φf1,...,fk | ≤ 1.

4.4 Other Results
BQP-Completeness. The proof that the k-fold Forre-

lation problem is PromiseBQP-complete is simple, once one
has the main idea. The sum that defines k-fold Forrela-
tion is, itself, an output amplitude for a particular kind of
quantum circuit, which consists entirely of Hadamard and f -

phase gates (i.e., gates that map |x〉 to (−1)f(x) |x〉 for some
Boolean function f). Since the Hadamard and CCPHASE
gates (corresponding to f (x, y, z) = xyz) are known to be
universal for quantum computation, one might think that
our work is done. The difficulty is that the quantum circuit
for k-fold Forrelation contains a Hadamard gate on ev-
ery qubit, between every pair of f -phase gates, whether we
wanted Hadamards there or not. Thus, if we want to en-
code an arbitrary quantum circuit, then we need some way
of canceling unwanted Hadamards, while leaving the wanted
ones. We achieve this via a gadget construction.

In more detail, we need a gadget that lets us Hadamard
some desired subset of the qubits, S ⊂ [n], and not the
qubits outside S. For simplicity, suppose that |S| = 2, and
let a and b be S’s elements. Our gadget, shown in Figure
2, consists of three CSIGN gates (i.e., gates that map |x, y〉
to (−1)xy |x, y〉) on a and b, sandwiched between Hadamard
gates. Note that we can implement a CSIGN on a and
b as Ufi , where fi (z1, . . . , zn) := (−1)zazb . Meanwhile,
the Hadamard gates are just those that are automatically
applied between each Ufi and Ufi+1

in a quantum circuit
for Forrelation. To see why the gadget works, consider
the following identity:




1

2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1







3

=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

In particular, if we let C stand for CSIGN, H⊗2 for Hadamards
on two qubits, and S for the 2-qubit SWAP gate, then

H⊗2 CH⊗2 CH⊗2 CH⊗2 = SH⊗2 .

Contrast this with what happens if we apply the 2-qubit
identity, I, rather than C, in the inner layers:

H⊗2 IH⊗2 I H⊗2 IH⊗2 = I .

Thus, Hadamards get applied if C is chosen for the inner
layers, but not if I is chosen. So this gadget has the ef-



fect of Hadamarding a and b, while not Hadamarding the
other qubits in the circuit. Now, the gadget also has the
unintended side effect of swapping a and b. But since we
know this is going to happen, we can keep track of it by
simply swapping the labels of a and b whenever the gadget
is applied.

Indeed, examining the construction, we can derive a stronger
consequence. Define a depth-d quantum circuit as one where
the gates are organized into d sequential layers, with the
gates within each layer all commuting with one another.
Now, given a depth-d quantum circuit Q over the basis
{H,CCSIGN} (where H is Hadamard), let QSimd be the
problem of deciding whether the circuit’s accepting ampli-
tude A satisfies A ≥ 1

4
or |A| ≤ 1

100
, promised that one of

those is the case. Then in the full version, we prove the
following:

Theorem 14. QSimd is polynomial-time reducible to ex-
plicit (2d+ 1)-fold Forrelation. (Moreover, the functions
f1, . . . , f2d+1 produced by the reduction all have the form

fi (x) = (−1)p(x), where p is a degree-3 polynomial in the
input bits.)

So for example, we find that explicit log n-fold Forre-
lation is a complete promise problem for PromiseBQNC1:
the class of problems that captures what can be done using
log-depth quantum circuits.

Separation for Sampling Problems. To achieve a 1
versus Ω(N/ logN) quantum/classical query complexity sep-
aration for a sampling problem, we consider Fourier Sam-
pling: the problem, given oracle access to a Boolean func-
tion f : {0, 1}n → {−1, 1}, of outputting a string y ∈ {0, 1}n
with probability approximately equal to f̂ (y)2. This prob-
lem is trivially solvable with 1 quantum query, but proving a
Ω(N/ logN) classical lower bound takes a few pages of work.
The basic idea is to concentrate on the probability of a sin-
gle string—say, y = 0n—being output. Using a binomial
calculation, we show that this probability cannot depend on
f ’s truth table in the appropriate way unless Ω(N/ logN)
function values are queried.

Lower Bound for k-Fold Forrelation. Once we
have a Ω(

√
N

logN
) randomized lower bound for Forrelation,

one might think it would be trivial to prove the same lower
bound for k-fold Forrelation: just reduce one to the other!
However, Forrelation does not embed in any clear way as
a subproblem of k-fold Forrelation. On the other hand,
given an instance of k-fold Forrelation, suppose we “give
away for free” the complete truth tables of all but two of
the functions. In that case, we show that the induced sub-
problem on the remaining two functions is an instance of
Gaussian Distinguishing to which, with high probability,
our lower bound techniques can be applied. Pursuing this

idea leads to our Ω(
√

N

log7/2 N
) lower bound on the randomized

query complexity of k-fold Forrelation, for all k ≥ 2.
Property-Testing Separation. To turn our quantum

versus classical separation for the Forrelation problem
into a property-testing separation, we need to prove two in-
teresting statements. The first is that function pairs 〈f, g〉
that are far in Hamming distance from the set of all pairs
with low forrelation, actually have high forrelation. The sec-
ond is that “generic” function pairs 〈f, g〉 and 〈f ′, g′〉 that
have small Hamming distance from one another, are close in
their forrelation values as well. In fact, in the full version,

we prove both of these statements for the general case of
k-fold Forrelation.

5. DISCUSSION
To summarize, this paper proves the largest separation be-

tween classical and quantum query complexities yet known,
and it also proves that that separation is in some sense opti-
mal. These results put us in a position to pose an intriguing
open question:

Among all the problems that admit a superpoly-
nomial quantum speedup, is there any whose clas-
sical randomized query complexity is ≫

√
N?

Strikingly, if we look at the known problems with super-
polynomial quantum speedups, for every one of them the
classical randomized lower bound seems to hit a “ceiling”
at

√
N . Thus, Simon’s Problem has quantum query com-

plexity O (logN) and randomized query complexity Θ̃(
√
N);

the Glued-Trees problem of Childs et al. [7] has quan-

tum query complexity logO(1)(N) and randomized query

complexity Θ̃(
√
N);9 and Forrelation has quantum query

complexity 1 and randomized query complexity Θ̃(
√
N).

If we insist on making the randomized query complexity
Ω(N1/2+c), for some c > 0, and then try to minimize the
quantum query complexity, then the best thing we know
how to do is to take the OR of N2c independent instances of
Forrelation, each of size N1−2c. This gives us a problem
whose quantum query complexity is Θ(Nc),10 and whose

classical randomized query complexity is Θ̃(N1/2+c).11 Of
course, this is not an exponential separation.

In this paper, we gave a candidate for a problem that
breaks the “

√
N barrier”: namely, k-fold Forrelation. In-

deed, we conjecture that k-fold Forrelation achieves the

9The randomized lower bound for Glued-Trees proved
by Childs et al. [7] was only Ω(N1/6). However, Fenner

and Zhang [11] improved the lower bound to Ω(N1/3);
and if we allow a success probability that is merely (say)
1/3, rather than exponentially small, then their bound

can be improved further, to Ω(
√
N). In the other direc-

tion, we are indebted to Shalev Ben-David for proving
that Glued-Trees can be solved deterministically us-
ing only O(

√
N logN) queries (or O(

√
N log2 N), if the

queries are required to be Boolean). For his proof, see
http://cstheory.stackexchange.com/questions/25279/the-
randomized-query-complexity-of-the-conjoined-trees-
problem

10Here the upper bound comes from combining Grover’s al-
gorithm with the Forrelation algorithm: the “näıve” way
of doing this would produce an additional logN factor for
error reduction, but it is well-known that that log factor can
be eliminated [13]. Meanwhile, the lower bound comes from
the optimality of Grover’s algorithm.

11Here the upper bound comes from simply taking the
best randomized Forrelation algorithm, which uses
O(

√
N1−2c) queries, and running it N2c times, with an addi-

tional logN factor for error reduction. Meanwhile, the lower
bound comes from combining this paper’s Ω(

√
N/ logN)

lower bound for Forrelation, with a general result stating
that the randomized query complexity of OR (f, . . . , f), the
OR of k disjoint copies of a function f , is Ω (k) times the
query complexity of a single copy. This result can be proved
by adapting ideas from a direct product theorem for random-
ized query complexity given by Drucker [10] (we thank A.
Drucker, personal communication).



optimal separation for all k = O (1), requiring Ω̃(N1−1/k)
classical randomized queries but only ⌈k/2⌉ quantum queries.12

Proving this conjecture is an enticing problem. Unfortu-
nately, k-fold Forrelation becomes extremely hard to an-
alyze when k > 2, because we can no longer view the func-
tions f1, . . . , fk as confined to a low-dimensional subspace:
now we have to view them as confined to a low-dimensional
manifold, which is defined by degree-(k − 1) polynomials.
As such, we can no longer compute posterior probabilities
by simply appealing to the rotational invariance of the Gaus-
sian measure, which made our lives easier in the k = 2 case.
Instead we need to calculate integrals over a nonlinear man-
ifold.

Short of proving our conjecture about k-fold Forrela-
tion, it would of course be nice to find any partial Boolean
function whose quantum query complexity is polylogN , and
whose randomized query complexity is N1/2+Ω(1).

Another problem we leave is to generalize our O(N1−1/k)
randomized estimation algorithm from block-multilinear poly-
nomials to arbitrary bounded polynomials of degree k. As
we said, in the full version we achieve this in the special case
k = 2. Achieving it for arbitrary k seems likely to require
generalizing the machinery of Dinur et al. [9].

A third problem concerns the notion of block-multilinear

approximate degree, b̃mdeg (f), that we introduced to prove
Theorem 4. Is there any asymptotic separation between

b̃mdeg (f) and ordinary approximate degree? What about

a separation between b̃mdeg (f) and quantum query com-

plexity, as Ambainis [2] showed between d̃eg (f) and quan-
tum query complexity?

A fourth, more open-ended problem is whether there are
any applications of Forrelation, in the same sense that
factoring and discrete log provide “applications” of Shor’s
period-finding problem. Concretely, are there any situations
where one has two efficiently-computable Boolean functions
f, g : {0, 1}n → {−1, 1} (described, for example, by cir-
cuits), one wants to estimate how forrelated they are, and
the structure of f and g does not provide a fast classical way
to do this?

Here are five other open problems:
First, can we tighten the lower bound on the randomized

query complexity of Forrelation from Ω(
√

N
logN

) to Ω(
√
N),

or give an O(
√

N
logN

) upper bound?
Second, can we generalize our results from Boolean to

non-Boolean functions?
Third, what are the largest possible quantum versus clas-

sical query complexity separations for sampling problems?
Is an O (1) versus Ω(N) separation possible in this case?
Also, what separations are possible for search or relation
problems? (For our results on these questions, see the full
version.)

Fourth, while there exists a 1-query quantum algorithm
that solves Forrelation with bounded error probability,
the error probability we are able to achieve is about 0.4—
more than the customary 1/3. If we want (say) a 1 versus

NΩ(1) quantum versus classical query complexity separation,
then how small can the quantum algorithm’s error be?

Fifth, in the full version we show that being“unforrelated”—
that is, having Φf,g ≤ 1

100
—behaves nicely as a property-

12And perhaps k-fold Forrelation continues to give opti-
mal separations, all the way up to k = O (logN).

testing problem. But it would be interesting to show the
same for being forrelated.
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