
Improved Simulation of Stabilizer Circuits

Scott Aaronson∗

University of California, Berkeley

Daniel Gottesman†

Perimeter Institute
The Gottesman-Knill theorem says that a stabilizer circuit—that is, a quantum circuit con-

sisting solely of CNOT, Hadamard, and phase gates—can be simulated efficiently on a classical
computer. This paper improves that theorem in several directions. First, by removing the
need for Gaussian elimination, we make the simulation algorithm much faster at the cost of a
factor-2 increase in the number of bits needed to represent a state. We have implemented the
improved algorithm in a freely-available program called CHP (CNOT-Hadamard-Phase), which
can handle thousands of qubits easily. Second, we show that the problem of simulating stabilizer
circuits is complete for the classical complexity class ⊕L, which means that stabilizer circuits
are probably not even universal for classical computation. Third, we give efficient algorithms
for computing the inner product between two stabilizer states, putting any n-qubit stabilizer
circuit into a “canonical form” that requires at most O

(

n2/ log n
)

gates, and other useful tasks.
Fourth, we extend our simulation algorithm to circuits acting on mixed states, circuits con-
taining a limited number of non-stabilizer gates, and circuits acting on general tensor-product
initial states but containing only a limited number of measurements.

PACS numbers: 03.67.Lx, 03.67.Pp, 02.70.-c

I. INTRODUCTION

Among the many difficulties that quantum computer
architects face, one of them is almost intrinsic to the task
at hand: how do you design and debug circuits that you
can’t even simulate efficiently with existing tools? Ob-
viously, if a quantum computer output the factors of a
3000-digit number, then you wouldn’t need to simulate it
to verify its correctness, since multiplying is easier than
factoring. But what if the quantum computer didn’t
work? Ordinarily architects might debug a computer by
adding test conditions, monitoring registers, halting at
intermediate steps, and so on. But for a quantum com-
puter, all of these standard techniques would probably
entail measurements that destroy coherence. Besides, it
would be nice to design and debug a quantum computer
using classical CAD tools, before trying to implement it!

Quantum architecture is one motivation for studying
classical algorithms to simulate and manipulate quan-
tum circuits, but it is not the only motivation. Chemists
and physicists have long needed to simulate quantum sys-
tems, and they have not had the patience to wait for a
quantum computer to be built. Instead, they have devel-
oped limited techniques such as Quantum Monte-Carlo
(QMC) [1] for computing properties of certain ground
states. More recently, several general-purpose quantum
computer simulators have appeared, including Oemer’s

∗Electronic address: aaronson@cs.berkeley.edu
†Electronic address: dgottesman@perimeterinstitute.ca

quantum programming language QCL [2], the QuIDD
(Quantum Information Decision Diagrams) package of
Viamontes et al. [3, 4], and the parallel quantum com-
puter simulator of Obenland and Despain [5]. The draw-
back of such simulators, of course, is that their running
time grows exponentially in the number of qubits. This
is true not only in the worst case but in practice. For
example, even though it uses a variant of binary decision
diagrams to avoid storing an entire amplitude vector for
some states, Viamontes et al. [3] report that the QuIDD
package took more than 22 hours to simulate Grover’s al-
gorithm on 40 qubits. With a general-purpose package,
then, simulating hundreds or thousands of qubits is out
of the question.

A different direction of research has sought to find non-
trivial classes of quantum circuits that can be simulated
efficiently on a classical computer. For example, Vidal
[6] showed that, so long as a quantum computer’s state at
every time step has polynomially-bounded entanglement
under a measure related to Schmidt rank, the computer
can be simulated classically in polynomial time. Notably,
in a follow-up paper [7], Vidal actually implemented his
algorithm and used it to simulate 1-dimensional quantum
spin chains consisting of hundreds of spins. A second ex-
ample is a result of Valiant [8], which reduces the problem
of simulating a restricted class of quantum computers to
that of computing the Pfaffian of a matrix. The lat-
ter is known to be solvable in classical polynomial time.
However, Valiant’s model has thus far not found any ap-
plication, although Terhal and DiVincenzo have shown
that it applies to a model of noninteracting fermions [9].

There is one class of quantum circuits that is known

2

CNOT

Hadamard H

Phase P

Measurement

|a〉

|b〉

|a〉

|b⊕a〉
α|0〉+β|1〉 (α+β)|0〉+(α-β)|1〉

α|0〉+β|1〉 α|0〉+iβ|1〉

α|0〉+β|1〉 |α|2|0〉〈0|+|β|2|1〉〈1|

FIG. 1: The four types of gate allowed in the stabilizer for-
malism

to be simulable in classical polynomial time, that does
not impose any limit on entanglement, and that arises
naturally in several applications. This is the class of
stabilizer circuits introduced to analyze quantum error-
correcting codes [10–13]. A stabilizer circuit is simply
a quantum circuit in which every gate is a controlled-
NOT, Hadamard, phase, or 1-qubit measurement gate.
We call a stabilizer circuit unitary if it does not contain
measurement gates. Unitary stabilizer circuits are also
known as Clifford group circuits.

Stabilizer circuits will almost certainly be used to per-
form the encoding and decoding steps for a quantum
error-correcting code, and they play an important role
in fault-tolerant circuits. However, it was soon realized
that the stabilizer formalism used to describe these cir-
cuits has many other applications. The stabilizer formal-
ism is rich enough to encompass most of the “paradoxes”
of quantum mechanics, including the GHZ (Greenberger-
Horne-Zeilinger) experiment [14], dense quantum coding
[15], and quantum teleportation [16]. On the other hand,
it is not so rich as to preclude efficient simulation by a
classical computer. That conclusion, sometimes known
as the Gottesman-Knill theorem, is the starting point for
the contributions of this paper.

Our results are as follows. In Section III we give a
new tableau algorithm for simulating stabilizer circuits
that is faster than the algorithm directly implied by the
Gottesman-Knill theorem. By removing the need for
Gaussian elimination, this algorithm enables measure-
ments to be simulated in O

(

n2
)

steps instead of O
(

n3
)

(where n is the number of qubits), at a cost of a factor-
2 increase in the number of bits needed to represent a
quantum state.

Section IV describes CHP, a high-performance stabi-
lizer circuit simulator that implements our tableau algo-
rithm. We present the results of an experiment designed
to test how CHP’s performance is affected by properties
of the stabilizer circuit being simulated. CHP has al-
ready found application in simulations of quantum fault-
tolerance circuits (Isaac Chuang, personal communica-
tion).

Section V proves that the problem of simulating sta-
bilizer circuits is complete for the classical complexity

class ⊕L. Informally, this means that any stabilizer cir-
cuit can be simulated using CNOT gates alone; the avail-
ability of Hadamard and phase gates provides at most a
polynomial advantage. This result removes some of the
mystery about the Gottesman-Knill theorem by showing
that stabilizer circuits are unlikely to be capable even of
universal classical computation.

In Section VI we prove a canonical form theorem that
we expect will have many applications to the study of
stabilizer circuits. The theorem says that given any sta-
bilizer circuit, there exists an equivalent stabilizer cir-
cuit that applies a round of Hadamard gates, followed by
a round of phase gates, followed by a round of CNOT
gates, and so on in the sequence H-C-P-C-P-C-H-P-C-
P-C (where H, C, P stand for Hadamard, CNOT, Phase
respectively). One immediate corollary, building on a
result by Patel, Markov, and Hayes [17] and improving
one by Dehaene and De Moor [18], is that any stabilizer
circuit on n qubits has an equivalent circuit with only
O
(

n2/ logn
)

gates.
Finally, Section VII extends our simulation algorithm

to situations beyond the usual one considered in the
Gottesman-Knill theorem. For example, we show how to
handle mixed states, without keeping track of pure states
from which the mixed states are obtainable by discarding
qubits. We also show how to simulate circuits involv-
ing a small number of non-stabilizer gates; or involving
arbitrary tensor-product initial states, but only a small
number of measurements. Both of these latter two sim-
ulations take time that is polynomial in the number of
qubits, but exponential in the number of non-stabilizer
gates or measurements. Presumably this exponential
dependence is necessary, since otherwise we could simu-
late arbitrary quantum computations in classical subex-
ponential time.

We conclude in Section VIII with some directions for
further research.

II. PRELIMINARIES

We assume familiarity with quantum computing. This
section provides a crash course on the stabilizer formal-
ism, confining attention to those aspects we will need.
See Section 10.5.1 of Nielsen and Chuang [19] for more
details.

Throughout this paper we will use the following four
Pauli matrices:

I =

(

1 0
0 1

)

X =

(

0 1
1 0

)

Y =

(

0 −i
i 0

)

Z =

(

1 0
0 −1

)

These matrices satisfy the following identities:

X2 = Y 2 = Z2 = I

XY = iZ Y Z = iX ZX = iY
Y X = −iZ ZY = −iX XZ = −iY

3

In particular, every two Pauli matrices either commute or
anticommute. The rule for whether to include a minus
sign is the same as that for quaternions, if we replace
(I,X, Y, Z) by (1, i, j, k).

We define the group Pn of n-qubit Pauli operators to
consist of all tensor products of n Pauli matrices, together
with a multiplicative factor of ±1 or ±i (so the total
number of operators is |Pn| = 4n+1). We omit tensor
product signs for brevity; thus −Y ZZI should be read
−Y ⊗Z⊗Z⊗I (we will use + to represent the Pauli group
operation). Given two Pauli operators P = ikP1 · · ·Pn

and Q = ilQ1 · · ·Qn, it is immediate that P commutes
with Q if and only if the number of indices j ∈ {1, . . . , n}
such that Pj anticommutes with Qj is even; otherwise P
anticommutes with Q. Also, for all P ∈ Pn, if P has
a phase of ±1 then P + P = I · · · I, whereas if P has a
phase of ±i then P + P = −I · · · I.

Given a pure quantum state |ψ〉, we say a unitary ma-
trix U stabilizes |ψ〉 if |ψ〉 is an eigenvector of U with
eigenvalue 1, or equivalently if U |ψ〉 = |ψ〉 where we do
not ignore global phase. To illustrate, the following ta-
ble lists the Pauli matrices and their opposites, together
with the unique 1-qubit states that they stabilize:

X : |0〉 + |1〉 −X : |0〉 − |1〉
Y : |0〉 + i |1〉 −Y : |0〉 − i |1〉
Z : |0〉 −Z : |1〉

The identity matrix I stabilizes all states, whereas −I
stabilizes no states.

The key idea of the stabilizer formalism is to repre-
sent a quantum state |ψ〉, not by a vector of amplitudes,
but by a stabilizer group, consisting of unitary matrices
that stabilize |ψ〉. Notice that if U and V both stabilize
|ψ〉 then so do UV and U−1, and thus the set Stab (|ψ〉)
of stabilizers of |ψ〉 is a group. Also, it is not hard to
show that if |ψ〉 6= |ϕ〉 then Stab (|ψ〉) 6= Stab (|ϕ〉). But
why does this strange representation buy us anything?
To write down generators for Stab (|ψ〉) (even approxi-
mately) still takes exponentially many bits in general by
an information-theoretic argument. Indeed stabilizers
seem worse than amplitude vectors, since they require
about 22n parameters to specify instead of about 2n!

Remarkably, though, a large and interesting class
of quantum states can be specified uniquely by much
smaller stabilizer groups—specifically, the intersection
of Stab (|ψ〉) with the Pauli group [11–13]. This class
of states, which arises in quantum error correction and
many other settings, is characterized by the following the-
orem.

Theorem 1 Given an n-qubit state |ψ〉, the following are
equivalent:

(i) |ψ〉 can be obtained from |0〉⊗n
by CNOT,

Hadamard, and phase gates only.

(ii) |ψ〉 can be obtained from |0〉⊗n
by CNOT,

Hadamard, phase, and measurement gates only.

(iii) |ψ〉 is stabilized by exactly 2n Pauli operators.

(iv) |ψ〉 is uniquely determined by S (|ψ〉) = Stab (|ψ〉)∩
Pn, or the group of Pauli operators that stabilize
|ψ〉.

Because of Theorem 1, we call any circuit consisting
entirely of CNOT, Hadamard, phase, and measurement
gates a stabilizer circuit, and any state obtainable by
applying a stabilizer circuit to |0〉⊗n

a stabilizer state. As
a warmup to our later results, the following proposition
counts the number of stabilizer states.

Proposition 2 Let N be the number of pure stabilizer
states on n qubits. Then

N = 2n
n−1
∏

k=0

(

2n−k + 1
)

= 2(1/2+o(1))n2

.

Proof. We have N = G/A, where G is the total num-
ber of generating sets and A is the number of equivalent
generating sets for a given stabilizer S. To find G, note
that there are 4n − 1 choices for the first generator M1

(ignoring overall sign), because it can be anything but
the identity. The second generator must commute with
M1 and cannot be I or M1, so there are 4n/2− 2 choices
for M2. Similarly, M3 must commute with M1 and M2,
but cannot be in the group generated by them, so there
are 4n/4 − 4 choices for it, and so on. Hence, including
overall signs,

G = 2n
n−1
∏

k=0

(

4n

2k
− 2k

)

= 2n(n+1)/2
n−1
∏

k=0

(

4n−k − 1
)

.

Similarly, to find A, note that given S, there are 2n − 1
choices for M1, 2n − 2 choices for M2, 2n − 4 choices for
M3, and so on. Thus

A =
n−1
∏

k=0

(

2n − 2k
)

= 2n(n−1)/2
n−1
∏

k=0

(

2n−k − 1
)

.

Therefore

N =
G

A
= 2n

n−1
∏

k=0

(

4n−k − 1

2n−k − 1

)

= 2n
n−1
∏

k=0

(

2n−k + 1
)

.

III. EFFICIENT SIMULATION OF STABILIZER

CIRCUITS

Theorem 1 immediately suggests a way to simulate sta-
bilizer circuits efficiently on a classical computer. A well-
known fact from group theory says that any finite group
G has a generating set of size at most log2 |G|. So if |ψ〉
is a stabilizer state on n qubits, then the group S (|ψ〉)
of Pauli operators that stabilize |ψ〉 has a generating set
of size n = log2 2n. Each generator takes 2n+ 1 bits to
specify: 2 bits for each of the n Pauli matrices, and 1 bit

4

for the phase [39]. So the total number of bits needed
to specify |ψ〉 is n (2n+ 1). What Gottesman and Knill
showed, furthermore, is that these bits can be updated
in polynomial time after a CNOT, Hadamard, phase, or
measurement gate is applied to |ψ〉. The updates cor-
responding to unitary gates are very efficient, requiring
only O (n) time for each gate.

However, the updates corresponding to measurements
are not so efficient. We can decide in O (n) time whether
a measurement of qubit a will yield a deterministic or
random outcome. If the outcome is random, then up-
dating the state after the measurement takes O

(

n2
)

time, but if the outcome is deterministic, then decid-
ing whether the outcome is |0〉 or |1〉 seems to require
inverting an n×n matrix, which takes O

(

n2.376
)

time in

theory [20] but order n3 time in practice. What that n3

complexity means is that simulations of, say, 2000-qubit
systems would already be prohibitive on a desktop PC,
given that measurements are frequent.

This section describes a new simulation algorithm, by
which both deterministic and random measurements can
be performed in O

(

n2
)

time. The cost is a factor-2 in-
crease in the number of bits needed to specify a state.
For in addition to the n stabilizer generators, we now
store n “destabilizer” generators, which are Pauli opera-
tors that together with the stabilizer generators generate
the full Pauli group Pn. So the number of bits needed
is 2n (2n+ 1) ≈ 4n2.

The algorithm represents a state by a tableau consist-
ing of binary variables xij , zij for all i ∈ {1, . . . , 2n},
j ∈ {1, . . . , n}, and ri for all i ∈ {1, . . . , 2n} [40]:

x11 · · · x1n z11 · · · z1n r1
...

. . .
...

...
. . .

...
...

xn1 · · · xnn zn1 · · · znn rn
x(n+1)1 · · · x(n+1)n z(n+1)1 · · · z(n+1)n rn+1

...
. . .

...
...

. . .
...

...
x(2n)1 · · · x(2n)n z(2n)1 · · · z(2n)n r2n

Rows 1 to n of the tableau represent the destabilizer gen-
erators R1, . . . , Rn, and rows n + 1 to 2n represent the
stabilizer generators Rn+1, . . . , R2n. If Ri = ±P1 · · ·Pn,
then bits xij , zij determine the jth Pauli matrix Pj : 00
means I, 01 means X , 11 means Y , and 10 means Z.
Finally, ri is 1 if Ri has negative phase and 0 if ri has
positive phase. As an example, the 2-qubit state |00〉
is stabilized by the Pauli operators +ZI and +IZ, so a
possible tableau for |00〉 is

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

Indeed, we will take the obvious generalization of the
above “identity matrix” to be the standard initial
tableau.

The algorithm uses a subroutine called rowsum(h, i),
which sets generator h equal to i+ h. Its purpose is to
keep track, in particular, of the phase bit rh, including
all the factors of i that appear when multiplying Pauli
matrices. The subroutine is implemented as follows.

rowsum(h, i): Let g (x1, z1, x2, z2) be a function that
takes 4 bits as input, and that returns the exponent to
which i is raised (either 0, 1, or −1) when the Pauli
matrices represented by x1z1 and x2z2 are multiplied.
More explicitly, if x1 = z1 = 0 then g = 0; if x1 =
z1 = 1 then g = z2 − x2; if x1 = 1 and z1 = 0 then
g = z2 (2x2 − 1); and if x1 = 0 and z1 = 1 then g =
x2 (1 − 2z2). Then set rh := 0 if

2rh + 2ri +

n
∑

j=1

g (xij , zij , xhj , zhj) ≡ 0 (mod 4) ,

and set rh := 1 if the sum is congruent to 2 mod 4 (it
will never be congruent to 1 or 3). Next, for all j ∈
{1, . . . , n}, set xhj := xij ⊕ xhj and set zhj := zij ⊕ zhj

(here and throughout, ⊕ denotes exclusive-OR).

We now give the algorithm. It will be convenient to
add an additional (2n+ 1)

st
row for “scratch space.” The

initial state |0〉⊗n
has ri = 0 for all i ∈ {1, . . . , 2n+ 1},

and xij = δij and zij = δ(i−n)j for all i ∈ {1, . . . , 2n+ 1}
and j ∈ {1, . . . , n}, where δij is 1 if i = j and 0 otherwise.
The algorithm proceeds through the gates in order; for
each one it does one of the following depending on the
gate type.

CNOT from control a to target b. For all i ∈
{1, . . . , 2n}, set ri := ri ⊕ xiazib (xib ⊕ zia ⊕ 1), xib :=
xib ⊕ xia, and zia := zia ⊕ zib.

Hadamard on qubit a. For all i ∈ {1, . . . , 2n}, set
ri := ri ⊕ xiazia and swap xia with zia.

Phase on qubit a. For all i ∈ {1, . . . , 2n}, set ri :=
ri ⊕ xiazia and then set zia := zia ⊕ xia.

Measurement of qubit a in standard basis. First
check whether there exists a p ∈ {n+ 1, . . . , 2n} such
that xpa = 1.
Case I: Such a p exists (if more than one exists, then
let p be the smallest). In this case the measurement
outcome is random, so the state needs to be updated.
This is done as follows. First call rowsum(i, p) for all
i ∈ {1, . . . , 2n} such that i 6= p and xia = 1. Second, set

entire the (p− n)
th

row equal to the pth row. Third, set
the pth row to be identically 0, except that rp is 0 or 1
with equal probability, and zpa = 1. Finally, return rp
as the measurement outcome.
Case II: Such an p does not exist. In this case the
outcome is determinate, so measuring the state will not
change it; the only task is to determine whether 0 or
1 is observed. This is done as follows. First set
the (2n+ 1)

st
row to be identically 0. Second, call

rowsum(2n+ 1, i+ n) for all i ∈ {1, . . . , n} such that

5

xia = 1. Finally return r2n+1 as the measurement out-
come.

Once we interpret the xij , zij , and ri bits for i ≥ n+
1 as representing generators of S (|ψ〉), and rowsum as
representing the group operation in Pn, the correctness of
the CNOT, Hadamard, phase, and random measurement
procedures follows immediately from previous analyses
by Gottesman [13]. It remains only to explain why the
determinate measurement procedure is correct. Observe
thatRh commutes with Ri if the symplectic inner product

Rh ·Ri = xh1zi1 ⊕ · · · ⊕ xhnzin ⊕ xi1zh1 ⊕ · · · ⊕ xinzhn

equals 0, and anticommutes with Ri if Rh ·Ri = 1. Using
that fact it is not hard to show the following.

Proposition 3 The following are invariants of the
tableau algorithm:

(i) Rn+1, . . . , R2n generate S (|ψ〉), and R1, . . . , R2n

generate Pn.

(ii) R1, . . . , Rn commute.

(iii) For all h ∈ {1, . . . , n}, Rh anticommutes with
Rh+n.

(iv) For all i, h ∈ {1, . . . , n} such that i 6= h, Ri com-
mutes with Rh+n.

Now suppose that a measurement of qubit a yields a
determinate outcome. Then the Za operator must com-
mute with all elements of the stabilizer, so

n
∑

h=1

chRh+n = ±Za

for a unique choice of c1, . . . , cn ∈ {0, 1}. Our goal is to
determine the ch’s, since then by summing the appropri-
ate Rh+n’s we can learn whether the phase representing
the outcome is positive or negative. Notice that for all
i ∈ {1, . . . , n},

ci ≡
n
∑

h=1

ch (Ri · Rh+n) ≡ Ri·
n
∑

h=1

chRh+n ≡ Ri·Za (mod 2)

by Proposition 3. Therefore by checking whether Ri

anticommutes with Za—which it does if and only if
xia = 1—we learn whether ci = 1 and thus whether
rowsum(2n+ 1, i+ n) needs to be called.

We end this section by explaining how to compute the
inner product between two stabilizer states |ψ〉 and |ϕ〉,
given their full tableaus. The inner product is 0 if the
stabilizers contain the same Pauli operator with oppo-
site signs. Otherwise it equals 2−s/2, where s is the
minimum, over all sets of generators {G1, . . . , Gn} for
Stab (|ψ〉) and {H1, . . . , Hn} for Stab (|ϕ〉), of the num-
ber of i for which Gi 6= Hi. For example, 〈XX,ZZ〉
and 〈ZI, IZ〉 have inner product 1/

√
2, since 〈ZI, IZ〉 =

〈ZI, ZZ〉. The proof is easy: it suffices to observe that

neither the inner product nor s is affected if we transform
|ψ〉 and |ϕ〉 to U |ψ〉 and U |ϕ〉 respectively, for some uni-

tary U such that U |ψ〉 = |0〉⊗n
has the trivial stabilizer.

This same observation yields an algorithm to compute
the inner product: first transform the tableau of |ψ〉 to

that of U |ψ〉 = |0〉⊗n
using Theorem 8; then perform

Gaussian elimination on the tableau of U |ϕ〉 to obtain s.
Unfortunately, this algorithm takes order n3 steps.

IV. IMPLEMENTATION AND EXPERIMENTS

We have implemented the tableau algorithm of Sec-
tion III in a C program called CHP (CNOT-Hadamard-
Phase), which is available for download [41]. CHP
takes as input a program in a simple “quantum assembly
language,” consisting of four instructions: c a b (apply
CNOT from control a to target b), h a (apply Hadamard
to a), p a (apply phase gate to a), and m a (measure a
in the standard basis, output the result, and update the
state accordingly). Here a and b are nonnegative inte-
gers indexing qubits; the maximum a or b that occurs in
any instruction is assumed to be n − 1, where n is the
number of qubits. As an example, the following program
demonstrates the famous quantum teleportation protocol
of Bennett et al. [16]:

h 1

c 1 2

}

EPR pair is prepared (qubit 1 is
Alice’s half; qubit 2 is Bob’s half)

c 0 1

h 0

m 0

m 1

Alice interacts qubit 0 (the state to
be teleported) with her half of the
EPR pair

c 0 3

c 1 4

}

Alice sends 2 classical bits to Bob

c 4 2

h 2

c 3 2

h 2

Bob uses the bits from Alice to
recover the teleported state

We also have available CHP programs that demon-
strate the Bennett-Wiesner dense quantum coding proto-
col [15], the GHZ (Greenberger-Horne-Zeilinger) experi-
ment [14], Simon’s algorithm [21], and the Shor 9-qubit
quantum error-correcting code [22].

Our main design goal for CHP was high performance
with a large number of qubits and frequent measure-
ments. The only reason to use CHP instead of a general-
purpose quantum computer simulator such as QuIDD [3]
or QCL [2] is performance, so we wanted to leverage that
advantage and make thousands of qubits easily simula-
ble rather than just hundreds. Also, the results of Sec-
tion V suggest that classical postprocessing is unavoid-
able for stabilizer circuits, since stabilizer circuits are not
even universal for classical computation. So if we want
to simulate (for example) Simon’s algorithm, then one
measurement is needed for each bit of the first register.

6

CHP’s execution time will be dominated by these mea-
surements, since as discussed in Section III, each unitary
gate takes only O (n) time to simulate.

Our experimental results, summarized in Figure 2,
show that CHP makes practical the simulation of ar-
bitrary stabilizer circuits on up to about 3000 qubits.
Since the number of bits needed to represent n qubits
grows quadratically in n, the main limitation is available
memory. On a machine with 256MB of RAM, CHP can
handle up to about 20000 qubits before virtual memory
is needed, in which case thrashing makes its performance
intolerable. The original version of CHP required ˜8n2

bits for memory; we were able to reduce this to ˜4n2

bits, enabling a 41% increase in the number of qubits
for a fixed memory size. More trivially, we obtained
an eightfold improvement in memory by storing 8 bits
to each byte instead of 1. Not only did that change
increase the number of storable qubits by 183%, but it
also made CHP about 50% faster—presumably because
(1) the rowsum subroutine now needed to exclusive-OR
only 1/8 as many bytes, and (2) the memory penalty
was reduced. Storing the bits in 32-bit words yielded
a further 10% performance gain, presumably because of
(1) rather than (2) (since even with byte-addressing, a
whole memory line is loaded into the cache on a cache
miss).

As expected, the experimentally measured execution
time per unitary gate grows linearly in n, whereas the
time per measurement grows somewhere between linearly
and quadratically, depending on the states being mea-
sured. Thus the time needed for measurements gener-
ally dominates execution time. So the key question is
this: what properties of a circuit determine whether the
time per measurement is linear, quadratic, or somewhere
in between? To investigate this question we performed
the following experiment.

We randomly generated stabilizer circuits on n qubits,
for n ranging from 200 to 3200 in increments of 200. For
each n, we used the following distribution over circuits:
Fix a parameter β > 0; then choose ⌊βn log2 n⌋ random
unitary gates: a CNOT from control a to target b, a
Hadamard on qubit a, or a phase gate on qubit a, each
with probability 1/3, where a and b are drawn uniformly
at random from {1, . . . , n} subject to a 6= b. Then mea-
sure qubit a for each a ∈ {1, . . . , n} in sequence.

We simulated the resulting circuits in CHP. For each
circuit, we counted the number of seconds needed for all n
measurement steps (ignoring the time for unitary gates),
then divided by n to obtain the number of seconds per
measurement. We repeated the whole procedure for β
ranging from 0.6 to 1.2 in increments of 0.1.

There were several reasons for placing measurements
at the end of a circuit rather than interspersing them with
unitary gates. First, doing so models how many quan-
tum algorithms actually work (apply unitary gates, then
measure, then perform classical postprocessing); second,
it allowed us to ignore the effect of measurements on sub-
sequent computation; third, it ‘standardized’ the mea-

surement stage, making comparisons between different
circuits more meaningful; and fourth, it made simulation
harder by increasing the propensity for the measurements
to be nontrivially correlated.

The decision to make the number of unitary gates pro-
portional to n logn was based on the following heuristic
argument. The time needed to simulate a measurement
is determined by how many times the rowsum procedure
is called, which in turn is determined by how many i’s
there are such that xia = 1 (where a is the qubit being
measured). Initially xia = 1 if and only if a = i, so a
measurement takes O (n) time. For a random state, by
contrast, the expected number of i’s such that xia = 1 is
n by symmetry, so a measurement takes order n2 time.
In general, the more 1’s there are in the tableau, the
longer measurements take. But where does the transi-
tion from linear to quadratic time occur, and how sharp
is it?

Consider n people, each of whom initially knows one se-
cret (with no two people knowing the same secret). Each
day, two people chosen uniformly at random meet and ex-
change all the secrets they know. What is the expected
number of days until everyone knows everyone else’s se-
crets? Intuitively, the answer is Θ (n logn), because any
given person has to wait Θ (n) days between meetings,
and at each meeting, the number of secrets he knows ap-
proximately doubles (or towards the end, the number of
secrets he doesn’t know is approximately halved). Re-
placing people by qubits and meetings by CNOT gates,
one can see why a ‘phase transition’ from a sparse to a
dense tableau might occur after Θ (n logn) random uni-
tary gates are applied. However, this argument does not
pin down the proportionality constant β, so that is what
we varied in the experiment.

The results of the experiment are presented in Figure
2. When β = 0.6, the time per measurement appears
to grow roughly linearly in n, whereas when β = 1.2
(meaning that the number of unitary gates has only dou-
bled), the time per measurement appears to grow roughly
quadratically, so that running the simulations took 4
hours of computing time [42]. Thus, Figure 2 gives strik-
ing evidence for a “phase transition” in simulation time,
as increasing the number of unitary gates by only a con-
stant factor shifts us from a regime of simple states that
are easy to measure, to a regime of complicated states
that are hard to measure. This result demonstrates that
CHP’s performance depends strongly on the circuit be-
ing simulated. Without knowing what sort of tableaus
a circuit will produce, all we can say is that the time
per measurement will be somewhere between linear and
quadratic in n.

V. COMPLEXITY OF SIMULATING

STABILIZER CIRCUITS

The Gottesman-Knill theorem shows that stabilizer
circuits are not universal for quantum computation, un-

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 600 1000 1400 1800 2200 2600 3000

Number of qubits n

Se
co

nd
s

pe
r m

ea
su

re
m

en
t

�
=1.2�
=1.1�
=1.0�
=0.9�
=0.8�
=0.7�
=0.6

FIG. 2: Average time needed to simulate a measurement after
applying βn log

2
n unitary gates to n qubits, on a 650MHz

Pentium III with 256MB RAM.

less quantum computers can be simulated efficiently by
classical ones. To a computer scientist, this theorem
immediately raises a question: where do stabilizer cir-
cuits sit in the hierarchy of computational complexity
theory? In this section we resolve that question, by
proving that the problem of simulating stabilizer circuits
is complete for a classical complexity class known as ⊕L

(pronounced “parity-L”) [43]. The usual definition of
⊕L is as the class of all problems that are solvable by a
nondeterministic logarithmic-space Turing machine, that
accepts if and only if the total number of accepting paths
is odd. But there is an alternate definition that is prob-
ably more intuitive to non-computer-scientists. This is
that ⊕L is the class of problems that reduce to simulating
a polynomial-size CNOT circuit, i.e. a circuit composed
entirely of NOT and CNOT gates, acting on the initial
state |0 · · · 0〉. (It is easy to show that the two definitions
are equivalent, but this would require us first to explain
what the usual definition means !)

From the second definition, it is clear that ⊕L ⊆ P; in
other words, any problem reducible to simulating CNOT
circuits is also solvable in polynomial time on a classical
computer. But this raises a question: what do we mean
by “reducible”? Problem A is reducible to problem B
if any instance of problem A can be transformed into
an instance of problem B; this means that problem B
is “harder” than problem A in the sense that the ability
to answer an arbitrary instance of problem B implies the
ability to answer an arbitrary instance of problem A (but
not necessarily vice-versa).

We must, however, insist that the reduction transform-
ing instances of problem A into instances of problem B
not be too difficult to perform. Otherwise, we could re-
duce hard problems to easy ones by doing all the difficult

work in the reduction itself. In the case of ⊕L, we cannot
mean “reducible in polynomial time,” which is a common
restriction, since then the reduction would be at least as
powerful as the problem it reduces to! Instead we require
the reduction to be performed in the complexity class L,
or logarithmic space—that is, by a Turing machine M
that is given a read-only input of size n, and a write-only
output tape, but only O (logn) bits of read/write mem-
ory. The reduction works as follows: first M specifies a
CNOT circuit on its output tape; then an “oracle” tells
M the circuit’s output (which we can take to be, say,
the value of the first qubit after the circuit is applied),
then M specifies another CNOT circuit on its output
tape, and so on. A useful result of Hertrampf, Reith,
and Vollmer [24] says that this seemingly powerful kind
of reduction, in which M can make multiple calls to the
CNOT oracle, is actually no more powerful than the kind
with only one oracle call. (In complexity language, what
[24] showed is that ⊕L = L

⊕L: any problem in L with ⊕L

oracle is also in ⊕L itself.)
It is conjectured that L 6= ⊕L; in other words, that an

oracle for simulating CNOT circuits would let an L ma-
chine compute more functions than it could otherwise.
Intuitively, this is because writing down the intermediate
states of such a circuit requires more than a logarithmic
number of read/write bits. Indeed, ⊕L contains some
surprisingly “hard” problems, such as inverting matrices
over GF2 [23]. On the other hand, it is also conjectured
that ⊕L 6= P, meaning that even with an oracle for sim-
ulating CNOT circuits, an L machine could not simulate
more general circuits with AND and OR gates. As usual
in complexity theory, neither conjecture has been proved.

Now define the Gottesman-Knill problem as fol-
lows. We are given a stabilizer circuit C as a sequence
of gates of the form CNOT a → b, Hadamard a, Phase
a, or Measure a, where a, b ∈ {1, . . . , n} are indices of
qubits. The problem is to decide whether qubit 1 will
be |1〉 with certainty after C is applied to the initial state

|0〉⊗n. (If not, then qubit 1 will be |1〉 with probability
either 1/2 or 0.)

Since stabilizer circuits are a generalization of CNOT
circuits, it is obvious that Gottesman-Knill is ⊕L-
hard (i.e. any ⊕L problem can be reduced to it). Our re-
sult says that Gottesman-Knill is in ⊕L. Intuitively,
this means that any stabilizer circuit can be simulated
efficiently using CNOT gates alone—the additional avail-
ability of Hadamard and phase gates gives stabilizer cir-
cuits at most a polynomial advantage. In our view, this
surprising fact helps to explain the Gottesman-Knill the-
orem, by providing strong evidence that stabilizer circuits
are not even universal for classical computation (assum-
ing, of course, that classical postprocessing is forbidden).

Theorem 4 Gottesman-Knill is in ⊕L.

Proof. We will show how to solve Gottesman-Knill

using a logarithmic-space machine M with an oracle for
simulating CNOT circuits. By the result of Hertrampf,

8

Reith, and Vollmer [24] described above, this will suffice
to prove the theorem.

By the principle of deferred measurement, we can as-
sume that the stabilizer circuit C has only a single mea-
surement gate at the end (say of qubit 1), with all other
measurements replaced by CNOT’s into ancilla qubits.

In the tableau algorithm of Section III, let x
(t)
ij , z

(t)
ij , r

(t)
i

be the values of the variables xij , zij , ri after t gates of C
have been applied. Then M will simulate C by comput-
ing these values. The first task of M is to decide whether
the measurement has a determinate outcome—or equiv-

alently, whether x
(T)
i1 = 0 for every i ∈ {n+ 1, . . . , 2n},

where T is the number of unitary gates. Observe that
in the CNOT, Hadamard, and phase procedures, every
update to an xij or zij variable replaces it by the sum
modulo 2 of one or two other xij or zij variables. Also,
iterating over all t ∈ {0, . . . , T} and i ∈ {1, . . . , 2n} takes
only O (log n) bits of memory. Therefore, despite its
memory restriction, M can easily write on its output
tape a description of a CNOT circuit that simulates the
tableau algorithm using 4n2 bits (the ri’s being omitted),

and that returns x
(T)
i1 for any desired i. Then to decide

whether the measurement outcome is determinate, M
simply iterates over all i from n+ 1 to 2n.

The hard part is to decide whether |0〉 or |1〉 is mea-
sured in case the measurement outcome is determinate,
for this problem involves the ri variables, which do not
evolve in a linear way as the xij ’s and zij ’s do. Even
worse, it involves the complicated-looking and nonlinear
rowsum procedure. Fortunately, though, it turns out

that the measurement outcome r
(T+1)
2n+1 can be computed

by keeping track of a single complex number α. This α
is a product of phases of the form ±1 or ±i, and there-
fore takes only 2 bits to specify. Furthermore, although
the “obvious” ways to compute α use more than O (logn)
bits of memory, M can get around that by making liberal
use of the oracle.

First M computes what r
(T+1)
2n+1 would be if the CNOT,

Hadamard, and phase procedures did not modify the ri’s.
Let P be a Pauli matrix with a phase of ±1 or ±i, which

therefore takes 4 bits to specify. Also, let P
(T)
ij be the

Pauli matrix represented by the bits x
(T)
ij , z

(T)
ij in the

usual way: I = 00, X = 10, Y = 11, Z = 01. Then
the procedure is as follows.

α := 1
for j := 1 to n
P := I
for i := n+ 1 to 2n

ask oracle for x
(T)
(i−n)1, x

(T)
ij , z

(T)
ij

if x
(T)
(i−n)1 = 1 then P := P

(T)
ij P

next i
multiply α by the phase of P (±1 or ±i)

next j

The “answer” is 1 if α = −1 and 0 if α = 1 (note that
α will never be ±i at the end). However, M also needs
to account for the ri’s, as follows.

for i := n+ 1 to 2n
ask oracle for x

(T)
(i−n)1

if x
(T)
(i−n)1 = 1

for t := 0 to T − 1
if (t+ 1)

st
gate is a Hadamard or phase on a

ask oracle for x
(t)
ia , z

(t)
ia

if x
(t)
ia z

(t)
ia = 1 then α := −α

end if
if (t+ 1)st gate is a CNOT from a to b

ask oracle for x
(t)
ia , z

(t)
ia , x

(t)
ib , z

(t)
ib

if x
(t)
ia z

(t)
ib

(

x
(t)
ib ⊕ z

(t)
ia ⊕ 1

)

= 1 then α := −α
end if

next t
end if

next i

The measurement outcome, r
(T+1)
2n+1 , is then 1 if α = −1

and 0 if α = 1. As described above, the machine M
needs only O (logn) bits to keep track of the loop indices
i, j, t, and O (1) additional bits to keep track of other
variables. Its correctness follows straightforwardly from
the correctness of the tableau algorithm.

For a problem to be ⊕L-complete simply means that
it is ⊕L-hard and in ⊕L. Thus, a corollary of Theorem
4 is that Gottesman-Knill is ⊕L-complete.

VI. CANONICAL FORM

Having studied the simulation of stabilizer circuits, in
this section we turn our attention to manipulating those
circuits. This task is of direct relevance to quantum
computer architecture: because the effects of decoher-
ence build up over time, it is imperative (even more so
than for classical circuits) to minimize the number of
gates as well as wires and other resources. Even if fault-
tolerant techniques will eventually be used to tame de-
coherence, there remains the bootstrapping problem of
building the fault-tolerance hardware! In that regard we
should point out that fault-tolerance hardware is likely
to consist mainly of CNOT, Hadamard, and phase gates,
since the known fault-tolerant constructions (for exam-
ple, that of Aharonov and Ben-Or [25]) are based on sta-
bilizer codes.

Although there has been some previous work on syn-
thesizing CNOT circuits [17, 26, 27] and general classical
reversible circuits [28, 29], to our knowledge there has not
been work on synthesizing stabilizer circuits. In this sec-
tion we prove a canonical form theorem that is extremely
useful for stabilizer circuit synthesis. The theorem says
that given any circuit consisting of CNOT, Hadamard,
and phase gates, there exists an equivalent circuit that
applies a round of Hadamard gates only, then a round
of CNOT gates only, and so on in the sequence H-C-P-
C-P-C-H-P-C-P-C. One easy corollary of the theorem is
that any tableau satisfying the commutativity conditions

9

of Proposition 3 can be generated by some stabilizer cir-
cuit. Another corollary is that any unitary stabilizer
circuit has an equivalent circuit with only O

(

n2/ logn
)

gates.
Given two n-qubit unitary stabilizer circuits C1, C2, we

say that C1 and C2 are equivalent if C1 (|ψ〉) = C2 (|ψ〉) for
all stabilizer states |ψ〉, where Ci (|ψ〉) is the final state
when Ci is applied to |ψ〉 [44]. By linearity, it is easy to
see that equivalent stabilizer circuits will behave identi-
cally on all states, not just stabilizer states. Further-
more, there exists a one-to-one correspondence between
circuits and tableaus:

Lemma 5 Let C1, C2 be unitary stabilizer circuits, and
let T1, T2 be their respective final tableaus when we run
them on the standard initial tableau. Then C1 and C2

are equivalent if and only if T1 = T2.

Proof. Clearly T1 = T2 if C1 and C2 are equivalent.
For the other direction, it suffices to observe that a uni-
tary stabilizer circuit acts linearly on Pauli operators
(that is, rows of the tableau): if it maps P1 to Q1 and
P2 to Q2, then it maps P1 + P2 to Q1 + Q2. Since the
rows of the standard initial tableau form a basis for Pn,
the lemma follows.

Our proof of the canonical form theorem will use the
following two lemmas.

Lemma 6 Given an n-qubit stabilizer state, it is always
possible to apply Hadamard gates to a subset of the qubits
so as to make the X matrix have full rank (or equiva-
lently, make all 2n basis states have nonzero amplitude).

Proof. We can always perform row additions on the
n× 2n stabilizer matrix without changing the state that
it represents. Suppose the X matrix has rank k < n;
then by Gaussian elimination, we can put the stabilizer
matrix in the form

(

A B
0 C

)

where A is k×n and has rank k. Then since the rows are
linearly independent, C must have rank n− k; therefore
it has an (n− k) × (n− k) submatrix C2 of full rank.
Let us permute the columns of the X and Z matrices
simultaneously to obtain

(

A1 A2 B1 B2

0 0 C1 C2

)

,

and then perform Gaussian elimination on the bottom
n− k rows to obtain

(

A1 A2 B1 B2

0 0 D I

)

.

Now commutativity relations imply

(

A1 A2

)

(

DT

I

)

= 0

and therefore A1D
T = A2. Notice that this implies

that the k × k matrix A1 has full rank, since otherwise
the X matrix would have column rank less than k. So
performing Hadamards on the rightmost n − k qubits
yields a state

(

A1 B2 B1 A2

0 I D 0

)

whose X matrix has full rank.

Lemma 7 For any symmetric matrix A ∈ Z
n×n
2 , there

exists a diagonal matrix Λ such that A+Λ = MMT , with
M some invertible binary matrix.

Proof. We will let M be a lower-triangular matrix
with 1s all along the diagonal:

Mii =1 (1)

Mij =0 i < j (2)

Such an M is always invertible. Then ∃ diagonal Λ such
that A+ Λ = MMT iff

Aij =
∑

k

MikMjk (3)

for all pairs (i, j) with i > j. (We pick Λ appropriately
to automatically satisfy the equations for Aii, and both
sides of the equation are symmetric, covering the cases
with i < j.)

We will perform induction on i and j to solve for the
undetermined elements of M . We know that M11 = 1
for a base case, and we will determine Mij with i > j by
supposing we have already determined Mi′j′ for either
i′ < i, j′ ≤ j or i′ ≤ i, j′ < j. We consider equation (3)
for Aij and note that MikMjk = 0 unless k ≤ j. Then

Aij =
∑

k<j

MikMjk +Mij . (4)

By the inductive hypothesis, we have already determined
in the sum both Mik (since k < j) and Mjk (since j < i
and k < j), so this equation uniquely determines Mij .
We can thus find a unique M that satisfies (3) for all
i > j.

Say a unitary stabilizer circuit is in canonical form if
it consists of 11 rounds in the sequence H-C-P-C-P-C-H-
P-C-P-C.

Theorem 8 Any unitary stabilizer circuit has an equiv-
alent circuit in canonical form.

Proof. Divide a 2n× 2n tableau into four n× n ma-
trices A = (aij), B = (bij), C = (cij), and D = (dij),
containing the destabilizer xij bits, destabilizer zij bits,
stabilizer xij bits, and stabilizer zij bits respectively:

(

A B
C D

)

10

(We can ignore the phase bits ri.) Since unitary cir-
cuits are reversible, by Lemma 5 it suffices to show how
to obtain the standard initial tableau starting from an
arbitrary A,B,C,D [45]. We cannot use row additions,
since although they leave states invariant they do not in
general leave circuits invariant.

The procedure is as follows.
(1) Use Hadamards to make C have full rank (this is
possible by Lemma 6).
(2) Use CNOT’s to perform Gaussian elimination on C,
producing

(

A B
I D

)

.

(3) Commutativity of the stabilizer implies that IDT is
symmetric, therefore D is symmetric, and we can ap-
ply phase gates to add a diagonal matrix to D and use
Lemma 7 to convert D to the form D = MMT for some
invertible M .
(4) Use CNOT’s to produce

(

A B
M M

)

.

Note that when we map I to IM , we also map D to

D
(

MT
)−1

= MMT
(

MT
)−1

= M .
(5) Apply phases to all n qubits to obtain

(

A B
M 0

)

.

Since M is full rank, there exists some subset S of qubits
such that applying 2 phases in succession to every a ∈ S
will preserve the above tableau, but set rn+1 = · · · =
r2n = 0. Apply 2 phases to every a ∈ S.
(6) Use CNOT’s to perform Gaussian elimination on M ,
producing

(

A B
I 0

)

.

By commutativity relations, IBT = A0T + I, therefore
B = I.
(7) Use Hadamards to produce

(

I A
0 I

)

.

(8) Now commutativity of the destabilizer implies that
A is symmetric, therefore we can again use phase gates
and Lemma 7 to make A = NNT for some invertible N .
(9) Use CNOT’s to produce

(

N N
0 C

)

.

(10) Use phases to produce

(

N 0
0 C

)

;

then by commutativity relations, NCT = I. Next apply
2 phases each to some subset of qubits in order to preserve
the above tableau, but set r1 = · · · = rn = 0.
(11) Use CNOT’s to produce

(

I 0
0 I

)

.

Since Theorem 8 relied only on a tableau satisfying the
commutativity conditions, not on its being generated by
some stabilizer circuit, an immediate corollary is that any
tableau satisfying the conditions is generated by some
stabilizer circuit. We can also use Theorem 8 to answer
the following question: how many gates are needed for
an n-qubit stabilizer circuit in the worst case? Cleve
and Gottesman [30] showed that O

(

n2
)

gates suffice for
the special case of state preparation, and Gottesman [31]
and Dehaene and De Moor [18] showed that O

(

n2
)

gates
suffice for stabilizer circuits more generally; even these
results were not obvious a priori. However, with the help
of our canonical form theorem we can show a stronger
upper bound.

Corollary 9 Any unitary stabilizer circuit has an equiv-
alent circuit with only O

(

n2/ logn
)

gates.

Proof. Patel, Markov, and Hayes [17] showed that
any CNOT circuit has an equivalent CNOT circuit with
only O

(

n2/ logn
)

gates. So given a stabilizer circuit C,
first put C into canonical form, then minimize the CNOT
segments. Clearly the Hadamard and Phase segments
require only O (n) gates each.

Corollary 9 is easily seen to be optimal by a Shannon

counting argument: there are 2Θ(n2) distinct stabilizer

circuits on n qubits, but at most
(

n2
)T

with T gates.
A final remark: as noted by Moore and Nilsson [27],

any CNOT circuit has an equivalent CNOT circuit with
O
(

n2
)

gates and parallel depth O (logn). Thus, using
the same idea as in Corollary 9, we obtain that any uni-
tary stabilizer circuit has an equivalent stabilizer circuit
with O

(

n2
)

gates and parallel depth O (logn). (Moore
and Nilsson showed this for the special case of stabilizer
circuits composed of CNOT and Hadamard gates only.)

VII. BEYOND STABILIZER CIRCUITS

In this section, we discuss generalizations of stabilizer
circuits that are still efficiently simulable. The first
(easy) generalization, in Section VII A, is to allow the
computer to be in a mixed rather than a pure state.
Mixed states could be simulated by simply purifying
the state, and then simulating the purification; but we
present an alternative and slightly more efficient strat-
egy.

The second generalization, in Section VII B, is to initial
states other than the computational basis state. Taken
to an extreme, one could even have noncomputable initial

11

states. When combined with arbitrary quantum circuits,
such quantum advice is very powerful, although its ex-
act power (relative to classical advice) is unknown [32].
We consider a more modest situation, in which the initial
state may include specific ancilla states, consisting of at
most b qubits each. The initial state is therefore a tensor
product of blocks of b qubits. Given an initial state of
this form and general stabilizer circuits, including mea-
surements and classical feedback based on measurement
outcomes, universal quantum computation is again possi-
ble [33, 34]. However, we show that an efficient classical
simulation exists, provided only a few measurements are
allowed.

The final generalization, in Section VII C, is to circuits
containing a few non-stabilizer gates. The qualifier “few”
is essential here, since it is known that unitary stabilizer
circuits plus any additional gate yields a universal set
of quantum gates [35, 36]. The running time of our
simulation procedure is polynomial in n, the number of
qubits, but is exponential in the d, the number of non-
stabilizer gates.

A. Mixed States

We first present the simulation for mixed states. We
allow only stabilizer mixed states—that is, states that
are uniform distributions over all states in a subspace (or
equivalently, all stabilizer states in the subspace) with a
given stabilizer of r < n generators. Such mixed states
can always be written as the partial trace of a pure sta-
bilizer state, which immediately provides one way of sim-
ulating them.

It will be useful to see how to write the density ma-
trix of the mixed state in terms of the stabilizer. The
operator (I +M) /2, when M is a Pauli operator, is a
projection onto the +1 eigenspace of M . Therefore, if
the stabilizer of a pure state has generators M1, . . . ,Mn,
then the density matrix for that state is

ρ =
1

2n

n
∏

i=1

(I +Mi) .

The density matrix for a stabilizer mixed state with sta-
bilizer generated by M1, . . . ,Mr is

ρ =
1

2r

r
∏

i=1

(I +Mi) .

To perform our simulation, we find a collection of
2 (n− r) operators Xi and Zi that commute with both
the stabilizer and the destabilizer. We can choose them
so that

[

X i, Xj

]

=
[

Zi, Zj

]

=
[

Xi, Zj

]

= 0 for i 6= j,

but
{

X i, Zi

}

= 0. This can be done by solving a set

of linear equations, which in practice takes time O
(

n3
)

.
If we start with an initial mixed state, we will assume
it is of the form |00 · · ·0〉 〈00 · · · 0| ⊗ I (so 0 on the first
n− r qubits and the completely mixed state on the last

r qubits). In that case, we choose X i = Xi+r and
Zi = Zi+r.

We could purify this state by adding ZiZn+i and
XiXn+i to the stabilizer andXn+i and Zn+i to the desta-
bilizer for i = 1, . . . , r. Then we could simulate the sys-
tem by just simulating the evolution of this pure state
through the circuit; the extra r qubits are never altered.

A more economical simulation is possible, however, by
just keeping track of the original r-generator stabilizer
and destabilizer, plus the 2 (n− r) operators Xi and Zi.
Formally, this allows us to maintain a complete tableau
and generalize the O

(

n2
)

tableau algorithm from Sec-
tion III. We place the r generators of the stabilizer as
rows n+ 1, . . . , n+ r of the tableau, and the correspond-
ing elements of the destabilizer as rows 1, . . . , r. The
new operators Xi and Zi (i = 1, . . . , n− r) become rows
r + i and n + r + i, respectively. Let i = i+ n if i ≤ n
and i = i − n if i ≥ n + 1. Then we have that rows Ri

and Rj commute unless i = j, in which case Ri and Rj

anticommute.
We can keep track of this new kind of tableau in much

the same way as the old kind. Unitary operations trans-
form the new rows the same way as rows of the stabilizer
or destabilizer. For example, to perform a CNOT from
control qubit a to target qubit b, set xib := xib ⊕ xia and
zia := zia ⊕ zib, for all i ∈ {1, . . . , 2n}.

Measurement of qubit a is slightly more complex than
before. There are now three cases:

Case I: xpa = 1 for some p ∈ {n+ 1, . . . , n+ r}. In this
case Za anticommutes with an element of the stabilizer,
and the measurement outcome is random. We update
as before, for all rows of the tableau.
Case II: xpa = 0 for all p > r. In this case Za is in the
stabilizer. The measurement outcome is determinate,
and we can predict the result as before, by calling rowsum
to add up rows rn+i for those i with xia = 1.
Case III: xpa = 0 for all p ∈ {n+ 1, . . . , n+ r},
but xma = 1 for some m ∈ {r + 1, . . . , n} or m ∈
{n+ r + 1, . . . , 2n}. In this case Za commutes with
all elements of the stabilizer but is not itself in the sta-
bilizer. We get a random measurement result, but a
slightly different transformation of the stabilizer than in
Case I. Observe that row Rm anticommutes with Za.
This row takes the role of row p from Case I, and the
row Rm takes the role of row p − n. Update as before
with this modification. Then swap rows n + r + 1 and
m and rows r + 1 and m. Finally, increase r to r + 1:
the stabilizer has gained a new generator.

Another operation that we might want to apply is dis-
carding the qubit a, which has the effect of performing
a partial trace over that qubit in the density matrix.
Again, this can be done by simply keeping the qubit
in our simulation and not using it in future operations.
Here is an alternative: put the stabilizer in a form such
that there is at most one generator with an X on qubit
a, and at most one with a Z on qubit a. Then drop
those two generators (or one, if there is only one total).

12

The remaining generators describe the stabilizer of the
reduced mixed state. We also must put the X i and Zi

operators in a form where they have no entries in the
discarded location, while preserving the structure of the
tableau (namely, the commutation relations of Proposi-
tion 3). This can also be done in time O(n2), but we
omit the details, as they are rather involved.

B. Non-Stabilizer Initial States

We now show how to simulate a stabilizer circuit where
the initial state is more general, involving non-stabilizer
initial states. We allow any number of ancillas in arbi-
trary states, but the overall ancilla state must be a tensor
product of blocks of at most b qubits each. An arbitrary
stabilizer circuit is then applied to this state. We allow
measurements, but only d of them in total throughout
the computation. We do allow classical operations con-
ditioned on the outcomes of measurements, so we also
allow polynomial-time classical computation during the
circuit.

Let the initial state have density matrix ρ: a tensor
product of m blocks of at most b qubits each. Without
loss of generality, we first apply the unitary stabilizer
circuit U1, followed by the measurement Z1 (that is, a
measurement of the first qubit in the standard basis).
We then apply the stabilizer circuit U2, followed by mea-
surement Z2 on the second qubit, and so on up to Ud, Zd.

We can calculate the probability p (0) of obtaining out-
come 0 for the first measurement Z1 as follows:

p (0) = Tr
[

(I + Z1)U1ρU
†
1

]

/2

= Tr
[(

I + U †
1Z1U1

)

ρ
]

/2

= 1/2 + Tr
[(

U †
1Z1U1

)

ρ
]

/2.

But U1 is a stabilizer operation, so U †
1Z1U1 is a Pauli

matrix, and is therefore a tensor product operation. We
also know ρ is a tensor product of blocks of at most b
qubits, and the trace of a tensor product is the product

of the traces. Let ρ = ⊗m
j=1ρj and U †

1Z1U1 = ⊗m
j=1Pj

where j ranges over the blocks. Then

p (0) =
1

2
+

m
∏

j=1

Tr (Pjρj) .

Since Pj and ρj are both 2b × 2b-dimensional matrices,
each Tr (Pjρj) can be computed in time O

(

22b
)

.
By flipping an appropriately biased coin, Alice can gen-

erate an outcome of the first measurement according to
the correct probabilities. Conditioned on this outcome
(say of 0), the state of the system is

(I + Z1)U1ρU
†
1 (1 + Z1)

4p (0)
.

After the next stabilizer circuit U2, the state is

U2 (I + Z1)U1ρU
†
1 (1 + Z1)U

†
2

4p (0)
.

The probability of obtaining outcome 0 for the second
measurement, conditioned on the outcome of the first
measurement being 0, is then

p (0|0) =
Tr
[

(I + Z2)U2 (I + Z1)U1ρU
†
1 (I + Z1)U

†
2

]

8p (0)
.

By expanding out the 8 terms, and then commuting U1

and U2 past Z1 and Z2, we can write this as

8
∑

i=1

m
∏

j=1

Tr
(

P
(2)
ij ρij

)

.

Each Tr
(

P
(2)
ij ρij

)

term can again be computed in time

O
(

22b
)

.
Similarly, the probability of any particular sequence of

measurement outcomes m1m2 · · ·md can be written as a
sum

p (m1m2 · · ·md) =

22d−1

∑

i=1

m
∏

j=1

Tr
(

P
(d)
ij ρij

)

,

where each trace can be computed in time O
(

22b
)

. It
follows that the probabilities of the two outcomes of the
dth measurement can be computed in time O

(

m22b+2d
)

.

C. Non-Stabilizer Gates

The last case that we consider is that of a circuit con-
taining d non-stabilizer gates, each of which acts on at
most b qubits. We allow an unlimited number of Pauli
measurements and unitary stabilizer gates, but the initial
state is required to be a stabilizer state—for concreteness,
|0〉⊗n.

To analyze this case, we examine the density matrix
ρt at the tth step of the computation. Initially, ρ0 is
a stabilizer state whose stabilizer is generated by some
M1, . . . ,Mn, so we can write it as

ρ =
1

2n
(I +M1) (I +M2) · · · (I +Mn) .

If we perform a stabilizer operation, the Mi’s become a
different set of Pauli operators, but keeping track of them
requires at most n (2n+ 1) bits at any given time (or
2n (2n+ 1) if we include the destabilizer). If we perform
a measurement, the Mi’s change in a more complicated
way, but remain Pauli group elements.

13

Now consider a single non-stabilizer gate U . Expand-
ing U in terms of Pauli operations Pi,

UρU † =
1

2n

(

∑

i

ciPi

)

∏

j

(I +Mj)

(

∑

k

c∗kPk

)

=
1

2n

∑

i,k

cic
∗
kPiPk

∏

j

(

I + (−1)
Mj ·Pk Mj

)

.

Here Mj ·Pk is the symplectic inner product between the
corresponding vectors, which is 0 whenever Mj and Pk

commute and 1 when they anticommute. In what fol-
lows, let cik = cic

∗
k and Pik = PiPk. Then we can write

the density matrix after U as a sum of terms, each de-
scribed by a Pauli matrix Pik and a vector of eigenvalues
for the stabilizer. Since U and U † each act on at most b
qubits, there are at most 42b terms in this sum.

If we apply a stabilizer gate to this state, all of the
Pauli matrices in the decomposition are transformed to
other Pauli matrices, according to the usual rules. If we
perform another non-stabilizer gate, we can again expand
it in terms of Pauli matrices, and put it in the same form.
The new gate can act on b new qubits, however, giving
us more terms in the sum. After d such operations, we
thus need to keep track of at most 42bd complex numbers
(the coefficients cik), 4bd strings each of 2n bits (the Pauli
matrices Pik), and 4bd strings each of n bits (the inner
products Mj · Pk). We also need to keep track of the
stabilizer generators M1, . . . ,Mn, and it will be helpful
to also keep track of the destabilizer, for a total of an
additional 2n (2n+ 1) bits.

The above allows us to describe the evolution when
there are no measurements. What happens when we
perform a measurement? Consider the unnormalized
density matrix corresponding to outcome 0 for measure-
ment of the Pauli operator Q:

ρ(0) =
1

2n+2
Q+

∑

i,k

cikPik

∏

j

(

I + (−1)Mj ·PkMj

)

Q+

where here and throughout we let Q+ = I+Q and Q− =
I − Q. As usual, either Q commutes with everything
in the stabilizer, or Q anticommutes with some element
of the stabilizer. (However, the measurement outcome
can be indeterminate in both cases, and may have a non-
uniform distribution.) In the first case, we can rewrite
the density matrix as

ρ (0) =
1

2n+2

∑

i,k

cikQ
+PikQ

+
∏

j

(

I + (−1)Mj ·Pk Mj

)

.

But Q+PikQ
+ = 2PikQ

+ if Pik and Q commute, and
Q+PikQ

+ = Q+Q−Pik = 0 if Pik and Q anticommute.
Furthermore, as usual, as Q commutes with everything in
the stabilizer, Q is actually in the stabilizer, so projecting
on Q+ either is redundant (if Q has eigenvalue +1) or
annihilates the state (ifQ has eigenvalue −1). Therefore,

we can see that ρ (0) has the same form as before:

ρ (0) =
1

2n

∑

i,k

cikPik

∏

j

(

I + (−1)
Mj ·Pk Mj

)

,

where now the sum over i is only over those Pik’s that
commute with Q, and the sum over k is only over those
Pk’s that give eigenvalue +1 for Q.

When Q anticommutes with an element of the stabi-
lizer, we can change our choice of generators so that Q
commutes with all of the generators except forM1. Then
we write ρ (0) as:

ρ (0) =
1

2n+2

∑

i,k

cikQ
+Pik

(

I + (−1)
Mj ·Pk M1

)

Q+Λk

=
1

2n+2

∑

i,k

cikQ
+Pik

[

Q+ + (−1)
Mj ·Pk Q−M1

]

Λk

where

Λk =
∏

j>1

(

I + (−1)Mj ·Pk Mj

)

.

If Pik and Q commute, then we keep only the first term
Q+ in the square brackets. If Pik and Q anticommute, we
keep only the second term Q−M1 in the square brackets.
In either case, we can rewrite the density matrix in the
same kind of decomposition:

ρ (0) =
1

2n

∑

i,k

cikPikQ
+
∏

j>1

(

I + (−1)
Mj ·Pk Mj

)

,

where Q has replaced M1 in the stabilizer, and any Pik

that anticommutes with Q has been replaced by PikM1,

its corresponding cik replaced by (−1)
Mj ·Pk cik.

Therefore, we can always write the density matrix after
the measurement in the same kind of sum decomposition
as before, with no more terms than there were before the
measurement. The density matrices are unnormalized,
so we need to calculate Tr ρ (0) to determine the proba-
bility of obtaining outcome 0. Computing the trace of
a single term is straightforward: it is 0 if Pik is not in
the stabilizer and ±2ncik if Pik is in the stabilizer (with
+ or − determined by the eigenvalue of Pik). To cal-
culate Tr ρ (0), we just need to sum the traces of the
42bd individual terms. We then choose a random number
to determine the actual outcome. Thereafter, we only
need to keep track of ρ (0) or ρ (1), which we can easily
renormalize to have unit trace. Overall, this simulation
therefore takes time and space O

(

42bdn+ n2
)

.

VIII. OPEN PROBLEMS

(1) Iwama, Kambayashi, and Yamashita [26] gave a set
of local transformation rules by which any CNOT cir-
cuit (that is, a circuit consisting solely of CNOT gates)
can be transformed into any equivalent CNOT circuit.

14

For example, a CNOT from a to b followed by another
CNOT from a to b can be replaced by the identity, and a
CNOT from a to b followed by a CNOT from c to d can
be replaced by a CNOT from c to d followed by a CNOT
from a to b, provided that a 6= d and b 6= c. Using
Theorem 8, can we similarly give a set of local transfor-
mation rules by which any unitary stabilizer circuit can
be transformed into any equivalent unitary stabilizer cir-
cuit? Such a rule set could form the basis of an efficient
heuristic algorithm for minimizing stabilizer circuits.
(2) Can the tableau algorithm be modified to compute
measurement outcomes in only O (n) time? (In case
the measurement yields a random outcome, updating the
state might still take order n2 time.)
(3) In Theorem 8, is the 11-round sequence H-C-P-C-
P-C-H-P-C-P-C really necessary, or is there a canonical
form that uses fewer rounds? Note that if we are only
concerned with state preparation, and not with how a cir-
cuit behaves on any initial state other than the standard
one, then the 5-round sequence H-P-C-P-H is sufficient.
(4) Is there a set of quantum gates that is neither univer-
sal for quantum computation, nor classically simulable in
polynomial time? Shi [37] has shown that if we gener-
alize stabilizer circuits by adding any 1- or 2-qubit gate
not generated by CNOT, Hadamard, and phase, then we
immediately obtain a universal set.
(5) What is the computational power of stabilizer circuits
with arbitrary tensor product initial states, but measure-
ments delayed until the end of the computation? It is
known that, if we allow classical postprocessing and con-
trol of future quantum operations conditioned on mea-
surement results, then universal quantum computation
is possible [33, 34]. However, if all measurements are de-
layed until the end of the computation, then the quantum
part of such a circuit (though not the classical postpro-
cessing) can be compressed to constant depth. On the
other hand, Terhal and DiVincenzo [38] have given evi-
dence that even constant-depth quantum circuits might
be difficult to simulate classically.
(6) Is there an efficient algorithm that, given a CNOT
or stabilizer circuit, produces an equivalent circuit of
(approximately) minimum size? Would the existence
of such an algorithm have unlikely complexity conse-
quences? This might be related to the hard problem
of proving superlinear lower bounds on CNOT or stabi-
lizer circuit size for explicit functions.

IX. ACKNOWLEDGMENTS

We thank John Kubiatowicz, Michael Nielsen, Isaac
Chuang, Cris Moore, and George Viamontes for help-
ful discussions, Andrew Cross for fixing an error in the
manuscript and software, and Martin Laforest for point-
ing out an error in the proof of Theorem 8. SA was sup-
ported by an NSF Graduate Fellowship and by DARPA.
DG is supported by funds from NSERC of Canada, and

by the CIAR in the Quantum Information Processing
program.

REFERENCES

[1] M. Suzuki (editor), Quantum Monte Carlo Meth-
ods in Equilibrium and Nonequilibrium Systems
(Springer, 1986).

[2] B. Oemer (2003). http://tph.tuwien.ac.at/˜oemer/qcl.html.
[3] G. F. Viamontes, I. L. Markov, and J. P. Hayes,

Quantum Information Processing 2(5), 347 (2004).
quant-ph/0309060.

[4] G. F. Viamontes, M. Rajagopalan, I. L. Markov, and
J. P. Hayes, in Proc. Asia and South-Pacific De-
sign Automation Conference (2003), p. 295. quant-
ph/0208003.

[5] K. M. Obenland and A. M. Despain, in High Per-
formance Computing (1998). quant-ph/9804039.

[6] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). quant-
ph/0301063.

[7] G. Vidal (2003). quant-ph/0310089.
[8] L. G. Valiant, in Proc. ACM Symp. on Theory of

Computing (2001), p. 114.
[9] B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A

65, 032325 (2002). quant-ph/0108010.
[10] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin,

and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
quant-ph/9604024.

[11] A. R. Calderbank, E. M. Rains, P. W. Shor, and
N. J. A. Sloane, Phys. Rev. Lett. 78, 405 (1997).
quant-ph/9605005.

[12] D. Gottesman, Phys. Rev. A 54, 1862 (1996). quant-
ph/9604038.

[13] D. Gottesman, talk at International Conference on
Group Theoretic Methods in Physics (1998). quant-
ph/9807006.

[14] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in
Bell’s Theorem, Quantum Theory, and Conceptions
of the Universe (Kluwer, 1989), p. 73.

[15] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett.
69, 2881 (1992).

[16] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa,
A. Peres, and W. Wootters, Phys. Rev. Lett. 70,
1895 (1993).

[17] K. N. Patel, I. L. Markov, and J. P. Hayes (2003).
quant-ph/0302002.

[18] J. Dehaene and B. De Moor, Phys. Rev. A 68, 042318
(2003). quant-ph/0304125.

[19] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge, 2000).

[20] D. Coppersmith and S. Winograd, J. Symbolic Com-
put. 9(3), 251 (1990).

[21] D. R. Simon, SIAM J. Comput. 26(5), 1474 (1997).
[22] P. W. Shor, Phys. Rev. A 52, 2493 (1995).
[23] C. Damm, Information Proc. Lett. 36, 247 (1990).
[24] U. Hertrampf, S. Reith, and H. Vollmer, Information

Proc. Lett. 75(3), 91 (2000).

15

[25] D. Aharonov and M. Ben-Or, in Proc. ACM Symp.
on Theory of Computing (1997), p. 176. quant-
ph/9906129.

[26] K. Iwama, Y. Kambayashi, and S. Yamashita, in
Proc. Design Automation Conference (2002), p. 419.

[27] C. Moore and M. Nilsson, SIAM J. Comput. 31(3),
799 (2002). quant-ph/9808027.

[28] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.
Hayes, IEEE Trans. on CAD 22, 710 (June 2003).
quant-ph/0207001.

[29] J.-S. Lee, Y. Chung, J. Kim, and S. Lee (1999).
quant-ph/9911053.

[30] R. Cleve and D. Gottesman, Phys. Rev. A 56, 76
(1997). quant-ph/9607030.

[31] D. Gottesman, Phys. Rev. A 57, 127 (1998). quant-
ph/9702029.

[32] S. Aaronson, in Proc. IEEE Conf. on Computational
Complexity (2004), p. 320. quant-ph/0402095.

[33] P. W. Shor, in Proc. IEEE Symp. on Foundations of
Computer Science (1996), p. 56. quant-ph/9605011.

[34] D. Gottesman and I. Chuang, Nature 402, 390
(1999). quant-ph/9908010.

[35] G. Nebe, E. M. Rains and N. J. A. Sloane, De-
signs, Codes and Cryptography 24, 99 (2001).
math.CO/0001038.

[36] R. Solovay, talk at Mathematical Sciences Research
Institute (2000).

[37] Y. Shi, Quantum Information and Computation
3(1), 84 (2003). quant-ph/0205115.

[38] B. M. Terhal and D. P. DiVincenzo, Quantum Infor-
mation and Computation 4(2), 134 (2004). quant-
ph/0205133.

[39] If P ∈ S (|ψ〉), then P can only have a phase of ±1,
not ±i: for in the latter case P 2 = −I · · · I would
be in S (|ψ〉), but we saw that −I does not stabilize
anything.

[40] Dehaene and De Moor [18] came up with some-
thing like this tableau representation independently,
though they did not use it to simulate measurements
in O

(

n2
)

time.
[41] At www.cs.berkeley.edu/˜aaronson/chp.html
[42] Based on our heuristic analysis, we conjecture that

for intermediate β, the time per measurement grows
as nc for some 1 < c < 2. However, we do not have
enough data to confirm or refute this conjecture

[43] See www.complexityzoo.com for definitions of ⊕L

and several hundred other complexity classes
[44] The reason we restrict attention to unitary circuits

is simply that, if measurements are included, then it
is unclear what it even means for two circuits to be
equivalent. For example, does deferring all measure-
ments to the end of a computation preserve equiva-
lence or not?

[45] Actually, this gives the canonical form for the inverse
of the circuit, but of course the same argument holds
for the inverse circuit too, which is also a stabilizer
circuit

