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Abstract

Given a Boolean function f , we study two natural gener-
alizations of the certificate complexity C (f): the random-
ized certificate complexity RC (f) and the quantum cer-
tificate complexity QC(f). Using Ambainis’ adversary
method, we exactly characterize QC (f) as the square root
of RC(f). We then use this result to prove the new rela-

tion R0 (f) = O
(
Q2 (f)

2
Q0 (f) log n

)
for total f , where

R0, Q2, and Q0 are zero-error randomized, bounded-
error quantum, and zero-error quantum query complexi-
ties respectively. Finally we give asymptotic gaps be-
tween the measures, including a total f for which C(f) is
superquadratic in QC (f), and a symmetric partial f for
which QC (f) = O (1) yet Q2 (f) = Ω (n/ logn).

1. Background

Most of what is known about the power of quantum
computing can be cast in the query or decision-tree model
[1, 2, 3, 5, 6, 9, 10, 11, 18, 22, 23]. Here one counts only the
number of queries to the input, not the number of compu-
tational steps. The appeal of this model lies in its extreme
simplicity—in contrast to (say) the Turing machine model,
one feels the query model ought to be ‘completely under-
standable.’ In spite of this, open problems abound.

Let f : Dom (f) → {0, 1} be a Boolean function with
Dom (f) ⊆ {0, 1}n, that takes input Y = y1 . . . yn. Then
the deterministic query complexity D (f) is the minimum
number of queries to the yi’s needed to evaluate f , if Y is
chosen adversarially and if queries can be adaptive (that is,
can depend on the outcomes of previous queries). Also, the
bounded-error randomized query complexity, R2 (f), is the
minimum expected number of queries needed by a random-
ized algorithm that, for each Y ∈ Dom (f), outputs f (Y )
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with probability at least 2/3. Here the ‘2’ refers to two-
sided error; if instead we require f (Y ) to be output with
probability 1 for every Y , we obtain R0 (f), or zero-error
randomized query complexity.

Analogously, Q2 (f) is the minimum number of queries
needed by a quantum algorithm that outputs f (Y ) with
probability at least 2/3 for all Y . Also, for k ∈ {0, 1}
let Qk

0 (f) be the minimum number of queries needed by a
quantum algorithm that outputs f (Y ) with probability 1 if
f (Y ) = k, and with probability at least 1/2 if f (Y ) 6= k.
Then let Q0 (f) = max

{
Q0

0 (f) , Q1
0 (f)

}
. If we require a

single algorithm that succeeds with probability 1 for all Y ,
we obtain QE (f), or exact quantum query complexity. See
[10] for detailed definitions and a survey of these measures.

It is immediate that

Q 2 (f) ≤ R 2 (f) ≤ R 0 (f) ≤ D (f) ≤ n,

that Q0 (f) ≤ R0 (f), and that QE (f) ≤ D (f). If f
is partial (i.e. Dom (f) 6= {0, 1}n), then Q2 (f) can be
superpolynomially smaller than R2 (f); this is what makes
Shor’s period-finding algorithm [19] possible. For total f ,
by contrast, the largest known gap even between D (f) and
Q2 (f) is quadratic, and is achieved by the OR function on
n bits: D (OR) = n (indeed R2 (OR) = Ω (n)), whereas
Q2 (OR) = Θ (

√
n) because of Grover’s search algorithm

[11]. Furthermore, for total f , Beals et al. [6] showed
that D (f) = O

(
Q2 (f)

6
)

, while de Wolf [23] showed that

D (f) = O
(
Q2 (f)2 Q0 (f)2

)
.

The result of Beals et al. [6] relies on two intermediate
complexity measures, the certificate complexity C (f) and
block sensitivity bs (f), which we now define.

Definition 1 A certificate for an input X is a set S ⊆
{1, . . . , n} such that for all Y ∈ Dom (f), if yi = xi for
all i ∈ S then f (Y ) = f (X). Then CX (f) is the mini-
mum size of a certificate for X , and C (f) is the maximum
of CX (f) over all X .

Definition 2 A sensitive block on input X is a set B ⊆
{1, . . . , n} such that f

(
X(B)

)
6= f (X), where X(B) is ob-

tained from X by flipping xi for each i ∈ B. Then bsX (f)



is the maximum number of disjoint sensitive blocks on X ,
and bs (f) is the maximum of bsX (f) over all X .

Clearly
bs (f) ≤ C (f) ≤ D (f) .

For total f , these measures are all polynomially related:
Nisan [12] showed that C (f) ≤ bs (f)

2, while Beals et al.
[6] showed that D (f) ≤ C (f) bs (f). Combining these
results with bs (f) = O

(
Q2 (f)2

)
(from the optimality of

Grover’s algorithm), one obtains D (f) = O
(
Q2 (f)

6
)

.

2. Our Results

We investigate RC(f) and QC(f), the bounded-error
randomized and quantum generalizations of the certificate
complexity C (f) (see Table 1). Our motivation is that, just
as C (f) was used to show a polynomial relation between
D (f) and Q2 (f), so RC(f) and QC (f) can lead to new
relations among fundamental query complexity measures.

Table 1
Query complexity D (f) R2 (f) Q2 (f)
Certificate complexity C(f) RC (f) QC (f)

What the certificate complexity C (f) measures is the
number of queries used to verify a certificate, not the num-
ber of bits used to communicate it. Thus, if we want to gen-
eralize C (f), we should assume the latter is unbounded. A
consequence is that without loss of generality, a certificate
is just a claimed value X for the input Y 1—since any addi-
tional information that a prover might provide, the verifier
can compute for itself. The verifier’s job is to check that
f (Y ) = f (X). With this in mind we define RC (f) as
follows.

Definition 3 A randomized verifier for input X is a ran-
domized algorithm that, on input Y ∈ Dom (f), (i) accepts
with probability 1 if Y = X , and (ii) rejects with prob-
ability at least 1/2 if f (Y ) 6= f (X). (If Y 6= X but
f (Y ) = f (X), the acceptance probability can be arbi-
trary.) Then RCX (f) is the minimum expected number of
queries used by a randomized verifier for X , and RC (f) is
the maximum of RCX (f) over all X .

We define QC (f) analogously, with quantum instead of
randomized algorithms. The following justifies the defi-
nition (the RC(f) part was originally shown by Raz et al.
[15]).

1Throughout this paper, we use Y to denote the ‘actual’ input being
queried, and X to denote the ‘claimed’ input (whose randomized certifi-
cate complexity, block sensitivity, and so on we want to study).

Proposition 4 Making the error probability two-sided
rather than one-sided changes RC (f) and QC (f) by at
most a constant factor.

Proof. For RC (f), let rY
V be the event that verifier V

rejects on input Y , and let dY
V be the event that V en-

counters a disagreement with X on Y . We may assume
Pr

[
rY
V | dY

V

]
= 1. Suppose that Pr

[
rY
V

]
≤ ε0 if Y = X

and Pr
[
rY
V

]
≥ 1 − ε1 if f (Y ) 6= f (X). We wish to

lower-bound Pr
[
dY

V

]
for all Y such that f (Y ) 6= f (X).

Observe that

Pr
[
rY
V ∧ qdY

V | f (Y ) 6= f (X)
]
≤ Pr

[
rX
V ∧ qdX

V

]

= Pr
[
rX
V

]
≤ ε0.

Hence for f (Y ) 6= f (X),

Pr
[
dY

V

]
≥ Pr

[
rY
V

]
− Pr

[
rY
V ∧ qdY

V

]
≥ 1 − ε1 − ε0.

Now let V ∗ be identical to V except that, whenever V re-
jects despite having found no disagreement with X , V ∗

accepts. Clearly Pr
[
rX
V ∗

]
= 0. Also, in the case

f (Y ) 6= f (X),

Pr
[
rY
V ∗

]
= Pr

[
dY

V

]
≥ 1 − ε1 − ε0.

The result follows since O (1) repetitions suffice to boost
any constant error probability to any other constant error
probability.

For QC (f), suppose the verifier’s final state given input
Y is ∑

z

αY
z |z〉

(
βY

z |0〉 + γY
z |1〉

)

where |0〉 is the reject state, |1〉 is the accept state, and∣∣βY
z

∣∣2 +
∣∣γY

z

∣∣2 = 1 for all z. Suppose also that AX ≥
1 − ε0 and that AY ≤ ε1 whenever f (Y ) 6= f (X), where
AY =

∑
z

∣∣αY
z γY

z

∣∣2 is the probability of accepting. Then
the verifier can make AX = 1 by performing the condi-
tional rotation (

γX
z −βX

z

βX
z γX

z

)

on the second register prior to measurement. In the case
f (Y ) 6= f (X), this produces

AY =
∑

z

∣∣αY
z

∣∣2 ∣∣βX
z βY

z + γX
z γY

z

∣∣2

≤ 2
∑

z

∣∣αY
z

∣∣2
(∣∣βX

z

∣∣2 +
∣∣γY

z

∣∣2
)

≤ 2 (ε0 + ε1) .

It is immediate that

QC (f) ≤ RC(f) ≤ C (f) ,



that QC(f) = O (Q2 (f)), and that RC (f) = O (R2 (f)).
We also have RC (f) = Ω (bs (f)), since a randomized ver-
ifier for X must query each sensitive block on X with 1/2
probability. This suggests viewing RC(f) as an ‘alloy’ of
block sensitivity and certificate complexity, an interpreta-
tion for which Section 6 gives some justification.

Our results are as follows. In Section 4 we show
that QC(f) = Θ

(√
RC (f)

)
for all f (partial or total),

precisely characterizing quantum certificate complexity in
terms of randomized certificate complexity. To do this,
we first give a nonadaptive characterization of RC(f), and
then apply the adversary method of Ambainis [3] to lower-
bound QC(f) in terms of this characterization. Then,
in Section 5, we extend results on polynomials due to
de Wolf [23] and to Nisan and Smolensky (as described
by Buhrman and de Wolf [10]), to show that R0 (f) =
O (RC (f) ndeg (f) log n) for all total f , where ndeg (f) is
the minimum degree of a polynomial p such that p (X) 6= 0
if and only if f (X) 6= 0. Combining the results of Sections
4 and 5 leads to a new lower bound on quantum query com-
plexity: that R0 (f) = O

(
Q2 (f)

2
Q0 (f) log n

)
for all to-

tal f . To our knowledge, this is the first quantum lower
bound to use both the adversary method and the polynomial
method at different points in the argument.

Finally, in Section 6, we exhibit asymptotic gaps be-
tween RC (f) and other query complexity measures, in-
cluding a total f for which C (f) = Θ

(
QC (f)

2.205
)

,
and a symmetric partial f for which QC(f) = O (1) yet
Q2 (f) = Ω (n/ logn). We conclude in Section 7 with
some open problems.

3. Related Work

Raz et al. [15] studied a query complexity measure they
called ma (f), for Merlin-Arthur. In our notation, ma(f)
equals the maximum of RCX (f) over all X with f (X) =
1. Raz et al. observed that ma (f) = ip (f), where ip (f) is
the number of queries needed given arbitrarily many rounds
of interaction with a prover. They also used error-correcting
codes to construct a total f for which ma (f) = O (1) but
C(f) = Ω (n). This has similarities to our construction, in
Section 6.3, of a symmetric partial f for which QC(f) =
O (1) but Q2 (f) = Ω (n/ logn). Aside from that and from
Proposition 4, Raz et al.’s results do not overlap with ours.

Watrous [20] has investigated a different notion of ‘quan-
tum certificate complexity’—whether certificates that are
quantum states can be superpolynomially smaller than any
classical certificate. Also, de Wolf [22] has investigated
‘nondeterministic quantum query complexity’ in the alter-
nate sense of algorithms that accept with zero probabil-
ity when f (Y ) = 0, and with positive probability when
f (Y ) = 1.

4. Characterization of Quantum Certificate
Complexity

We wish to show that QC (f) = Θ
(√

RC(f)
)

,
precisely characterizing quantum certificate complexity in
terms of randomized certificate complexity. The first step
is to give a simpler characterization of RC (f).

Lemma 5 Call a randomized verifier for X nonadaptive if,
on input Y , it queries each yi with independent probability
λi, and rejects if and only if it encounters a disagreement
with X . (Thus, we identify such a verifier with the vector
(λ1, . . . , λn).) Let RCX

na (f) be the minimum of λ1 + · · ·+
λn over all nonadaptive verifiers for X . Then RCX

na (f) =
Θ

(
RCX (f)

)
.

Proof. Clearly RCX
na (f) = Ω

(
RCX (f)

)
. For the upper

bound, we can assume that a randomized verifier rejects im-
mediately on finding a disagreement with X , and accepts if
it finds no disagreement. Let Y = {Y : f (Y ) 6= f (X)}.
Let V be an optimal randomized verifier, and let pt (Y ) be
the probability that V , when given input Y ∈ Y , finds a dis-
agreement with X on the tth query. By Markov’s inequal-
ity, V must have found a disagreement with probability at
least 1/2 after T =

⌈
2 RCX (f)

⌉
queries. So by the union

bound
p1 (Y ) + · · · + pT (Y ) ≥ 1/2

for each Y ∈ Y . Suppose we choose t ∈ {1, . . . , T}
uniformly at random and simulate the tth query, pretend-
ing that queries 1, . . . , t − 1 have already been made and
have returned agreement with X . Then we must find a
disagreement with probability at least 1/2T . By repeat-
ing this procedure 4T times, we can boost the probability
to 1 − e−2. For i ∈ {1, . . . , n}, let λi be the probability
that yi is queried at least once. Then λ1 + · · · + λn ≤ 4T ,
whereas for each Y ∈ Y ,

∑

i:yi 6=xi

λi ≥ 1 − e−2.

It follows that, if each yi is queried with independent prob-
ability λi, then the probability that at least one yi disagrees
with X is at least

1 −
∏

i:yi 6=xi

(1 − λi) ≥ 1 −
(

1 − 1 − e−2

n

)n

> 0.57.

To obtain a lower bound on QC(f), we use the follow-
ing simple reformulation of the adversary method of Am-
bainis [3].

Theorem 6 (Ambainis) Let β be a function from Dom (f)

to nonnegative reals, and let R : Dom (f)
2 → {0, 1} be



a relation such that R (X, Y ) = R (Y, X) for all X, Y
and R (X, Y ) = 0 whenever f (X) = f (Y ). Let
δ0, δ1 ∈ (0, 1] be such that for every X ∈ Dom (f) and
i ∈ {1, . . . , n},

∑

Y : R(X,Y )=1

β (Y ) ≥ 1,

∑

Y : R(X,Y )=1,xi 6=yi

β (Y ) ≤ δf(X).

Then Q2 (f) = Ω
(√

1
δ0δ1

)
.

We now prove the main result of the section.

Theorem 7 For all f (partial or total) and all X ,

QC X (f) = Θ

(√
RC X (f)

)
.

Proof. Let (λ1, . . . , λn) be an optimal nonadaptive random-
ized verifier for X , and let

S = λ1 + · · · + λn.

First, QCX (f) = O
(√

S
)

. We can run a “weighted
Grover search,” in which the proportion of basis states
querying index i is within a constant factor of λi/S.
(It suffices to use n2 basis states.) Let Y =

{Y : f (Y ) 6= f (X)}; then for any Y ∈ Y , O
(√

S
)

itera-
tions suffice to find a disagreement with X with probability
Ω (1). Second, QCX (f) = Ω

(√
S
)

. Consider a ma-
trix game in which Alice chooses an index i to query and
Bob chooses Y ∈ Y ; Alice wins if and only if yi 6= xi.
If both players are rational, then Alice wins with probabil-
ity O (1/S), since otherwise Alice’s strategy would yield a
verifier (λ′

1, . . . , λ
′
n) with

λ′
1 + · · · + λ′

n = o (S) .

Hence by the minimax theorem, there exists a distribution
µ over Y such that for every i,

Pr
Y ∈µ

[yi 6= xi] = O (1/S) .

Let β (X) = 1 and let β (Y ) = µ (Y ) for each Y ∈ Y .
Also, let R (Y, Z) = 1 if and only if Z = X for each Y ∈ Y
and Z /∈ Y . Then we can take δf(Y ) = 1 and δf(X) =
O (1/S) in Theorem 6. So the quantum query complexity
of distinguishing X from an arbitrary Y ∈ Y is Ω

(√
S

)
.

5. Quantum Lower Bound for Total Functions

Our goal is to show that

R0 (f) = O
(
Q2 (f)

2
Q0 (f) log n

)
.

Say that a real multilinear polynomial p (x1, . . . , xn) non-
deterministically represents f if for all X ∈ {0, 1}n,
p (X) 6= 0 if and only if f (X) 6= 0. Let ndeg (f) be
the minimum degree of a nondeterministic polynomial for
f . Also, given such a polynomial p, say that a monomial
M1 ∈ p is covered by M2 ∈ p if M2 contains every vari-
able in M1. We call M a maxonomial if it is not covered
by any other monomial of p. The following is a simple
generalization of a lemma attributed in [10] to Nisan and
Smolensky.

Lemma 8 (Nisan-Smolensky) Let p nondeterministically
represent f . Then for every maxonomial M of p and
X ∈ f−1 (0), there is a set B of variables in M such that
f

(
X(B)

)
6= f (X), where X(B) is obtained from X by

flipping the variables in B.

Proof. Obtain a restricted function g from f , and a re-
stricted polynomial q from p, by setting each variable out-
side of M to xi. Then g cannot be constant, since its rep-
resenting polynomial q contains M as a monomial. Thus
there is a subset B of variables in M such that g

(
X(B)

)
=

1, and hence f
(
X(B)

)
= 1.

Using Lemma 8, de Wolf [23] showed that

D (f) ≤ C (f) ndeg (f)

for all total f , slightly improving the result

D (f) ≤ C(f) deg (f)

due to Buhrman and de Wolf [10]. In Theorem 10, we will
give an analog of this result for randomized query and cer-
tificate complexities. However, we first need a probabilistic
lemma.

Lemma 9 Suppose we repeatedly apply the following pro-
cedure: first identify the set B of maxonomials of p, then
‘shrink’ each M ∈ B with (not necessarily independent)
probability at least 1/2. Shrinking M means replacing it
by an arbitrary monomial of degree deg (M) − 1. Then
with high probability p is a constant polynomial after

O (deg (p) log n)

iterations.

Proof. For any set A of monomials, consider the weighting
function

ω (A) =
∑

M∈A

deg (M)!



Let S be the set of monomials of p. Initially

ω (S) ≤ ndeg(p) deg (p)!

and we are done when ω (S) = 0. We claim that at every
iteration, ω (B) ≥ 1

eω (S). For every M∗ ∈ S \ B is
covered by some M ∈ B, but a given M ∈ B can cover at
most

(
deg(M)

l

)
distinct M∗ with deg (M∗) = l. Hence

ω (S \ B) ≤
∑

M∈B

deg(M)−1∑

l=0

(
deg(M)

l

)
l!

≤
∑

M∈B

deg (M)!

(
1

1!
+

1

2!
+ · · ·

)

≤ (e − 1)ω (B) .

At every iteration, the contribution of each M ∈ B
to ω (A) has at least 1/2 probability of shrinking from
deg (M)! to (deg (M) − 1)! (or to 0 if deg (M) = 1).
When this occurs, the contribution of M is at least halved.
Hence ω (S) decreases by an expected amount at least
1
4eω (S). Thus after

log4e/(4e−1)

(
2ndeg(p) deg (p)!

)
= O (deg (p) log n)

iterations, the expectation of ω (S) is less than 1/2, so S is
empty with probability at least 1/2.

Theorem 10 For total f ,

R0 (f) = O (RC (f) ndeg (f) log n) .

Proof. Choose an X with f (X) = 0, and let (λ1, . . . , λn)
be a nonadaptive randomized verifier for X . Form I ⊆
{1, . . . , n} by placing each i in I with independent prob-
ability λi. Then for any Z ∈ {0, 1}n, let Z [I] be ob-
tained from Z by setting zi to xi for each i ∈ I . We have
PrI

[
f

(
Z [I]

)
= 0

]
≥ 1/2. But by Lemma 8, for every

maxonomial M of f , there exists a Z that disagrees with
X only on variables occurring in M , such that f (Z) = 1.
It follows that for every M , I contains the index of a vari-
able in M with probability at least 1/2. Given input Y ,
the randomized algorithm is as follows. First query the in-
dices in I , and let f1 be the restriction of f induced by this.
Then repeat the above procedure on f1—that is, choose
an X1 with f1 (X1) = 0 (assuming one exists), and then
query a set I1 drawn using a nonadaptive randomized veri-
fier for X1. Continue in this manner until f is restricted
to a constant function fT . At this point, if fT is iden-
tically 0 then we know f (Y ) = 0; otherwise we know
f (Y ) = 1. Each iteration of the algorithm uses an expected
number of queries at most RC (f), since RC(g) ≤ RC(f)
for every restriction g of f . Furthermore, since an itera-
tion shrinks each maxonomial with probability at least 1/2,

Lemma 9 implies that with Ω (1) probability, fT is constant
after T = O (ndeg (f) log n) iterations.

Buhrman et al. [6] showed that ndeg (f) ≤ 2 Q0 (f).
Combining this with Theorems 7 and 10, we obtain a new
relation between classical and quantum query complexity.

Theorem 11 For total f ,

R0 (f) = O
(
Q2 (f)

2
Q0 (f) log n

)
.

The best previous relation of this kind was

R0 (f) = O
(
Q2 (f)2 Q0 (f)2

)
,

due to de Wolf [23]. It is worth remarking that we also
obtain

R0 (f) = O (R2 (f) ndeg (f) log n)

for total f , since no relation between R0 and R2 better than
R0 (f) = O

(
R2 (f)

3
)

is currently known (although no
asymptotic gap between R0 and R2 is known either [17]).

6. Asymptotic Gaps

Having related RC(f) and QC(f) to other query com-
plexity measures in Section 5, in what follows we seek the
largest possible asymptotic gaps among the measures. In
particular, Section 6.1 gives a total f for which

RC(f) = Θ
(
C (f)0.907

)

and hence
C (f) = Θ

(
QC(f)

2.205
)

,

as well as a total f for which

bs (f) = Θ
(
RC (f)0.922

)
.

Although these gaps are the largest of which we know, Sec-
tion 6.2 shows that no ‘local’ technique can improve the re-
lations C (f) = O

(
RC (f)

2
)

and RC(f) = O
(
bs (f)

2
)

.
Finally, Section 6.3 uses combinatorial designs to construct
a symmetric partial f for which RC (f) and QC (f) are
O (1), yet Q2 (f) = Ω (n/ logn).

6.1. Certificate Complexity, Randomized Certifi-
cate Complexity, and Block Sensitivity

Wegener and Zádori [21] exhibited total Boolean func-
tions with asymptotic gaps between C (f) and bs (f).
In similar fashion, we give a function family {gt} with
an asymptotic gap between C (gt) and RC (gt). Let
g1 (x1, . . . , x29) equal 1 if and only if the Hamming weight



of its input is 13, 14, 15, or 16. (The parameter 29 was
found via computer search to produce a maximal separa-
tion.) Then for t > 1, let

gt (x1, . . . , x29t) = g0 [gt−1 (X1) , . . . , gt−1 (X29)]

where X1 is the first 29t−1 input bits, X2 is the second
29t−1, and so on. For k ∈ {0, 1}, let

bs k (f) = max
f(X)=k

bs X (f) ,

C k (f) = max
f(X)=k

C X (f) .

Then since bs0 (g1) = bs1 (g1) = 17, we have bs (gt) =
17t. On the other hand, C0 (g1) = 17 but C1 (g1) = 26, so

C 1 (gt) = 13 C 1 (gt−1) + 13 C 0 (gt−1) ,

C 0 (gt) = 17 max
{
C 1 (gt−1) , C 0 (gt−1)

}
.

Solving this recurrence yields C (gt) = Θ (22.725t). We
can now show a gap between C and RC.

Proposition 12 RC (gt) = Θ
(
C(gt)

0.907
)

.

Proof. Since bs (gt) = Ω
(
C (gt)

0.907
)

, it suffices to show
that RC (gt) = O (bs (gt)). The randomized verifier V
chooses an input variable to query as follows. Let X be
the claimed input, and let K =

∑29
i=1 gt−1 (Xi). Let I0 =

{i : gt−1 (Xi) = 0} and I1 = {i : gt−1 (Xi) = 1}. With
probability pK , V chooses an i ∈ I1 uniformly at random;
otherwise A chooses an i ∈ I0 uniformly at random. Here
pK is as follows.

K [0, 12] 13 14 15 16 [17, 29]

pK 0 13
17

7
12

5
12

4
17 1

Once i is chosen, V repeats the procedure for Xi, and con-
tinues recursively in this manner until reaching a variable
yj to query. One can check that if gt (X) 6= gt (Y ),
then gt−1 (Xi) 6= gt−1 (Yi) with probability at least 1/17.
Hence xj 6= yj with probability at least 1/17t, and
RC(gt) = O (17t).

By Theorem 7, it follows that C (gt) =

Θ
(
QC(gt)

2.205
)

. This offers a surprising contrast
with the query complexity setting, where the best known
gap between the deterministic and quantum measures is
quadratic (D (f) = Θ

(
Q2 (f)2

)
).

The family {gt} happens not to yield an asymptotic gap
between bs (f) and RC(f). The reason is that any input
to g0 can be covered perfectly by sensitive blocks of min-
imum size, with no variables left over. In general, though,
we can have bs (f) = o (RC (f)). As reported by Bublitz
et al. [8], M. Paterson found a total Boolean function

h1 (x1, . . . , x6) such that CX (h1) = 5 and bsX (h1) = 4
for all X . Composing h1 recursively yields bs (ht) =

Θ
(
C (ht)

0.861
)

and bs (ht) = Θ
(
RC (ht)

0.922
)

, both of
which are the largest such gaps of which we know.

6.2. Local Separations

It is a longstanding open question whether the relation
C (f) ≤ bs (f)

2 due to Nisan [12] is tight. As a first step,
one can ask whether the relations C (f) = O

(
RC (f)

2
)

and RC (f) = O
(
bs (f)

2
)

are tight. In this section we
introduce a notion of local proof in query complexity, and
then show there is no local proof that C(f) = o

(
RC (f)

2
)

or that RC (f) = o
(
bs (f)2

)
. This implies that prov-

ing either result would require techniques unlike those that
are currently known. Our inspiration comes from computa-
tional complexity, where researchers first formalized known
methods of proof, including relativizable proofs [4] and nat-
ural proofs [16], and then argued that these methods were
not powerful enough to resolve the field’s outstanding prob-
lems.

Let G (f) and H (f) be query complexity measures ob-
tained by maximizing over all inputs—that is,

G (f) = max
X∈Dom(f)

GX (f) ,

H (f) = max
X∈Dom(f)

HX (f) .

Call B ⊆ {1, . . . , n} a minimal block on X if B is sensi-
tive on X (meaning f

(
X(B)

)
6= f (X)), and no sub-block

B′ ⊂ B is sensitive on X . Also, let X’s neighborhood
N (X) consist of X together with X (B) for every minimal
block B of X . Consider a proof that G (f) = O (t (H (f)))
for some nondecreasing t. We call the proof local if it pro-
ceeds by showing that for every X ∈ Dom (f),

GX (f) = O

(
max

Y ∈N (X)

{
t
(
HY (f)

)})
.

As a canonical example, Nisan’s proof [12] that C (f) ≤
bs (f)2 is local. For each X , Nisan observes that (i) a max-
imal set of disjoint minimal blocks is a certificate for X ,
(ii) such a set can contain at most bsX (f) blocks, and (iii)
each block can have size at most maxY ∈N (X) bsY (f). An-
other example of a local proof is our proof in Section 4 that
RC(f) = O

(
QC (f)

2
)

.

Proposition 13 There is no local proof that C(f) =

o
(
RC(f)

2
)

or that RC (f) = o
(
bs (f)

2
)

for total f .



Proof. The first part is easy: let f (X) = 1 if |X | ≥√
n (where |X | denotes the Hamming weight of X), and

f (X) = 0 otherwise. Consider the all-zero input 0n. We
have C0n

(f) = n − d√ne + 1, but RC0n

(f) = O (
√

n),
and indeed RCY (f) = O (

√
n) for all Y ∈ N (0n). For

the second part, arrange the input variables in a lattice of
size

√
n × √

n. Take m = Θ
(
n1/3

)
, and let g (X) be the

monotone Boolean function that outputs 1 if and only if X
contains a 1-square of size m × m. This is a square of
1’s that can wrap around the edges of the lattice; note that
only the variables along the sides must be set to 1, not those
in the interior. An example input, with a 1-square of size
3 × 3, is shown below.

0 0 0 0 0
0 0 0 0 0
1 0 0 1 1
1 0 0 1 0
1 0 0 1 1

Clearly bs0
n

(g) = Θ
(
n1/3

)
, since there can be at most

n/m2 disjoint 1-squares of size m × m. Also, bsY (g) =
Θ

(
n1/3

)
for any Y that is 0 except for a single 1-square.

On the other hand, if we choose uniformly at random among
all such Y ’s, then at any lattice site i, PrY [yi = 1] =

Θ
(
n−2/3

)
. Hence RC0n

(g) = Ω
(
n2/3

)
.

6.3. Symmetric Partial Functions

If f is partial, then QC (f) can be much smaller than
Q2 (f). This is strikingly illustrated by the collision prob-
lem: let Y = (y1, . . . , yn) be a sequence of integers in the
range

{
1, . . . , n2

}
, each of which can be retrieved by a sin-

gle query. Let Col (Y ) = 0 if Y is one-to-one (each yi is
unique), and Col (Y ) = 1 if Y is two-to-one (each yi ap-
pears exactly twice), under the promise that one of these is
the case. Then RC (Col) = QC(Col) = O (1), since ev-
ery one-to-one input differs from every two-to-one input on
at least n/2 of the yi’s. On the other hand, Aaronson [1]
showed that Q2 (Col) = Ω

(
n1/5

)
, and Shi [18] improved

this to Ω
(
n1/3

)
, which is tight [7].

From the example of the collision problem, it is tempt-
ing to conjecture that (say) Q2 (f) = O

(
n1/3

)
whenever

QC(f) = O (1)—that is, ‘if every 0-input is far from every
1-input, then the quantum query complexity is much less
than linear.’ Here we disprove this conjecture, even for the
special case of symmetric functions such as Col. (For a
finite set H, we say that f : Hn → {0, 1} is symmetric
if y1 . . . yn ∈ Dom (f) implies yσ(1) . . . yσ(n) ∈ Dom (f)

and f (y1 . . . xn) = f
(
yσ(1) . . . yσ(n)

)
for every permuta-

tion σ.)
Our proof uses the following lemma, due to Nisan and

Wigderson [14].

Lemma 14 (Nisan-Wigderson) For any γ > 1, there ex-
ists a family of sets

S1, . . . , Sm ⊆ {1, . . . , dγne}

such that m = Ω
(
2n/γ

)
, |Si| = n for all i, and |Si ∩ Sj | ≤

n/γ for all i 6= j.

We will also need to adapt a lemma of Ambainis [2]. For
Z ∈ {0, 1}N , say that a multivariate polynomial p (Z) ap-
proximates g (Z) if (i) p (Z) ∈ [0, 1] for every input Z (not
merely those in Dom (f)), and (ii) |p (Z) − g (Z)| ≤ 1/3

for every Z ∈ Dom (f). Also, let ∆ (N, d) =
∑d

i=0

(
N
i

)
.

Lemma 15 (Ambainis) At most 2O(∆(N,d)dN2) distinct
Boolean functions (partial or total) can be approximated
by polynomials of degree d.

We can now prove the main result.

Theorem 16 There exists a symmetric partial f for which
QC(f) = O (1) and Q2 (f) = Ω (n/ log n).

Proof. Let f : Hn → {0, 1} where H = {1, . . . , 3n},
and let m = Ω

(
2n/3

)
. Let S1, . . . , Sm ⊆ H be as in

Lemma 14. We put (y1, . . . , yn) in Dom (f) if and only if
{y1, . . . , yn} = Sj for some j. Clearly QC (f) = O (1),
since if i 6= j then every permutation of Si differs from ev-
ery permutation of Sj on at least n/3 indices. The number
of symmetric f with Dom (f) as above is 2m = 2Ω(2n/3).
We can convert any such f to a Boolean function g on
O (n logn) variables. But Beals et al. [6] showed that,
if Q2 (g) = T , then g is approximated by a polynomial of
degree at most 2T . So by Lemma 15, if Q2 (g) ≤ T for
every g then

2T · ∆ (n log n, 2T ) · (n logn)
2

= Ω
(
2n/3

)

and we solve to obtain T = Ω (n/ log n).

7. Open Problems

Is d̃eg (f) = Ω
(√

RC(f)
)

, where d̃eg (f) is the min-
imum degree of a polynomial approximating f? In other
words, can one lower-bound QC(f) using the polynomial
method of Beals et al. [6], rather than the adversary method
of Ambainis [3]?

Also, is R0 (f) = O
(
RC (f)

2
)

? If so we obtain

the new relations R0 (f) = O
(
Q2 (f)

4
)

and R0 (f) =

O
(
R2 (f)

2
)

.
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