A Relatively Small Turing Machine Whose Behavior Is Independent
of Set Theory

Adam Yedidia Scott Aaronson
MIT MIT
adamy@mit.edu aaronson@csail.mit.edu
May 16, 2016
Abstract

Since the definition of the Busy Beaver function by Radé in 1962, an interesting open question
has been the smallest value of n for which BB(n) is independent of ZFC set theory. Is this n
approximately 10, or closer to 1,000,000, or is it even larger? In this paper, we show that it
is at most 7,910 by presenting an explicit description of a 7,910-state Turing machine Z with
1 tape and a 2-symbol alphabet that cannot be proved to run forever in ZFC (even though
it presumably does), assuming ZFC is consistent. The machine is based on work of Harvey
Friedman on independent statements involving order-invariant graphs. In doing so, we give the
first known upper bound on the highest provable Busy Beaver number in ZFC. To create Z, we
develop and use a higher-level language, Laconic, which is much more convenient than direct
state manipulation. We also use Laconic to design two Turing machines, G and R, that halt if
and only if there are counterexamples to Goldbach’s Conjecture and the Riemann Hypothesis,
respectively.

1 Introduction

1.1 Background and Motivation

Zermelo-Fraenkel set theory with the axiom of choice, more commonly known as ZFC, is an ax-
iomatic system invented in the twentieth which has since been used as the foundation of most of
modern mathematics. It encodes arithmetic by describing natural numbers as increasing sets of
sets.

Like any axiomatic system capable of encoding arithmetic, ZFC is constrained by Gdédel’s two
incompleteness theorems. The first incompleteness theorem states that if ZFC is consistent (it
never proves both a statement and its opposite), then ZFC cannot also be complete (able to prove
every true statement). The second incompleteness theorem states that if ZFC is consistent, then
ZFC cannot prove its own consistency. Because we have built modern mathematics on top of
ZFC, we can reasonably be said to have assumed ZFC’s consistency. This means that we must
also believe that ZFC cannot prove its own consistency. This fact carries with it certain surprising
conclusions.

In particular, consider a Turing machine Z that enumerates, one after the other, each of the
provable statements in ZFC. To describe how such a machine might be constructed, Z could iterate
over the axioms and inference rules of ZFC, applying each in every possible way to each conclusion

or pair of conclusions that had been reached so far. We might ask Z to halt if it ever reaches a
contradiction; in other words, Z will halt if and only if it finds a proof of 0 = 1. Because this
machine will enumerate every provable statement in ZFC, it will run forever if and only if ZFC is
consistent.

It follows that Z is a Turing machine for which the question of its behavior (whether or not
it halts when run indefinitely) is equivalent to the consistency of ZFC.! Therefore, just as ZFC
cannot prove its own consistency (assuming ZFC is consistent), ZFC also cannot prove that Z will
run forever. In other words, the statement, “Z will run forever” is independent of ZFC.

This is interesting because, while the undecidability of the halting problem tells us that there
cannot exist an algorithmic method for determining whether an arbitrary Turing machine loops or
halts, Z is an example of a specific Turing machine whose behavior cannot be proven one way or
the other using the foundation of modern mathematics. Mathematicians and computer scientists
think of themselves as being able to determine how a given algorithm will behave if given enough
time to stare at it; despite this intuition, Z is a machine whose behavior we can never prove without
assuming axioms more powerful than those generally assumed in modern mathematics.

1.2 Turing Machines

There are many slightly different definitions of Turing machines. For example, some definitions
allow the machine to have multiple tapes; others only allow it to have one; some allow an arbitrarily
large alphabet, while others allow only two symbols, and so on. In most research regarding Turing
machines, mathematicians don’t concern themselves with which of these models to use, because any
one can simulate the others (usually efficiently). However, because this work is concerned with
upper-bounding the exact number of states required to perform certain tasks, it’s important to
define the model precisely. The model we choose here is traditional for the Busy Beaver function.
Formally, a k-state Turing machine is a 7-tuple M = (Q, T, a, %, 6, qo, F'), where:

Q is the set of k states {qo,q1, .-, qk—2,qk—-1}

I' = {a, b} is the set of tape alphabet symbols

a is the blank symbol

>, = is the set of input symbols

d=QxT = (QUF)xT x{L,R} is the transition function
qo is the start state

F = {HALT,ERROR} is the set of halting states.

A Turing machine’s states make up the Turing machine’s easily-accessible, finite memory. The
Turing machine’s state is initialized to qg.

The tape alphabet symbols correspond to the symbols that can be written on the Turing ma-
chine’s infinite tape.

In this work, all Turing machines are run on the all-a input.

The transition function encodes the Turing machine’s behavior. It takes two inputs: the current
state of the Turing machine (an element of @ U F) and the symbol read off the tape (an element of

"While we will talk about ZFC throughout this paper, rather than simple ZF set theory, this is simply a convention.
For our purposes, the Axiom of Choice is irrelevant: the consistency of ZFC is equivalent to the consistency of simple
ZF set theory, [14] and ZFC and ZF prove exactly the same arithmetical statements (which include, among other
things, statements about whether Turing machines halt). [23]

I'). It outputs three instructions: what state to enter (an element of QU F’), what symbol to write
onto the tape (an element of I') and what direction to move the head in (an element of {L, R}).
A transition function specifies the entire behavior of the Turing machine in all cases.

The start state is the state that the Turing machine is in at initialization.

A halting transition is a transition to a halting state, which causes the Turing machine to halt.
While having three possible halting transitions is not necessary for our purposes, being able to
differentiate between different types of halting (HALT and ERROR) is useful for testing.

1.3 The Busy Beaver Function

Consider the set of all Turing machines with k states, for some positive integer k. We call a Turing
machine B a k-state Busy Beaver if when run on the empty tape as input, B halts, and also runs
for at least as many steps before halting as all other halting k-state Turing machines. [22]

In other words, a Busy Beaver is a Turing machine that runs for at least as long as all other
halting Turing machines with the same number of states. Another common definition for a Busy
Beaver is a Turing machine that writes as many 1’s on the tape as possible; because the number of
1’s written is a somewhat arbitrary measure, it is not used in this work.

The Busy Beaver function, written BB(k), equals the number of steps it takes for a k-state
Busy Beaver to halt. The Busy Beaver function has many striking properties. To begin with,
it is not computable; in other words, there does not exist an algorithm that takes k£ as input and
returns BB(k), for arbitrary values of k. This follows directly from the undecidability of the
halting problem. Suppose an algorithm existed to compute the Busy Beaver function; then given
a k-state Turing machine M as input, we could compute BB(k) and run M for BB(k) steps. If,
after BB(k) steps, M had not yet halted, we could safely conclude that M would never halt. Thus,
we could solve the halting problem, which we know is impossible.

By the same argument, BB(k) must grow faster than any computable function. (To check
this, assume that some computable function f(k) grows faster than BB(k), and substitute f(k)
for BB(k) in the rest of the proof.) In particular, the Busy Beaver grows even faster than (for
instance) the Ackermann function, a well-known fast-growing function.

Because finding the value of BB(k) for a given k requires so much work (one must fully explore
the behavior of all k-state Turing machines), few explicit values of the Busy Beaver function are
known. The known values are [4, 16]:

BB(1) =1

BB(2) =6

BB(3) =21
BB(4) = 107

For BB(5), BB(6), and BB(7) only lower bounds are known [19, 7]:

BB(5) > 47,176,870
BB(6) > 7.4 x 1036:534

7
10
010

BB(7) > 10"

Additionally, BB(22) is known to be larger than Graham’s Number (a famous huge number
from Ramsey theory, obtained by iterating the Ackermann function 64 times) [9]. Researchers have
worked on pinning down the value of BB(5) exactly, and some consider it to be possibly within
reach.

Another way to discuss the Busy Beaver sequence is to say that modern mathematics has
established a lower bound of 4 on the highest provable Busy Beaver value. In this paper, we prove
the first known upper bound on the highest provable Busy Beaver value in ZFC; that is, we give a
value of k, namely 7,910, such that the value of BB(k) cannot be proven in ZFC.

Intuitively, one might expect that while no algorithm may exist to compute BB(k) for all values
of k, we could find the value of BB(k) for any specific k using a procedure similar to the one we
used to find the value of BB(k) for k < 4. The reason this is not so is closely tied to the existence
of a machine like the Godelian machine Z, as described in Section 1.1. Suppose that Z has k
states. Because Z’s behavior (whether it halts or loops) cannot be proven in ZFC, it follows that
the value of BB(k) also can’t be proven in ZFC; if it could, then a proof would exist of Z’s behavior
in ZFC. Such a proof would consist of a computation history for Z, which is an explicit step-by-step
description of Z’s behavior for a certain number of steps. If Z halts, then a computation history
leading up to Z’s halting would be the entire proof; if Z loops, then a computation history that
takes BB(k) steps, combined with a proof of the value of BB(k), would constitute a proof that Z
will run forever.

In this paper we construct a machine like Z, for which a proof that Z runs forever would imply
that ZFC was consistent. In doing so, we give an explicit upper bound on the highest Busy Beaver
value provable in ZFC assuming the consistency of a slightly stronger set theory. Our machine,
which we shall refer to as Z hereafter, contains 7,910 states. Therefore, we will never be able to
prove the value of BB(7,910) without assuming more powerful axioms than those of ZFC. This
upper bound is presumably very far from tight, but it is a first step.

Even to achieve a state count of 7,910, we will need three nontrivial ideas: Harvey Friedman’s
order-theoretic statements, on-tape processing, and introspective encoding. Without all three ideas,
we found that the state count would be in the tens of thousands, hundreds of thousands, or even
millions. We briefly introduce these ideas in the following subsection, and explore them in much
greater detail in Section 8. The implementation of these ideas constitutes this paper’s main
technical contribution.

1.4 Parsimony

In most algorithmic study, efficiency is the primary concern. In designing Z, however, parsimony is
the only thing that matters. One historical analogue is the practice of “code-golfing”: a recreational
pursuit adopted by some programmers in which the goal is to produce a piece of code in a given
programming language, using as few characters as possible. Many examples of code-golfing can be
found at [26]. The goal of designing a Turing machine with as few states as possible to accomplish
a certain task, without concern for the machine’s efficiency or space usage, can be thought of as
code-golfing with a particularly low-level programming language.

Part of the charm of Turing machines is that they give us a “standard reference point” for
measuring complexity, unencumbered by the details of more sophisticated programming languages.
Also, with Turing machines, there can be no suspicion that we engineered a programming formalism
just for the purpose of code-golfing, or for making the concepts we want artificially simple to
describe. This is why we prefer Turing machines as a tool for measuring complexity; not because

they are particularly special, but simply because they are so primitive that their specifics will
interfere minimally with what we mean by an algorithm being “complicated.”

In this paper, we use three ideas for generating parsimonious Turing machines: Harvey Fried-
man’s mathematical statements, on-tape processing, and introspective Turing machines. The last
of these ideas was proposed, under a different name and with some variations, by Ben-Amram and
Petersen in 2002 [3]. These three ideas are explained in more detail in Subsections 3.1, 8.1, and 8.3,
respectively, but we summarize them very briefly here.

The first idea is simply to use the research done by Friedman into finding simple-to-express
statements that are equivalent to the consistency of various axiomatic systems. In particular, we
use a statement discovered by Friedman to be equivalent to the consistency of a set theory stronger
than ZFC (and whose consistency, therefore, would imply the consistency of ZFC).? [10]

The second idea, on-tape processing, is a way to encode high-level commands into a Turing
machine parsimoniously. Instead of converting commands to groups of states directly, which
incurs a multiplicative overhead based on how large these groups need to be, on-tape processing
begins by writing the commands onto the tape, using as efficient an encoding as possible. Then,
once the commands are on the tape, the commands are processed by a single group of states that
understands how to interpret them.

The third idea, introspective Turing machines, is a way to write long strings onto the tape
using as few states as possible. The idea is to encode information one of each state’s transitions,
instead of encoding information in each state’s write field. This is advantageous because there are
many choices for which state to point a transition to, but only two choices for which bit to write.
Therefore, more information can be encoded in each state using this method.

1.5 Implementation Overview

To generate descriptions of Turing machines with nice mathematical properties entirely by hand
is a daunting task. Rather than approach the problem directly, we created tools for generating
parsimonious Turing machines while presenting an interface that is comfortably familiar to most
programmers (and to us!).

We created two tools. At the top level is the Laconic programming language, whose syntax and
capabilities are similar to those of most programming languages, such as Java or Python. Beneath
it we created a lower-level language called Turing Machine Descriptor (TMD). TMD is quite unlike
most programming languages, and is better thought of as a convenient way to describe a multi-
tape, 3-symbol Turing machine plus a function stack. The style of multi-tape Turing machine
used in TMD is the commonly used “one-tape-at-a-time” abstraction: only one tape at a time can
be interacted with, for reading, writing, and moving the head. Laconic compiles down to a TMD
program, and TMD compiles down to a description of a single-tape, 2-symbol Turing machine.
This process is illustrated in Figure 1.

We recommend that programmers hoping to use our tools to generate their own encodings

2 Admittedly, it’s not obvious that using Friedman’s current statements does decrease the state count of the Turing
machines. It’s possible that one could do as well or better by directly searching for contradictions in ZFC, and indeed,
recent unpublished work by Stefan O’Rear has given some evidence for that [1]. On the other hand, Friedman’s
statements can be translated into code without using the apparatus of first-order logic, which arguably gives us
a conceptual simplification. In addition, statements like Friedman’s seem like the most plausible path forward for
further reductions in the state count, beyond whatever lower limit one hits when one needs to encode the ZFC axioms
explicitly.

Laconic

/e set up [x_1 U ... U x_i] */
while (h1) {

index(freeSet, c1, hl);
iner(el);

if (h1) {
incr(oneCounter);

—
index2(graph, c1, hll);>
vertexUnion(union, hll, h1l, h2, h3, h4, hl2);

union = hl2;

}

h1l = (oneCounter < i);

TMD

WHILE_TEST_3: function BUILTIN_assign '@ hl
['0] E (WHILE_STATE_3_FALSE); 1 ()

function index freeSet c1 hl '@ !1 !2

function incr c1 '@ !'1 !2

function BUILTIN_assign !0 hl

['0] E (IF_STATE_3_FALSE); 1 ()

function incr oneCounter !@ !1 !2

function index2 graph c1 hl1 '@ !1 !2

function vertexUnion union h1ll hl h2 h3 h4 hl2
function BUILTIN_assign !@ hl2

function BUILTIN_assign union !@
IF_STATE_3_FALSE: function BUILTIN_assign '@ oneCounter
function BUILTIN_assign !1 i

function BUILTIN_greaterThan !2 !1 !@

function BUILTIN_assign hl !2

['@] E (WHILE_TEST_3); 1 (WHILE_TEST_3)

91112

Setup states

Data states

Interpretation
states

Figure 1: A visual overview of the compilation process.

of mathematical statements or algorithms as Turing machines use Laconic. Laconic’s interface
is perfect for somebody hoping to write in a “traditional” language. On the other hand, if the
programmer wishes to improve upon Laconic’s compilation process, writing code directly in TMD
is likely to be the better option.

2 Related Work

Gregory Chaitin raised the problem of proving a version of our result in his book The Limits of
Mathematics. [6] He wrote:

I would like to have somebody program out Zermelo-Fraenkel set theory in my version
of LISP, which is pretty close to normal LISP as far as this task is concerned, just to see
how many bits of complexity mathematicians normally assume ...If you programmed
ZF, you’d get a really sharp incompleteness result. It wouldn’t say that you can get at
most H(ZF) + 15328 bits of [Chaitin’s halting probability] €2, it would say, perhaps, at
most 96000 bits! We’d have a much more definite incompleteness theorem.

We did not program ZF set theory in LISP, but we programmed it in an even simpler language—
thereby answering Chaitin’s call for an explicit number of bits to attach to the complexity of ZF set
theory. (As many as required to fully describe our Turing machine—or more precisely, 157,819.)

This paper is not the first to attempt to quantify the complexity of arithmetical statements.
Calude and Calude [5] define a register machine of their own design, and provide quantifications of
the complexity of Legendre’s Conjecture, Fermat’s Last Theorem, Goldbach’s Conjecture, Dyson’s
Conjecture, the Riemann Hypothesis, and the Four Color Theorem.? In addition, Koza [15] and
Pargellis [21] each invent instruction sets that are particularly well-suited to representing self-
reproducing programs simply, and show that starting from a “primordial soup” of such instructions
distributed about a large memory, along with an increasing number of program threads, a rich
ecosystem of increasingly efficient self-reproducing programs start to dominate the “landscape.”

This paper differs from the previous work in two ways: firstly, it’s the first to give explicit,
relatively small machines whose behavior is provably independent of the standard axioms of modern
mathematics. Secondly, to our knowledge, this paper is the first concrete study of parsimony
to use Turing machines themselves as the model of computation—rather than (for example) a
new programming language proposed by the authors, or a complex on-tape description of Turing
machines! We consider it important to use the weakest and most common model of computation
for complexity comparisons across different mathematical statements. This is because the more
powerful and complex the model of computation used, the more of the complexity of the algorithm
can be “shunted” onto the model of computation, and the greater the potential distortion created by
the choice of model. As a reductio ad absurdum, we could imagine a programming language that
included “test the Riemann Hypothesis” and “test the consistency of ZFC” as primitive operations.
By using the “weakest” model of computation that’s commonly known, we hope to avoid this pitfall
and make it easier to interpret our results in a model-independent way.

Also related to the work of this paper is the famous search for the smallest universal Turing
machine. Here a universal Turing machine is a Turing machine that can simulate any other

3Because Fermat’s Last Theorem and the Four Color Theorem have been proved, their “complexity” is now known
to be 1—the minimum number of states in a Turing machine that runs forever.

Turing machine, when a description of the latter is provided on its input tape. The smallest-
known universal Turing machine has only 2 states and a 3-symbol alphabet, and was found by
Alex Smith [24] in 2007. From the perspective of this paper, the problem is that the known small
universal Turing machines achieve their small size only at the cost of an extremely complicated
description format for the input machine. I.e., most of the complexity gets “shunted” from the
Turing machine itself to the input encoding format. By contrast, with small Turing machines
to test Con(ZFC), the Riemann Hypothesis, Goldbach’s Conjecture, etc., and which run on an
initially blank tape, there’s no analogous trick for hiding the statement’s complexity.

3 A Turing Machine that Cannot Be Shown to Run Forever Using
ZFC

We present a 7,910-state Turing machine whose behavior is independent of ZFC'; it is not possible
to prove that this machine halts or doesn’t halt using the axioms of ZFC, assuming that a stronger
set theory is consistent. It’s therefore impossible to prove the value of BB(7,910) to be any given
value without assuming axioms more powerful than ZFC, assuming that ZFC is consistent.

For an explicit listing of this machine, see Appendix C.

We call this machine Z. One way to build this machine would be to start with the axioms
of ZFC and apply the inference rules of first-order logic repeatedly in each possible way so as to
enumerate every statement ZFC could prove, and to halt if ever a contradiction was found. While
this method is conceptually simple, to actually construct such a machine would lead to a huge
number of states, because it would require writing a program to manipulate the axioms of ZFC
and the inference rules of first-order logic, and then compiling that program all the way down to
Turing machine states.

3.1 Friedman’s Mathematical Statement

Thankfully, a simpler method exists for creating Z. Friedman [10] was able to derive a graph-
theoretic statement whose truth implies the consistency of ZFC, and which will be false if ZFC
is inconsistent.* Here is Friedman’s statement (the notation will be explained in the rest of this
section):

Statement 1. For all k,n,r > 0, every order invariant graph on [Q|<F has a free {x1,...,x,,
ush(x1), ..., ush(x,)} of complexity < (8knr)!, each {x1,...,T(gkniy}, for i > 0 and (8kni!) < r,
reducing [x1 U---Ux; U{0,... . n}]=k. [10]

If 5 is a set, the operation (.)<¥ refers to the set of all subsets of s with size at most k.

A graph on [Q]=* is an irreflexive symmetric relation on [Q]<*. In other words, it can be thought
of as a graph whose vertices are elements of [Q]=*, and whose edges are undirected, connect pairs
of vertices, and never connect vertices to themselves.

A free set is a set such that no pair of elements in that set are connected by an edge.

4In fact, Friedman’s statement is equivalent to the consistency of SRP (“stationary Ramsey property”), which is
a system of axioms more powerful than ZFC. Because SRP is strictly more powerful than ZFC (it in fact consists of
ZFC plus some additional axioms), the consistency of SRP implies the consistency of ZFC, and the inconsistency of
ZFC implies the inconsistency of SRP.

A number of complexity at most ¢ refers to a number that can be written as a fraction a/b,
where a and b are both integers with absolute value less than or equal to ¢. A set has complexity
at most c if all the numbers it contains have complexity at most c.

An order invariant graph is a graph containing a countably infinite number of nodes. In
particular, it has one node for each finite set of rational numbers. The only numbers relevant to
the statement are numbers of complexity (8knr)! or smaller. In every description of nodes that
follows, the term node refers both to the object in the order invariant graph and to the set of
numbers that it represents.

In an order invariant graph, two nodes (a,b) have an edge between them if and only if each
other pair of nodes (¢, d) that is order equivalent with (a,b) has an edge between them. Two pairs
of nodes (a,b) and (c, d) are order equivalent if a and c are the same size and b and d are the same
size and if for all 1 <i < |a] and 1 < 5 < |b|, the i-th element of a is less than the j-th element of
b if and only if the i-th element of ¢ is less than the j-th element of d.

To give some trivial examples of order invariant graphs: the graph with no edges is order
invariant, as is the complete graph. A less trivial example is a graph on [Q]=2, in which each node
corresponds to a set of two rational numbers of a given complexity, and there is an edge between
two nodes if and only if their corresponding sets a and b satisfy |a| = [b] = 2 and a1 < b1 < a2 < bs.
(Because edges are undirected in order invariant graphs, such an edge will exist if either assignment
of the vertices to a and b satisfies the inequality above.)

The ush() function takes as input a set and returns a copy of that set with all non-negative
numbers in that set incremented by 1.

For vertices z and y, x <;je; y if and only if © =y or z|,_; < yjy|—; Where i is the least integer
such that z,_; # y‘y|,i.5 (The <,e; operation creates a lexicographic ordering over the vertices,
weighting the last and largest elements of those vertices most heavily. Like with lexicographic
orderings, if the two vertices are identical but one is longer, the shorter one comes first.)

Finally, a set of vertices X reduces a set of vertices Y if and only if for all y € Y, there exists
x € X such that either z = y or x <,j.; y and an edge exists between x and y.

3.2 Implementation Methods

To create Z, we needed to design a Turing machine that halts if Statement 1 is false, and loops if
Statement 1 is true. Such a Turing Machine’s behavior is necessarily independent of ZFC, because
the truth or falsehood of Statement 1 is independent of ZFC, assuming the consistency of SRP. [10]
SRP is an extension of ZFC by certain relatively mild large cardinal hypotheses, and is widely
regarded by set theorists as consistent. For more information about SRP, see [13].

To design such a Turing machine, we wrote a Laconic program which encodes Friedman’s
statement, then compiled the program down to a description of a single-tape, 2-symbol Turing
machine. What follows is an extremely brief description of the design of the Laconic program;
for the documented Laconic code itself, along with a detailed explanation of the full compilation
process, see [25].

Our Laconic program begins by looping over all non-negative values for k, n, and r. For
each trio (k,n,r), our program generates a list N of all numbers of complexity at most (8knr)!.
These numbers represent the vertices in our putative order invariant graph. Because Laconic

5
°Friedman recommended in private communication that we use the <,;., comparator to compare vertices, instead
of comparing their maximum elements as described in his manuscript.

does not support floating-point numbers, the list is entirely composed of integers; it is a list of
all numbers that can be written in the form (((8knr)!)!)§., where i and j are integers satisfying
—(8knr)! < i < (8knr)! and 1 < j < (8knr)!. (Note that any number that can be expressed in
this form is necessarily an integer, because of the large scaling factor in front.)

After we generate N, we generate the nodes in a potential order invariant graph by adding to
N all possible lists of k& or fewer numbers from N. We call this list of lists V.

We iterate over all binary lists of length |[V|2. Any such list E represents a possible set of
edges in the graph. To be more precise, we say that an edge exists between node 7 and node j
(represented by V; and V; respectively) if and only if Eivyjis 1.

For any graph (V, E'), we say that it is “valid” if the following three conditions hold:

1. No node has an edge to itself.
2. If an edge exists between node 7 and node j, an edge also exists between node j and node 1.

3. The graph has a free {x1,...,2,,ush(z1),...,ush(x;)}, each {z1,...,Tgkns)} reducing [z1 U
Uz U{0,..., n}=k.

For each list of nodes V', we loop over every possible binary list F, and if no pair (V| F) yields
a valid graph, we halt.

When verifying the validity of a graph, checking the first two conditions is trivial, but the third
merits further explanation. In order to verify that a given graph (V, F) has a free
{@1, .. e, ush(zy), ..., ush(xy) }, each {x1, ..., T(gpniy} reducing [v1 U---Uz; U{O,. .. ,n}=F we
look at every possible subset of the nodes in V. For each subset, we verify that it has length r,
that ush(z1), ..., ush(z;) all exist in V, and for each i such that (8kni)! < r, that {z1,..., 2 gkni}
reduces [z1 U---Uz; U{0,...,n}]¥. Once we have found such a subset, we know that the third
conditon is satisfied.

4 A Turing Machine that Encodes Goldbach’s Conjecture

We present a 4,888-state Turing machine that encodes Goldbach’s Conjecture; in other words,
to know whether this machine halts is to know whether Goldbach’s Conjecture is true. It’s
therefore impossible to prove the value of BB(4,888) without simultaneously proving or disproving
Goldbach’s Conjecture.5

Recall that Goldbach’s Conjecture is as follows:

Statement 2. Every even integer greater than 2 can be expressed as the sum of two primes.

Because Goldbach’s Conjecture is so simple to state, the Laconic program encoding the state-
ment is also quite simple. It can be found in Appendix A. A detailed explanation of the
compilation process, documentation for the Laconic language, and an explicit description of this
Turing machine are available at [25].

SNote that our tools were primarily meant to encode complex statements into Turing machines, such as State-
ment 1. Because Goldbach’s Conjecture is so simple, it’s feasible in that case to make dramatically smaller Turing
machines through a more direct approach. Indeed, after a preprint of this paper was circulated online, “Jared S” and
“code golf addict” created Turing machines for Goldbach’s Conjecture with 47 and 31 states respectively [1], though
these machines have not yet been tested in detail.

10

5 A Turing Machine that Encodes the Riemann Hypothesis

We present a 5,372-state Turing machine that encodes the Riemann Hypothesis; in other words, to
know whether this machine halts is to know whether the Riemann Hypothesis is true. An explicit
description of this machine can be found at [25]

The Riemann Hypothesis is traditionally stated as follows:

Statement 3. The Riemann zeta function has its zeros only at the negative even integers and the
complex numbers with real part 1/2.

5.1 Equivalent Statement

Instead of encoding the Riemann zeta function into a Laconic program, it is simpler to use the
following statement, which was shown by Davis, Matijasevic, aand Robinson [8] to be equivalent
to the Riemann Hypothesis:

Statement 4. For all integers n > 1,

2
1 2
((3 k) T;) < 36n°
k<d(n)

The function 6(n) used in Statement 4 is defined as follows:

n(j) = p if j = p¥, p is prime, k is a positive integer
n(j) = 1 otherwise

d(z) = [T I n0)

n<z j<n

5.2 Implementation Methods

Statement 4 is equivalent to the following statement, which involves only positive integers:

I(n) <r(n)

for all positive integers n, where

d(n)!

a(n) = —
k<é(n) k
n%5(n)!
b(n) = 62<)

To check the Riemann Hypothesis, our program computes a(n), b(n), I[(n), and r(n), in that
order, for each possible value of n. If [(n) > r(n), our program halts.

" Although it is not immediately obvious, st g necessarily an integer for all £ < §(n), and @ is an integer for

E
all n > 1.

11

6 Laconic

Laconic is a programming language designed to be both user-friendly and easy to compile down to
parsimonious Turing machine descriptions.

Laconic is a strongly-typed language that supports recursive functions. Laconic compiles to an
intermediate language called TMD. TMD programs are spread across multiple files and grouped
into directories. TMD directories are meant to represent sequences of commands that could be
given to a multi-tape, 3-symbol Turing machine, using the Turing machine abstraction that allows
the machine to read and write from one head at a time.

For an example of a Laconic program, see Appendix A. For an illustration of the compilation
process, see Figure 1.

7 TMD

TMD is a programming language designed to help the user describe the behavior of a multi-tape,
3-symbol Turing machine with a function stack. Each tape is infinite in one direction and supports
three symbols: _, 1, and E. The blank symbol is _: that is, _ is the only symbol that can appear on
the tape an infinite number of times. The tape must always have the form _?(1|E)*_%°; in other
words, each tape must always contain a string of 1’s and E’s of size at least 1, possibly preceded
by a _ symbol, and necessarily followed by an infinite number of copies of the _ symbol.

What is the purpose of having a language like TMD as an intermediary between Laconic and a
description of a single-tape machine? The concept of tapes in a multi-tape Turing machine and the
concept of variables in standard imperative programming languages map to one another very nicely.
The idea of the Laconic-to-TMD compiler is to encode the value of each variable on one tape. Then,
each Laconic command that manipulates the value of one or more variables compiles down to a
TMD function call that manipulates the tapes that correspond to those variables appropriately.

As an example, consider the following Laconic command:

a=b*c;

This Laconic command assigns the value of b*c to the variable a. It compiles down to the
following TMD function call:

function BUILTIN_multiply a b c

This function call will result in BUILTIN multiply being run on the three tapes a, b, and c.
This will cause the symbols on tape a to take on a representation of an integer whose value is equal
to be.

In turn, the TMD code compiles directly to a string of bits that are written onto the tape at
the start of the Turing machine’s execution.

A TMD directory consists of three types of files:

1. The functions file. This file contains a list of the names of all the functions used by the

TMD program. The top function in the file is pushed onto the stack at initialization. When
this top function returns, the Turing machine halts.

12

2. The initvar file. This file contains the non-blank symbols that start in each register (or
tape) at initialization.

3. Any files used to describe TMD functions. These files all end in a .tfn extension and only
have any relevance to the compiled program if they show up in the functions file.

8 Compilation and Processing

There are two ways to think about the layout of the tape symbols: with a 4-symbol alphabet
({_,1,H,E}, blank symbol _), and with a 2-symbol alphabet ({a,b}, blank symbol a). The 2-
symbol alphabet version is the one that’s ultimately used for the results in this paper, since we
advertised a Turing machine that used only two symbols. However, in nearly all parts of the Tur-
ing machine, the 2-symbol version of the machine is a direct translation of the 4-symbol version,
according to the following mapping:

_<raa
14 ab
H < ba
E < bb

The sections that follow sometimes refer to the ERROR state. Transitions to the ERROR state
should never be taken under any circumstances, and are useful for debugging purposes.

8.1 Concept

A directory of TMD functions is converted at compilation time to a string of bits to be written onto
the tape, along with other states designed to interpret these bits. The resulting Turing machine
has three main components, or submachines:

1. The initializer sets up the basic structure of the variable registers and the function stack.
2. The printer writes down the binary string that corresponds to the compiled TMD code.

3. The processor interprets the compiled binary, modifying the variable registers and the function
stack as necessary.

The Turing machine’s control flow proceeds from the initializer to the the printer to the in-
terpreter. In other words, initializer states point only to initializer states or to printer states,
printer states point only to printer states or to interpreter states, and interpreter states point only
to interpreter states or the HALT state.

This division of labor, while seemingly straightforward, actually constitutes an important idea.
The problem of the compiler is to convert a higher-level representation—a machine with many
tapes, a larger alphabet, and a function stack—to the lower-level representation of a machine with
a single tape, a 2-symbol alphabet and no function stack. The immediately obvious solution, and
the one taught in every computability theory class as a proof of the equivalence of different kinds of
Turing machines, is to have every “state” in the higher-level machine compile down to many states
in the lower-level machine.

13

While simple, this approach is suboptimal in terms of the number of states. As is nearly always
true when designing systems to be parsimonious, the clue that improvement is possible lies in the
presence of repetition. Each state transition in the higher-level machine is converted to a group
of lower-level states with the same basic structure. Why not instead explain how to perform this
conversion exactly once, and then apply the conversion many times?

This idea is at the core of the division of labor described previously. We begin by writing a
description of the higher-level machine onto the tape, and then “run” the higher-level machine by
reading what is on the tape with a set of states that understands how to interpret the encoded
higher-level machine. We refer to this idea as on-tape processing.

In this paper, we use TMD as the representation of the higher-level machine.® The printer
writes the TMD program onto the tape, and the processor executes it. As a result of using this
scheme, we incur a constant additive overhead—we have to include the processor in our final Turing
machine—but we avoid the constant multiplicative overhead required for the naive scheme.

Is this additive overhead small enough to be worth it? We found that it is. Our implementation
of the processor requires 3,860 states. (See Section 8.5 for a detailed breakdown of the state cost
by submachine.) In contrast to this additive overhead of 3,860, the naive approach incurs a large
multiplicative overhead that depends in part on how many states must be used to represent each
higher-level state transition, and in part on how efficient an encoding scheme can be devised for
the on-tape approach. The following table compares the performance of on-tape processing to
the performance of an implementation that used the naive approach. The comparison is shown
for three kinds of machines: a machine that halts if and only if Goldbach’s Conjecture is false, a
machine that halts if and only if the Riemann Hypothesis is false, and a machine whose behavior
is independent of ZFC.

Program States (Naive) States (On-Tape Processing)
Goldbach 7,902 4,888
Riemann 36,146 5,372

ZFC 340,943 7,910

As can be seen from this table, on-tape interpretation results in huge gains, particularly in large
and complex programs.

The subsections that follow describe each of the three submachines—the initializer, the printer,
and the processor—in greater detail.

8.2 The Initializer

The initializer starts by writing a counter onto the tape which encodes how many registers there
will be in the program. Using the value in that counter, it creates each register, with demarcation
patterns between registers, and unique identifiers for each register. Each register’s value begins
with the pattern of non-blank symbols laid out in the initvar file. The initializer also creates
the program counter, which starts at 0, and the function stack, which starts out with only a single
function call to the top function in the functions file.

8Note that instead of TMD, the on-tape processing scheme could be used for any language, assuming the designer
provides both a processor and an encoding for that language. We chose TMD because it made the interpreter easy
to write, but other minimalist languages, like Unlambda [17], Brainf*ck [20], or Iota and Jot [2], might be good
candidates for parsimonious designs, with the additional advantage of being already known to some programmers!
Thanks to Luke Schaeffer for this point.

14

I I A
‘ : ‘ M ‘ M 0 ‘ (a,b,c) -f; (a,b,c)
—_ _E_ —_ re![u!rn addre‘ss'O
Variable registers Program Function stack
Counter
a b c
_H E HE 1 HE EE HE__HH E E_E_1 EE E_H
var ID ="a” Value =_E_ 0 func ID ="f" (a,bg RA=0
a b c
Program

Variable registers Function stack

Counter

Figure 2: The state of the Turing machine tape after the initializer completes. The TMD program
being expressed in Turing machine form is described in full in Appendix B. The top bar is a high-
level description of what each part of the Turing machine tape represents. The middle bar is an
encoding of the tape in the standard 4-symbol alphabet; the bottom bar is simply the translation
of that tape into the 2-symbol alphabet. For a more detailed explanation of how to interpret the
tape patterns, see [25].

Figure 2 is a detailed diagram describing the tape’s state when the initializer passes control to
the printer.
8.3 The Printer

8.3.1 Specification

The printer writes down a long binary string which encodes the entirety of the TMD program onto
the tape.
Figure 3 shows the tape’s state when the printer passes control to the processor.

15

f: f:
‘ hd | hd | hd 0 | (ab,e) -= (a,b,e) inputabe | input x
E _E_ _E return address 0
function g a b E (1)
[b] 1 (RETURN): E () return
function fbca
RETURN: return
return
f: | function g a

| | [b] 1 (1, -, RETURN); E (E, -, next) ‘ | [x] E (1, -, next) |

explicit / explicit
command P

command return

fncion | o [W 1 RETURN; E - nemfmm;n b e a remm g (Lo nexd
LT el i et

iHHHE_HE1_E__H11 111 F1 1EE | HEE_Q1_EE_[E__H_HHE_H1E 1E H_H

. — — — o e I e — — —

[b] 1 (RETURN); E () ‘ function fbca | ‘ g: | [x] E (1) |\

=

N NIRRT N Loy
ababababbaababbabaabbaaa aab%aabbbbﬁ%abbbba?ba*bbba*baaaTaaabababba aa aabb aaabaaabaaaaa

Figure 3: The state of the Turing machine tape after the printer completes. The TMD program
being expressed in Turing machine form is described in full in Appendix B. The top bar is a high-
level description of the entire tape; unfortunately, at this point there are so many symbols on the
tape that it is impossible to see everything at once. For a detailed view of the first two-thirds of the
tape (registers, program counter, and stack), see Figure 2. The bottom three bars show a zoomed-
in view of the program binary. From the top, the second bar gives a high-level description of what
each part of the program binary means; the third bar gives the direct correspondence between
4-symbol alphabet symbols on the tape and their meaning in TMD; the fourth and final bar gives
the translation of the third bar into the 2-symbol alphabet. For a more detailed explanation of
the encoding of TMD into tape symbols, see [25].

16

8.3.2 Introspection

Writing down a long binary string onto a Turing machine tape in a parsimonious fashion is not as
straightforward as it might initially appear. The first idea that comes to mind is simply to use
one state per symbol, with each state pointing to the next, as shown in Figure 4.

On closer examination, however, this approach is quite wasteful for all but the smallest binary
files. Every a transition points to the next state in the sequence, and none of the b transitions
are used at alll Indeed, the only information-bearing part of the state is the single bit contained
in the choice of which symbol to write. But in theory, far more information than that could be
encoded in each state. In a machine with n states, each state could contain 2(logy(n) + 1) bits of
information, because each of its two transitions could point to any of the n states, and write either
an a or a b onto the tape. Of course, this is only in theory; in practice, to extract the information
contained in therefore Turing machine’s states and translate it into bits on the tape is nontrivial.

We will use a scheme originally conceived by Ben-Amram and Petersen [3] and refined further
and suggested to us by Luke Schaeffer. It does not achieve the optimal theoretical encoding
described above, but is relatively simple to implement and understand, and is within a factor
of 2 of optimal for large binary strings. Schaeffer named Turing machines that use this idea
introspective.

Introspection works as follows. If the binary string contains k bits, then let w be the word
stze. The word size w takes the largest value it can such that w2®” < k. We can split the binary
string into n,, = {5—‘ words of w bits each (we can pad the last word with the blank symbol). In
our scheme, each word in the bit-string is represented by a data state. Each data state points
to the state representing the next word in the sequence for its a transition, but which state the b
transition points to encodes the next word. Every b transition points to one of the last 2* data
states, thereby encoding w bits of information.

Of course, the encoding is useless until we specify how to extract the encoded bit-string from
the data states. The extraction scheme works as follows. To query the i*" data state for the bits
it encodes, we run the data states on the string a’~'ba™ (a string of i — 1 a’s followed by a b in
the i*™® position). After running the data states on that string, what remains on the tape is the
string b'~lab"a™, assuming that the i*" data state pointed to the r*"-to-last data state. Thus,
what we’re left with is essentially a unary encoding of the “value” of the word in binary. Thus, the
job of the extractor is to set up a binary counter which removes one b at a time and increments the
counter appropriately. Then, afterward, the extractor reverts the tape back to the form a’ba™,
shifts all symbols on the tape over by w bits, and repeats the process. Finally, when the state
beyond the last data state sees a b on the tape, we know that the process has completed, and we
can pass control to the processor. Figure 5 shows the whole procedure.

How much have we gained by using introspection for encoding the program binary, instead
of the naive approach? It depends on how large the program binary is. Using introspection
incurs an O(logk) additive overhead, because we have to include the extractor in our machine.
(Our implementation of the extractor takes 10w + 17 states. It’s possible to build a constant-size
extractor, but it’s not worth it for our value of w) In return, we save a multiplicative factor of w
(which scales with log k) on the number of data states needed.

This is plainly not worth it for the 10-bit example binary shown in Figs. 4 and 5. For that
binary, we require 69 additional states for the extractor in order to save 5 data states. For real
programs, however, it is worth it, as can be seen from the following table.

17

Program binary:

abbabaaabb
< Initializer
W/

0010001001010,

A A A A A A
a: R,a a: R,b a: R,b a: R,a a: Rb a: R,a a: R,a a: Ra a R/b

Processor

I 7

Figure 4: A naive implementation of the printer. In this example, the hypothetical program is
ten bits long, and the printer uses ten states, one for each bit. In the diagram, the blue symbol is
the symbol that is read on a transition, the red letter indicates the direction the head moves, and
the green symbol indicates the symbol that it written. Note the lack of transitions on reading a
b; this is because in this implementation, the printer will only ever read the blank symbol, which
is a, since the head is always proceeding to untouched parts of the tape. It therefore makes no
difference what behavior the Turing machine adopts upon reading a b in states 1-10 (and therefore
b transitions are presumed to lead to the ERROR state)

Program binary:

abbabaaabb

Initializer Extractor

Processor

Figure 5: An introspective implementation of the printer. In this example, the hypothetical
program is k = 10 bits long, and so the word size must be 2 (since w = 2 is the largest w such
that w2® < 10). There are therefore n,, = [5 = b data states, each encoding two bits. The b
transitions carry the information about the encoding; note that each one only points to one of the
last four data states. The last four data states have in parentheses what word we mean to encode
if we point to them. 18

H Program Binary Size w mn, Extractor Size States (Naive) States (Introspective) H

Example TMD 116 4 29 57 116 86
Goldbach 4,964 9 552 107 4,964 659
Riemann 9,632 10 1,024 117 9,532 1,141

ZFC 38,864 11 3,534 127 38,864 3,661

One minor detail concerns the numbers presented for the Riemann program. Ordinarily, with
a binary of size 9,532, we would opt to split the program into 1,060 words of 9 bits each plus a
107-state extractor, since 9 is the greatest w such that w2 < 9,532. But because 9,532 is so close
to the “magic number” 10,240, it’s actually more parsimonious to pad the program with copies of
the blank symbol until it’s 10,240 bits long, and split it into 1,024 words of 10 bits each plus a
117-state extractor.

8.4 The Processor

The processor’s job is to interpret the code written onto the tape and modify the variable registers
and function stack accordingly. The processor does this by the following sequence of steps:

START:

1. Find the function call at the top of the stack. Mark the function f in the code whose ID
matches that of the top function call.

2. Read the current program counter. Mark the line of code ! in f whose line number matches
the program counter.

3. Read [. Depending on what type of command [is, carry out one of the following three lists
of tasks.

IF [IS AN EXPLICIT TAPE COMMAND:

1. Read the variable name off [. Index the variable name into the list of variables in the top
function on the stack. This list of variables corresponds to the mapping between the function’s
local variables and the register names.

2. Match the indexed variable to its corresponding register r. Mark r. Read the symbol s, to
the right of the head marker in that register.

3. Travel back to [, remembering the value of s, using states. Find and mark the reaction z
corresponding to the symbol. See what symbol s,, should be written in response to reading
Sp-

4. Travel back to r, remembering the value of s,, using states. Replace s, with s,,.
5. Travel back to z. See which direction d the head should move in response to reading s,.

6. Travel back to r, remembering the value of d using states. Move the head marker accordingly.

19

7. Travel back to x. See if a jump is specified. If a jump is specified, copy the jump address
onto the program counter. Otherwise, increment the program counter by 1.

8. Go back to START.
IF I IS A FUNCTION CALL:
1. Write the function’s name to the top of the stack.

2. For each variable in the function call, index the variable name into the list of variables in
the top function on the stack. This list of variables corresponds to the mapping between the
function’s local variables and the register names. Push the corresponding register names in
the order that they correspond to the variables in the function call.

3. Copy the current program counter to the return address of the newborn function call at the
top of the stack.

4. Replace the current program counter with 0 (meaning “read the first line of code”).

5. Go back to START.
IF [IS A RETURN STATEMENT:

1. Replace the current program counter with f’s return address.
2. Increment the program counter by 1.

3. Erase the call to f from the top of the stack.

4. Check if the stack is now empty. If so, halt.

5. Go back to START.

8.5 Cost Analysis

It’s worthwhile to analyze the relative contributions of the initializer, the printer, and the processor
to the machine’s final state count. The following table lists the number of states in each submachine
for each of the four different TMD programs under discussion.

H Program Initializer Printer Processor Total H
Example TMD 349 86 3,860 4,295
Goldbach 369 659 3,860 4,888
Riemann 371 1,141 3,860 5,372
7ZFC 389 3,661 3,860 7,910

As can be seen from this table, the processor makes the largest contribution to all four programs.
Improving the processor, therefore, is probably the best approach for improving upon the bounds
we present. Equally clear, however, is that for programs more complicated than the ones presented
here, the cost of the printer will grow almost linearly but the cost of the processor will stay the
same. The cost of the initializer grows very slightly with the complexity of programs because of
the need to initialize additional registers.

Improving the printer, and with it the TMD and Laconic languages, is probably the best
approach for reducing state count for very large and complex programs.

20

9 Future Work

This paper still leaves a three orders-of-magnitude gap between the smallest n, namely 7,910, for
which BB(n) is known to be independent of ZF set theory, and the largest n, namely 4, for which
BB(n) is known to be determinable. We regard it as a fascinating problem to pin down the truth
here: for example, is it conceivable that BB(10) or even BB(6) might be independent of ZF? If so,
that would arguably force a qualitative change in our understanding of the Gédel incompleteness
phenomenon—showing that incompleteness from strong set theories rears its head for much simpler
arithmetical questions than had previously been known.

A more immediate question is how much further Z’s state count can be reduced. We are
optimistic about the possibility of further reductions. For example, one could adapt the processor-
printer model to use a better language than TMD. Ideally, one wants a language whose processor
contains fewer states than TMD’s, and whose typical programs are also shorter than TMD pro-
grams. A few ideas have been proposed for this [1], many of them related in some way to lambda
calculus.

Other future work might involve further use of our Laconic language to upper-bound the ‘com-
plexities’ of mathematical statements and algorithms, in as standardized and model-independent
a way as possible. Perhaps Laconic could be used to measure the complexity of other well-known
conjectures, or even to compare different algorithms for solving the same problem to each other
(e.g., to try to quantify the notion that an insertion sort is simpler than a merge sort)!

10 Acknowledgements

We thank Prof. Harvey Friedman for having done the crucial theoretical work that made this
project feasible. Prof. Friedman was endlessly available over email, and provided us with detailed
clarifications when we needed them.

We thank Luke Schaeffer for his early help, as well as his help designing introspective Turing
machines.

We thank Alex Arkhipov for introducing us to the term “code golfing.”

We thank the commenters on Scott Aaronson’s blog [1] for their ideas and suggestions.

Supported by an Alan T. Waterman Award from the National Science Foundation, under grant
no. 1249349.

References

[1] Aaronson, S. “The 8000th Busy Beaver number eludes ZF set theory: new paper by Adam
Yedidia and me.” May 3, 2016. http://www.scottaaronson.com/blog/7p=2725#comments
[Scott Aaronson publicized a preprint of our results on his blog, and many of his readers
offered helpful comments and suggestions for future improvements.]

[2] Barker, C. “Iota and Jot: the Simplest Languages?”
http://semarch.linguistics.fas.nyu.edu/barler /Tota/ [A website describing the Iota and
Jot programming languages]

[3] Ben-Amram, A., Petersen, H. “Improved Bounds for Functions Related to Busy Beavers”
Theory of Computing Systems 35, 1-11 (2002)

21

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Brady, A.H. “Solution of the Non-computable ‘Busy Beaver’ game for k = 4.” Abstracts for:
ACM Computer Science Conference (Washington, DC, February 18-20, 1975), p. 27, ACM,
1975.

Calude, C., Calude, E. “Evaluating the Complexity of Mathematical Problems: Part 1,”
“Evaluating the Complexity of Mathematical Problems: Part 2.” Complex Systems 18, pp.
387-401. 2010.

Chaitin, G. “The Limits of Mathematics.” pp. 79. 1994.

Cloudy176, Wythagoras. “A good bound for S(7)?” 2014. http://googology.wikia.com/
wiki/User_blog:Wythagoras/A_good_bound_for_S%287%29%3F

Davis, M., Matijasevic, Y., Robinson, J. “Hilbert’s Tenth Problem. Diophantine Equa-
tions: Positive Aspects of a Negative Solution”, 1974. Published in “Mathematical devel-

opments arising from Hilbert problems”; Proceedings of Symposium of Pure Mathematics”,
XXVIII:323-378 AMS. Page 335.

Deedlit11, Wythagoras. “Okay, more Turing machines.” 2013. http://googology.wikia.
com/wiki/User_blog:Deedlit11/0kay, more_Turing machines

Friedman, H. “Order Invariant Graphs and Finite Incompleteness.” https://u.osu.edu/
friedman.8/files/2014/01/FIiniteSeqInc062214a-v9w7q4.pdf

Personal communications with H. Friedman.

Friedman, H. “Order Theoretic Equations, Maximality, and Incompleteness.” June 7, 2014.
http://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts

F#78.

Friedman H. “The Upper Shift Kernel Theorems.” October 9, 2010. https://u.osu.edu/
friedman.8/files/2014/01/KernStruThm100910-11u0b8v.pdf

Godel, K. “The Consistency of the Axiom of Choice and of the Generalized Continuum-
Hypothesis with the Axioms of Set Theory.” Published in 1940 by the Princeton University
Press. Annals of Mathematics Studies.

Koza, J. “Spontaneous Emergence of Self-Replicating and Evolutionarily Self-Improving Com-
puter Programs.” in Artificial Life IIT (SFI Studies in the Sciences of Complexity, vol. XVII),
C. G. Langton, Ed. Reading, MA: Addison-Wesley. pp. 225-262. 1994.

Lin, S., Rado, T. “Computer Studies of Turing Machine Problems.” Published in Journal of
the ACM, Volume 12, Issue 2, April 1965. Pages 196-212.

Madore, D. “The Unlambda Programming Language.” http://www.madore.org/~david/
programs/unlambda/
[A website describing the Unlambda programming language]

Marxen, H., Buntrock, J. “Attacking the Busy Beaver 5.” Bull EATCS, Vol. 40, pp. 247-251.
1990.

22

[19]

[20]

[21]

22]

Marxen, H. http://www.drb.insel.de/~heiner/BB/
[A list of the known busy beaver values]

Miiller, U. “Brainfuck.” http://www.muppetlabs.com/~breadbox/bf/
[A website describing the Brainf*ck programming language]

Pargellis, A. “The Spontaneous Generation of Digital ‘Life.” Physica D, 91, 86-96. 1996.

Rado, T. “On Non-Computable Functions.” Bell System Technical Journal, 41: 3. May 1962
pp 877-884.

Schoenfield, J. “The Problem of Predicativity.” Essays on the foundations of mathematics, Y.
Bar-Hillel et al., eds., pp. 132-142. 1961.

Smith, A. “Universality of Wolfram’s 2, 3 Turing Machine.” Sub-
mitted for the Wolfram 2, 3 Turing Machine Research Prize.
http://www.wolframscience.com/prizes/tm23/TM23Proof.pdf

Yedidia, A. https://github.com/adamyedidia/parsimony
[A link to a GitHub repository containing all programs and Turing machines related to this
paper, with accompanying documentation.]

http://codegolf.stackexchange.com/
[A place where programmers go for recreational code golfing]

Appendices

A

Example Laconic Program: Goldbach’s Conjecture

The following is an example Laconic program, which compiles down to the Turing machine G
mentioned in Section 4 (which halts if and only Goldbach’s Conjecture is false).

func zero(x) {

X

= 0;

return;

}

func omne(x) {

X

= 1;

return;

}

func incr(x) {
x = x + 1;
return;

}

/* Computes x modulo y */
func modulus(x, y, out) {
out = Xx;

while (out >= y) {

}

out = out - y;

23

return;

}

func assignXtoYminusX(x, y) {
X =y - x;
return;

}

/* Figures out if x is prime, and puts the output in y */
/* Does not modify x, modifies y */
func isPrime(x, h, y) {

if (x == 1) {
zero (y);
return;

}

y = 2;

while (x > y) {
modulus(x, y, h);

if (h == 0) {
zero (y);
return;
}
incr(y);
}
return;

int evenNumber;

int primeCounter;
int isThisOnePrime;
int foundSum;

int h;

evenNumber = 2;
one (foundSum) ;

while (foundSum) {
zero (foundSum) ;
evenNumber = evenNumber + 2;
one (primeCounter);

while (primeCounter < evenNumber) {
isPrime (primeCounter, h, isThisOnePrime);

if (isThisOnePrime) {

assignXtoYminusX (primeCounter , evenNumber);
isPrime (primeCounter , h, isThisOnePrime);
assignXtoYminusX (primeCounter, evenNumber);
if (isThisOnePrime) {

print evenNumber;

print primeCounter;

one (foundSum) ;

}

incr(primeCounter);

24

halt;

For detailed documentation of the Laconic programming language, see [25]. To find this file
specifically, navigate to parsimony/src/laconic/laconic_files/goldbach.lac at [25].

B Example TMD Program

The following is an example TMD directory, which compiles down to a binary string to be written
on a Turing machine tape. It’s the example used in illustrations throughout this paper, most
notably in the example compilation shown in Figs. 2 and 3. The program calls itself recursively
three times until the starting symbol on each tape, E, is replaced with a 1, at which point the
program halts.

This TMD directory is called example_tmd_dir, and contains four files: f.tmd, g.tmd, initvar,
and functions.

f.tmd:

input a b ¢
// Recursively writes a 1 on every tape.

function g a

[b] 1 (RETURN); E Q)
function f b c a
RETURN: return

g.tmd:
input x

// Writes a 1 on the input tape.

[x] E (1)

return
functions:
f
g
initvar:
E

For detailed documentation of the TMD programming language, see [25]. To find this directory
specifically, navigate to parsimony/src/tmd/tmd_dirs/example_tmd_dir/ at [25].

C Explicit Listing of Z

We present below an explicit listing of Z. For a more easily readable version of Z, complete with
descriptive state names, see [25].

We ran this Turing machine for 10,000,000,000 steps (more than half a day on our simulators)
and within that time it did not halt. We note, however, that Z was designed for parsimony rather
than efficiency, and that this “experiment” is of little consequence! We similarly ran a Turing
machine designed to test the conjecture that all perfect squares are less than 5, and it ran for

25

A description of a single state in Z

Name of state being
transitioned to

1704

Symbol to be written
on the tape

1705bR|2476aR

Direction in which to
move the head (“R” for

right,“L” for left)

State name

Behavior if “a

”

is read

Behavior if “b” is read

Figure 6: This figure explains how to read a description of a single state.
or “HALT--" denote transitions to the ERROR or HALT states, respectively (no further information
is provided because what symbol is written and which direction the head moves are at that point
irrelevant).

Note that “ERROR-"

2,895,083,899 steps (a couple hours on our simulator) before it found the counterexample 9 and
halted.
Figure 6 explains how to interpret the description shown below. In addition, note the following:

1. The tape has a 2-symbol alphabet, with tape symbols {a,b} and blank symbol a (in other
words, a is the only symbol that can appear an infinite times on the tape).

2. The start state of Z is 0000.

3. Z will never transition to the ERROR state. Any transition to the ERROR state could be replaced
by a transition to any other state (including HALT) and the Turing machine’s behavior would
remain identical.

4. Z contains only one transition to the HALT state, out of state 7862.

0000(0001bR
0010(0011bR
0020(0021aR
0030(0031aL
0040(0049aL.
0050 (0049aR
0060 (0061aR
0070(0026aL.
0080 (0081bR
0090(0091aR
0100(0101aL
0110(0111aR
0120(0121al.
0130(0131aR
0140(0139aR
0150(0151aL
0160(0157aL.
0170(0171al.
0180(0177aL.
0190(0191aL
0200(0201aR
0210(0219aR
0220(0221aR
0230(0231aR
0240 (0241bR | ERR(
0250(0251aR
0260(0261aR
0270(0271aL.
0280(0274alL.
0290(0291aR

ERROR-
ERROR-)
ERROR-
0031bL)
0049bL) O
0049bR)
0061bR)
0026bL)
0081bR)
0091bR)
0103bL)
0116bR)
0123bL)
0136bR)
0141bL)
0146bR)
0157bL)
0171bL)
0177bL)
0191bL)
0204bR)
0219bR)
0221bR)
0231bR)

OR-
0251bR)
0261bR)
0271bL)
0274bL)

0288bR)

) 0001 (0004bR

0

0031 (002631.
ERROR- | O

0051 (0052aR

0061 (0062aR
0071(0072aR
0081(0083aR
0091 (0099aL
0101(0102aL
0111(0112bL

0121(0122aR | 0:

0131(0132aL
0141(0142aR

0151(0152aR | 0:

0161(0162aR
0171(0166aL
0181(0182aR
0191(0186aL
0201(0202aL
0211(0212bR
0221(0222aR
0231(0232aR
0241(0242bR
0251(0252aR.
0261(0262aR
0271(0274aL
0281(0282aR
0291(0292aR

ERROR-)

0293bR)

0002 (0003bR
0012(0013aR
0022(0023aR
0032(0033aL.
0042(0043aL
0052(0053aR
0062 (0063aR
0072(0071aR
0082(0078aR
0092(0093aL,
0102(0099aL.
0112(0113bL
0122(0130aL.
0132(0133al.
0142(0146aL
0152(0153aR
0162(0166aL
0172(0173aL.
0182(0186aL.
0192(0193aL.
0202(0203bR
0212(0213bR
0222(0223aR
0232(0211aR
0242 (0243bR | ERR(
0252(0253aR
0262(0215aR
0272(0273aL.
0282 (ERROR—
0292(0291aR

ERROR-)
ERROR-)
ERROR-)
0035bL)
0043aL)
0054bR)
0063bR)
0073bL)
0078bR)
0093bL)
0099bL)
0113bL)
0130bL)
0133bL)

0146bL) 0143
0153(0154aR | ERI 0
0164bL)

) 0174(0166aL

0153bR)
0166bL)
0175bL)

0186bL) 0183(:

0195bL)
0203bR)
ERROR-)
0223bR)
0211bR)

OR-
0253bR)
0215bR)
0273bL)
0283aL)
0291bR)

0003(0012aR
0013(0014aR
0023(0024aR
0033(0034aL
0043(0037aL.
0053 (0052aR
0063 (0064aR
0073(0074aR.
0083 (0084aR
0093(0088aL
0103(0104aR
0113(0130aL
0123(0124aL.
0133(0130aL

ERROR-

0163(0197aR
0173(0174aL
ERROR-
0193(0194aL
0203(0205aR
0213(0214aR
0223(0224aR
0233(0234bR
0243(0244aR
0253(0254aR.
0263 (0264aR
0273(0263aL
0283(0284aR
0293(0294aL

0012bR)
0014bR)
0024bR|
0034bL)
0037bL)
0052bR)
ERROR-
0074bR)
0085bR)
0088bL)
0104bR)
0130bL)
0124bL)

0130bL) O
-10144bL)

ROR-

0174bL
0184bL)
0194bL)
0205bR)
ERROR-)
ERROR-)
ERRGR—;

0291bR)

0004 (0005aR
0014(0015aR

) 0024(0025aR

0034 (0037aL.
0044 (0045aR
0054 (0055aL.
0064 (0065aR
0074 (0078aL.
0084 (0083aR
0094 (0095aL,
0104 (0110aL.
0114 (0115bL

0124(0119aL.

0184 (0185aR
0194(0186aL.
0204 (0200aR
0214(0233aR
0224(0225aR
0234 (0237bR
0244(0235bR
0254 (0255aR.
0264 (0265aL.
0274 (0275aR
0284 (0288aL.
0294 (0295aR

ERROR-)
ERROR-)
ERROR-)
0037bL)
0048bR)

0052bR)
0065bR)
0078bL)
0083bR)
0097bL)
0110bL)
0115bL)
0119bL
0135bR)
0145bR)
0155bR)
0165bR)
0166bL)
0185bR)
0186bL)
0197bR)
0233bR)
0225bR)
ERROR-

ERROR:
0255bR)
0267bL)
0278DR,
0288bL)
0295aR)

0005 (0006bR
0015(0057aR
0025 (0067
0035 (0036aL
0045 (ERROR-
0055 (0056aR
0065 (0066aR
0075 (ERROR-
0085 (0086aL
0095 (0096aL
0105(0106aL
0115(0110aL

) 0125(0126aL

0135(0088aL.
0145(0146aL
0155 (0156bL
0165(0166aL
0175(0176aL
0185(0186aL
0195(0196aL
0205 (0206aR
0215 (0216bR
0225 (0226aR.
0235 (0236bR
0245(0246aR

0255(0256aR | ERI

0265(0255aL

) 0275(0281aR

0285(0286aL
0295(0296aR

26

ERROR-)
0057bR)

aR|0067bR)

0036bL)

- 00468L)

0056aR)
ERROR-

0076bL)
0083bR)
0096bL)
0108bL)
0110bL)
0128bL)
0088bL)
0146bL.
ERROR-)
0166bL)
0176bL)
0186bL)
0196bL)
ERROR-
ERROR-
ERROR-
ERROR-
ERROR-
ROR-
0266bL)
0276bL
ERROR-
0296bR)

0006 (0007bR

0056 (0012aR
0066 (0016aR
0076 (0077aR
0086 (0087aL.
0096 (0088aL.
0106(0107aR
0116 (ERROR~
0126(0127aL.
0136 (ERROR—

) 0146(0147aR

0156 (0157aL.
0166 (0167aR
0176(0166aL.
0186 (0187aR
0196 (0186aL.
0206 (0207aR
0216 (0217bR
0226(0227aR
0236 (0245aR
0246 (0247aR

0256 (0257aR | 0:

0266 (0263aL.
0276 (0277bR
0286 (0287aR
0296 (0297bR

ERROR-)
ERROR-

0032bR) 00!

0026bL)

0047aR) 00

0012bR)
0016bR)
0077bR)
0087bL)
0088bL)
0107aR)
0117bL)
0127bL)
0137bL)
0150bR)
0157bL)
0172bR)

0007 (0008bR
0017 (0018bR
27 (0028aL.
0037 (0038aR
47 (0049aL.
0057 (0058aR
0067 (0068bR
0077 (0078aL
0087 (0088aL
0097 (0098aL.
0107(0139aL
0117(0118aR
0127(0119aL
0137(0138aR
0147(0148aL
0157(0158aR
0167(0168aL.
0177(0178aR
0187(0188aL
0197(0198aR
0207 (0208aR
0217(0218bL
0227(0228aR
0237(0238aR
0247(0248aR
0257 (0258aR

] 0267 (0268aL

0277(0288aL
0287 (0300aR
0297 (0298bR

ERROR-)

ERROR-)

0008 (0009bR
0018(0019aR
0028 (0029aL.
0038 (0044aR

0048(0071aR|ERROR-)

0058 (0059aR
0068 (0069bR
0078(0079aR
0088 (0089aR
0098(0088aL.
0108(0109aR
0118(0119aL.
0128(0129aL.
0138(0088aL.

0148(0149aR|0

0158(0159aL.
0168(0169bL.
0178(0179aL.
0188(0189aR
0198(0197aR
0208(0209aR
0218(0263aL.
0228(0229aR
0238 (0239bR
0248(0249aR

0258(0259aR | 0:

0268(0263aL.

) 0278 (ERROR- | 0!

0288(0289aR
0298 (0299bL.

ERROR-)

2
ERROR-)

0009 (0010bR
0019(0020aR
0029 (0026aL
0039 (0040bR
0049 (0050aR.
0059 (0060aR
0069 (0070bL
0079(0080aL
0089 (0090aL
0099(0100aR
0109(0110aL
0119(0120aR
0129(0119aL
0139(0140aR
0149(0071aL
0159(0160aL
0169(0177aL
0179(0180aL
0189(0157aL.
0199(0200aR
0209(0210aR
0219(0220aR
0229(0230aR
0239 (0240bR
0249(0250aR
0259 (0260aR
0269 (0270aL.
0279(0280aL
0289(0288aR
0299 (0263aL.

ERROR-)
0020bR)
0026bL)
0040bR)
0051bR)
ERROR-)
ERROR-)
0078bR)
0092bL)
0105bR)
0110bL)
0125bR)
0119bL)
0143bR)
0071bL)
0160bL)

0263bL)

0300(0301aR
0310(0311aL
0320(0321aR
0330(0331bL
0340(0341bR
0350(0351aL.
0360(0361aR
0370(0360aL.

1820(1821bR

0302bR)
0308bR)
0324bR)
0329bR)
0341bR)
0353bL)
0366bR)
0360bL)
ERROR-)

3432aR)

0301(0300aR
0311(0312aL
0321(0320aR
0331(0332aR
0341(0320aR
0351(0352aL.

0361 (0362aL| 03¢

0371(0372aR
0381 (0382aR.

-) 0391(0395aR |ERI
0401 (0402bR

0411 (0412bR.
0421 (0422bR
0431 (0432bR
0441 (0442bR.
0451 (0452bR
0461 (0462bR.
0471(0472bR
0481 (0482bR
0491 (0492bR.
0501 (0502bR
0511(0512bR.
0521 (0522bR
0531 (0532bR
0541 (0542bR.
0551 (0552bR
0561 (0562bR
0571(0572bR
0581 (0582bR
0591 (0592bR.
0601 (0602bR
0611 (0612bR
0621 (0622bR
0631 (0632bR
0641 (0642bR.
0651 (0652bR
0661 (0662bR
0671(0672bR
0681 (0682bR
0691 (0692bR.
0701 (0702bR
0711(0712bR
0721(0722bR
0731(0732bR
0741 (0742bR.
0751 (0752bR
0761 (0762bR
0771(0772bR
0781 (0782bR
0791 (0792bR.
0801 (0802bR
0811 (0812bR
0821 (0822bR
0831 (0832bR
0841(0842bR.
0851 (0852bR
0861 (0862bR
0871(0872bR
0881 (0882bR
0891 (0892bR
0901 (0902bR
0911 (0912bR
0921 (0922bR.
0931 (0932bR
0941 (0942bR.
0951 (0952bR
0961 (0962bR
0971 (0972bR.
0981 (0982bR
0991 (0992bR
1001 (1002bR
1011(1012bR
1021 (1022bR
1031(1032bR.
1041 (1042bR
1051(1052bR
1061 (1062bR.
1071(1072bR
1081(1082bR.
1091 (1092bR.
1101(1102bR
1111(1112bR
1121(1122bR
1131(1132bR
1141(1142bR
11651(1152bR
1161(1162bR
1171(1172bR
1181(1182bR
1191 (1192bR
1201 (1202bR
1211(1212bR
1221(1222bR
1231(1232bR
1241 (1242bR
1251(1252bR
1261(1262bR.
1271(1272bR
1281(1282bR
1291 (1292bR
1301 (1302bR
1311(1312bR
1321(1322bR
1331(1332bR
1341(1342bR
1351(1352bR
1361 (1362bR.
1371(1372bR
1381 (1382bR
1391(1392bR.
1401 (1402bR
1411(1412bR
1421 (1422bR
1431(1432bR
1441(1442bR
1451 (1452bR
1461(1462bR.
1471(1472bR
1481 (1482bR
1491(1492bR
1501 (1502bR
1511(1512bR
1521 (1522bR
1531(1532bR
1541 (1542bR.
1551 (1552bR
1561 (1562bR.
1571 (1572bR.
1581 (1582bR
1591 (1592bR.
1601 (1602bR
1611(1612bR
1621 (1622bR
1631(1632bR
1641 (1642bR.
1651 (1652bR
1661 (1662bR.
1671 (1672bR
1681 (1682bR
1691 (1692bR.
1701(1702bR
1711(1712bR
1721 (1722bR
1731(1732bR
1741(1742bR
1751(1752bR
1761(1762bR
1771 (1772bR
1781(1782bR
1791(1792bR.
1801 (1802bR.
1811(1812bR
1821 (1822bR.

0300bR)
0312bL)
0322aL)
0332aR)
0320bR)
0352bL)
64bL)
0375bR)
0382bR)
ROR-
3610aR)
2259aR)
3757aR)
3002aR)
3838aR)
1978aR)
3183aR)
2250aR)
3294aR)
3434aR)
3006aR)
2999aR)
1969aR)
3394aR)
3690aR)
3397aR)
2911aR)
2144aR)
3758aR)
3001aR)
1973aR)
2270aR)
1962aR)
2286aR)
2259aR)
3374aR)
3353aR)
1902aR)
2265aR)
2346aR)
2269aR)
3854aR)
1975aR)
2159aR)
1887aR)
3760aR)
3696aR)
2393aR)
3651aR)
3022aR)
3838aR)
2370aR)
3834aR)
2394aR)
3306aR)
3017aR)
2218aR)
2350aR)
3760aR)
2548aR)
3017aR)
2003aR)
2297aR)
1998aR)
3295aR)
2369aR)
3250aR)
1910aR)
1982aR)
2934aR)
3583aR)
2399aR)
1910aR)
3545aR)
3373aR)
3680aR)
3504aR)
3314aR)
3850aR)
3859aR)
3796aR)
1967aR)
3510aR)
2398aR)
2208aR)
2238aR)
2250aR)
3258aR)
3247aR)
2298aR)
3511aR)
1911aR)
3833aR)
3770aR)
2369aR)
3381aR)
3518aR)
2374aR)
1973aR)
2474aR)
1882aR)
3837aR)
3833aR)
2000aR)
2480aR)
2336aR)
1911aR)
3698aR)
2485aR)
2818aR)
1950aR)
2374aR)
3796aR)
2237aR)
2158aR)
3912aR)
1952aR)
3394aR)
3667aR)
2480aR)
3680aR)
2250aR)
3744aR)
3696aR)
3358aR)
2414aR)
2270aR)
3375aR)
3567aR)
3394aR)
3418aR)
1888aR)
3422aR)
1904aR)
2350aR)
2271aR)
3006aR)
3696aR)
1905aR)
3424aR)
1910aR)
3651aR)
1975aR)
3583aR)
2485aR)
1994aR)
2003aR)
1978aR)
2993aR)
2288aR)
3503aR)
2929aR)
3616aR)

0302(0300aR
0312(0313aL
0322(0323aR
0332(0320aR
0342(0343bR
0352(0349aL.
0362(0363aL.
0372(0373aL.
0382(0383aR
0392(0393aL.
0402 (0403bR
0412(0413bR
0422 (0423bR
0432 (0433bR
0442 (0443bR
0452 (0453bR
0462 (0463bR
0472 (0473bR
0482 (0483bR
0492 (0493bR | 2t
0502 (0503bR
0512(0513bR
0522 (0523bR
0532 (0533bR
0542 (0543bR
0552 (0553bR
0562 (0563bR
0572(0573bR
0582 (0583bR
0592 (0593bR
0602 (0603bR
0612 (0613bR
0622 (0623bR
0632 (0633bR
0642 (0643bR
0652 (0653bR
0662 (0663bR
0672 (0673bR
0682 (0683bR
0692 (0693bR
0702(0703bR
0712(0713bR
0722(0723bR
0732(0733bR
0742(0743bR
0752(0753bR
0762 (0763bR
0772(0773bR
0782 (0783bR
0792(0793bR
0802 (0803bR
0812 (0813bR
0822 (0823bR
0832 (0833bR
0842(0843bR
0852 (0853bR
0862 (0863bR
0872 (0873bR
0882 (0883bR
0892 (0893bR
0902 (0903bR
0912(0913bR
0922(0923bR
0932(0933bR
0942(0943bR
0952 (0953bR
0962 (0963bR
0972(0973bR
0982 (0983bR
0992 (0993bR
1002(1003bR
1012(1013bR
1022(1023bR
1032(1033bR

1302(1303bR
1312(1313bR
1322(1323bR
1332(1333bR
1342(1343bR

1352(1353bR | 2591

1362(1363bR
1372(1373bR
1382(1383bR
1392(1393bR
1402 (1403bR
1412(1413bR
1422(1423bR
1432(1433bR
1442(1443bR
1452 (1453bR
1462(1463bR
1472(1473bR
1482(1483bR
1492(1493bR

1502 (1503bR | 207

1512(1513bR
1522 (1523bR
1532(1533bR.
1542(1543bR

1552(1553bR| 2

1562(1563bR
1572(1573bR
1582(1583bR
1592(1593bR
1602 (1603bR.
1612(1613bR
1622(1623bR
1632(1633bR
1642(1643bR
1652 (1653bR.
1662(1663bR
1672(1673bR
1682 (1683bR.
1692(1693bR
1702(1703bR
1712(1713bR
1722(1723bR
1732(1733bR
1742(1743bR
1752(1753bR.
1762(1763bR
1772(1773bR
1782(1783bR
1792(1793bR
1802 (1803bR
1812(1813bR
1822(1823bR

0303bR)
0313bL)
0323aR)
0320bR)
0343bR)
0349bL)
0363bL)
0371bR)
ERROR-)
0392aL)
2065aR)
2587aR)
2820aR)
3737aR)
2651aR)
2569aR)
1892aR)
2651aR)
2075aR)
865aR)
2657aR)
3427aR)
1929aR)
2569aR)
2939aR)
2044aR)
2565aR)
2533aR)
3769aR)
2625aR)
1931aR)
2593aR)
3429aR)
3595aR)
2619aR)
3463aR)
2859aR)
2939aR)
2587aR)
2657aR)
2587aR)
3580aR)
3476aR)
2629aR)
2867aR)
2070aR)
1937aR)
2444aR)
2721aR)
3601aR)
1939aR)
2791aR)
1932aR)
3151aR)
3420aR)
2820aR)
3144aR)
2919aR)
2065aR)
2105aR)
2792aR)
1921aR)
2053aR)
3089aR)
2620aR)
2556aR)
2073aR)
2660aR)
3737aR)
2641aR)
2949aR)
2084aR)
2646aR)
2710aR)
2449aR)
3772aR)
3161aR)
3745aR)
3623aR)
3113aR)
3238aR)
2870aR)
3737aR)
2076aR)
2584aR)
3080aR)
3080aR)
2684aR)
1929aR)
2437aR)
3041aR)
3043aR)
2524aR)
3089aR)
2572aR)
2084aR)

2567aR)

0303(0304aR
0313(0314aR.
0323(0329aR
0333(0334bL
0343(0329aR
0353 (0354aR
0363(0313aL
0373(0374bR
0383(0384aR
0393(0393aL.
0403 (0404bR
0413(0414bR
0423 (0424bR
0433 (0434bR
0443 (0444bR.
0453 (0454bR
0463 (0464bR.
0473(0474bR
0483 (0484bR
0493 (0494bR.
0503 (0504bR
0513 (0514bR.
0523 (0524bR
0533 (0534bR
0543 (0544bR.
0553 (0554bR
0563 (0564bR
0573(0574bR.
0583 (0584bR
0593 (0594bR.
0603 (0604bR
0613 (0614bR.
0623 (0624bR
0633 (0634bR

0305bR)
0317bR)
0329bR)
0336bL)
0329bR)
0354bR)
0313bL)
0374bR)
0384bR)
0394bR)
2265aR)
3002aR)
3838aR)
1978aR)
3293aR)
3185aR)
1902aR)
2269aR)
3283aR)
2208aR|

3294aR)
2330aR)
2993aR)
3249aR)
3437aR)
2933aR)
3190aR)

0643 (0644bR | 2269aR,

0653 (0654bR
0663 (0664bR
0673 (0674bR
0683 (0684bR
0693 (0694bR
0703 (0704bR
0713(0714bR
0723(0724bR
0733(0734bR
0743(0744bR.
0753(0754bR
0763(0764bR

0773(0774bR | 3296aR.

0783(0784bR.

0793(0794bR | 3767aR)

0803 (0804bR
0813(0814bR
0823 (0824bR
0833 (0834bR
0843 (0844bR.
0853 (0854bR
0863 (0864bR
0873(0874bR
0883 (0884bR
0893 (0894bR
0903 (0904bR
0913(0914bR

0923(0924bR | 3833aR,

0933 (0934bR
0943 (0944bR.
0953 (0954bR
0963 (0964bR
0973(0974bR.
0983 (0984bR
0993 (0994bR
1003 (1004bR
1013(1014bR
1023(1024bR
1033(1034bR.
1043(1044bR
1053 (1054bR
1063 (1064bR.
1073(1074bR
1083(1084bR.
1093 (1094bR.
1103 (1104bR
1113(1114bR
1123(1124bR
1133(1134bR.
1143(1144bR
1163(1154bR
1163(1164bR
1173(1174bR
1183(1184bR
1193(1194bR

1203(1204bR | 2294aR,

1213(1214bR
1223(1224bR
1233 (1234bR
1243 (1244bR
1253(1254bR
1263(1264bR

) 1273(1274bR

1283 (1284bR
1293 (1294bR
1303(1304bR
1313(1314bR.
1323(1324bR
1333 (1334bR
1343 (1344bR
1353(1354bR
1363(1364bR
1373(1374bR
1383 (1384bR
1393 (1394bR
1403 (1404bR
1413(1414bR.
1423(1424bR
1433 (1434bR
1443(1444bR
1453 (1454bR
1463 (1464bR
1473(1474bR
1483 (1484bR
1493 (1494bR

1503 (1504bR | 2250aR,

1513(1514bR.
1523(1524bR
1633 (1534bR
1543 (1544bR
1553 (1554bR
1563 (1564bR
1573(1574bR
1583 (1584bR
1593 (1594bR
1603 (1604bR
1613 (1614bR
1623 (1624bR
1633 (1634bR
1643 (1644bR
1653 (1654bR
1663 (1664bR
1673(1674bR
1683(1684bR
1693 (1694bR

) 1703(1704bR

1713(1714bR
1723 (1724bR
1733(1734bR
1743(1744bR.
1753(1754bR
1763 (1764bR
1773(1774bR
1783(1784bR
1793(1794bR
1803 (1804bR.
1813(1814bR
1823 (1824bR

2266aR)
3008aR)
2742aR)
3354aR)
3853aR)
3696aR)
3018aR)
2253aR)
2934aR]

2350aR)
3696aR)
3440aR)
1975aR)

0304 (0386aR
0314(0338aR
0324 (0325aL.
0334 (0335aR
0344 (0345bL.
0354 (0313al,
0364 (0365aL.
0374 (0308aR
0384 (0385bR
0394 (4050aR
0404 (0405bR
0414 (0415bR
0424 (0425bR
0434 (0435bR
0444 (0445bR
0454 (0455bR
0464 (0465bR
0474 (0475bR
0484 (0485bR
0494 (0495bR
0504 (0505bR
0514 (0515bR
0524 (0525bR
0534 (0535bR
0544 (0545bR
0554 (0555bR
0564 (0565bR
0574 (0575bR
0584 (0585bR
0594 (0595bR
0604 (0605bR
0614 (0615bR
0624 (0625bR
0634 (0635bR
0644 (0645bR
0654 (0655bR
0664 (0665bR
0674 (0675bR
0684 (0685bR
0694 (0695bR
0704 (0705bR
0714 (0715bR
0724 (0725bR
0734 (0735bR
0744 (0745bR
0754 (0755bR
0764 (0765bR
0774 (0775bR
0784 (0785bR
0794 (0795bR
0804 (0805bR
0814 (0815bR

0824 (0825bR | 2!

0834 (0835bR
0844 (0845bR
0854 (0855bR
0864 (0865bR
0874 (0875bR
0884 (0885bR
0894 (0895bR
0904 (0905bR
0914 (0915bR
0924 (0925bR
0934 (0935bR
0944 (0945bR
0954 (0955bR
0964 (0965bR
0974 (0975bR
0984 (0985bR
0994 (0995bR
1004 (1005bR
1014(1015bR
1024 (1025bR.
1034(1035bR
1044 (1045bR
1054 (1055bR
1064 (1065bR

1074(1075bR| 3

1084 (1085bR
1094 (1095bR
1104(1105bR
1114(1115bR
1124(1125bR
1134(1135bR
1144(1145bR
1154 (1155bR
1164(1165bR
1174(1175bR
1184(1185bR
1194(1195bR
1204 (1205bR | 2
1214(1215bR
1224 (1225bR| 3
1234(1235bR
1244 (1245bR
1254 (1255bR.
1264 (1265bR
1274 (1275bR
1284(1285bR
1294 (1295bR
1304 (1305bR.
1314(1315bR
1324 (1325bR
1334(1335bR
1344 (1345bR
1354 (1355bR.
1364 (1365bR
1374(1375bR
1384(1385bR
1394 (1395bR

1404 (1405bR| 3

1414(1415bR
1424 (1425bR
1434 (1435bR
1444 (1445bR
1454 (1455bR.
1464 (1465bR
1474 (1475bR
1484 (1485bR
1494 (1495bR

1504 (1505bR | 2

1514(1515bR
1524 (1525bR
1534 (1535bR
1544 (1545bR
1554 (1555bR.
1564 (1565bR
1574 (1575bR
1584 (1585bR
1594 (1595bR
1604 (1605bR.
1614(1615bR
1624 (1625bR
1634 (1635bR
1644 (1645bR

1654 (1655bR | 2

1664 (1665bR
1674(1675bR
1684 (1685bR
1694 (1695bR
1704 (1705bR.
1714(1715bR
1724(1725bR
1734(1736bR
1744 (1745bR
1754 (1755bR.
1764 (1765bR
1774(1775bR

1784(1785bR|2

1794 (1795bR
1804 (1805bR.
1814 (1815bR.
1824 (1825bR.

0386bR)
0315bL)
0327aL)
0335aR)
0338bR)
0313bL)
0365bL)
0308bR)
ERROR-

ERROR-)
1939aR)
3737aR)
2649aR)
2569aR)
2637aR)
2440aR)
3595aR)
2587aR)
2059aR)
1939aR)
2075aR)
3449aR)
2533aR)
2437aR)
2659aR)
2407aR)
2695aR)
2565aR)
2083aR)
2585aR)
2081aR)
2070aR)
2584aR)
2105aR)
2639aR)
2443aR)
2020aR)
2659aR)
2441aR)
2075aR)
2582aR)
2839aR)
1892aR)
2699aR)
3589aR)
3859aR)
2572aR)
3161aR]

3303aR)
3475aR)
3047aR)

3756aR)

0305 (0386aR
0315(0316bL
0325(0326aR
0335(0347aR
0345 (0346bR.
0355 (0356aL
0365 (0360aL.
0375(0376aL
0385 (0389aR

0395 (0396bR | 25!

0405 (0406bR

0415(0416bR | 1

0425 (0426bR
0435 (0436bR
0445 (0446bR.
0455 (0456bR
0465 (0466bR
0475 (0476bR
0485 (0486bR

0495 (0496bR | 19

0505 (0506bR

0515(0516bR | 3
0525 (0526bR | 2:

0535 (0536bR
0545 (0546bR.
0555 (0556bR
0565 (0566bR
0575 (0576bR.
0585 (0586bR
0595 (0596bR
0605 (0606bR
0615 (0616bR
0625 (0626bR
0635 (0636bR
0645 (0646bR
0655 (0656bR
0665 (0666bR

0675 (0676bR | 33!

0685 (0686bR
0695 (0696bR
0705 (0706bR
0715(0716bR
0725 (0726bR.
0735 (0736bR
0745 (0746bR.
0755 (0756bR
0765 (0766bR
0775(0776bR.
0785 (0786bR

0795 (0796bR | 2:

0805 (0806bR
0815 (0816bR

0825 (0826bR | 36!

0835 (0836bR
0845 (0846bR
0855 (0856bR
0865 (0866bR
0875 (0876bR.
0885 (0886bR
0895 (0896bR
0905 (0906bR
0915 (0916bR

0925 (0926bR | 38!

0935 (0936bR

0945 (0946bR | 3t
0955 (0956bR | 3:

0965 (0966bR

0975 (0976bR | 38!

0985 (0986bR
0995 (0996bR
1005 (1006bR.
1015(1016bR
1025(1026bR
1035(1036bR
1045 (1046bR
1055(1056bR
1065 (1066bR.
1075(1076bR| 2
1085 (1086bR.
1095 (1096bR
1105(1106bR
1115(1116bR
1125(1126bR
1135(1136bR
1145(1146bR
1155(1156bR
1165(1166bR
1175(1176bR
1185(1186bR
1195(1196bR

1205 (1206bR | 37

1215(1216bR

1225(1226bR | 22:

1235(1236bR
1245 (1246bR
1255(1256bR
1265 (1266bR
1275(1276bR
1285(1286bR
1295 (1296bR.
1305(1306bR
1315(1316bR
1325(1326bR
1335(1336bR
1345 (1346bR

1355(1356bR | 36!

1365 (1366bR

1375(1376bR| 3:
1385 (1386bR | 3

1395 (1396bR

1405(1406bR | 35

1415(1416bR

1425(1426bR| 1

1435(1436bR
1445 (1446bR
1455(1456bR
1465 (1466bR
1475(1476bR
1485(1486bR
1495 (1496bR.

1505 (1506bR | 27

15615(1516bR
1525 (1526bR

1535(1536bR | 22

1545 (1546bR.
1655 (1556bR
1565 (1566bR.
1575(1576bR.
1585(1586bR
1595 (1596bR.
1605 (1606bR.
1615(1616bR
1625 (1626bR.
1635 (1636bR
1645 (1646bR.

1655 (1656bR | 32:

1665 (1666bR.
1675 (1676bR
1685 (1686bR
1695 (1696bR.
1705(1706bR
1715(1716bR
1725 (1726bR
1735(1736bR
1745(1746bR
1755(1756bR
1765(1766bR

1775(1776bR
aR) 1785(1786bR |38

1795 (1796bR

1805 (1806bR 3

1815(1816bR | 3¢
1825 (1826bR

27

0386bR)
0316bL)
0326aR)
0347bR)
0346bR)
0358bL)

0360bL) 03t

0371bR)

2677aR)

0306 (0307bR
0316(0313aL
0326 (0347aR
0336 (0337aR
0346 (0347aR
0356 (0357aR
66 (0367aL
0376 (0377aR
0386 (0387aR
0396 (0397bR
0406 (0407bR
0416 (0417bR
0426 (0427bR
0436 (0437bR
0446 (0447bR
0456 (0457bR
0466 (0467bR
0476 (0477bR
0486 (0487bR

) 0496 (0497bR

0506 (0507bR
0516 (0517bR
0526 (0527bR
0536 (0537bR
0546 (0547bR
0556 (0557bR
0566 (0567bR
0576 (0577bR
0586 (0587bR
0596 (0597bR
0606 (0607bR
0616 (0617bR
0626 (0627bR
0636 (0637bR

aR) 0646 (0647bR

0656 (0657bR
0666 (0667bR
0676 (0677bR
0686 (0687bR
0696 (0697bR
0706 (0707bR
0716 (0717bR
0726 (0727bR
0736 (0737bR
0746 (0747bR
0756 (0757bR
0766 (0767bR
0776 (0777bR
0786 (0787bR
0796 (0797bR
0806 (0807bR
0816 (0817bR
0826 (0827bR
0836 (0837bR
0846 (0847bR
0856 (0857bR
0866 (0867bR
0876 (0877bR
0886 (0887bR
0896 (0897bR
0906 (0907bR
0916 (0917bR
0926 (0927bR
0936 (0937bR
0946 (0947bR
0956 (0957bR
0966 (0967bR
0976 (0977bR
0986 (0987bR
0996 (0997bR
1006 (1007bR
1016(1017bR
1026 (1027bR.
1036 (1037bR
1046 (1047bR
1056 (1057bR

3 1066 (1067bR.

1076 (1077bR.
1086 (1087bR
1096 (1097bR
1106(1107bR
1116(1117bR
1126 (1127bR.
1136(1137bR
1146(1147bR
1156 (1157bR
1166(1167bR
1176 (1177bR.
1186(1187bR
1196(1197bR
1206 (1207bR
1216(1217bR
1226 (1227bR.
1236(1237bR
1246 (1247bR
1256 (1257bR
1266 (1267bR
1276 (1277bR.
1286 (1287bR
1296 (1297bR
1306 (1307bR
1316(1317bR
1326 (1327bR.
1336(1337bR

] 1346 (1347bR

1356 (1357bR
1366 (1367bR
1376 (1377bR
1386 (1387bR
1396 (1397bR
1406 (1407bR.
1416(1417bR
1426 (1427bR
1436 (1437bR
1446 (1447bR
1456 (1457bR.
1466 (1467bR
1476 (1477bR
1486 (1487bR

1496 (1497bR
aR)

1506 (1507bR.
1516(1517bR
1526 (1527bR
1536 (1537bR
1546 (1547bR
1556 (1557bR.
1566 (1567bR
1576 (1577bR
1586 (1587bR
1596 (1597bR
1606 (1607bR.
1616(1617bR
1626 (1627bR
1636 (1637bR
1646 (1647bR
1656 (1657bR.
1666 (1667bR
1676 (1677bR
1686 (1687bR
1696 (1697bR
1706 (1707bR.
1716(1717bR
1726 (1727bR
1736(1737bR
1746 (1747bR
1756 (1757bR
1766 (1767bR

1786 (1787bR.
1796(1797bR

1776 (1777bR
aR) 1

1826 (1827bR

ERROR-)
0313bL)
0347bR)
0337aR)
0347bR)
0357aR)
0369bL)
0377aR)
0388bR)
3077aR)
2579aR)
2569aR)
2637aR)
2440aR)
2585aR)
2617aR)
2083aR)
2582aR)
2859aR)
2646aR)
2587aR)
3745aR)
3205aR)
3207aR)
2657aR)
3033aR)
3077aR)
2044aR)
2893aR)
3089aR)
2659aR)
2068aR)
1916aR)
2587aR)
3429aR)
2939aR)
2065aR)
2020aR)
3425aR)
1915aR)
2780aR)
2119aR)
3756aR)
3113aR)
2632aR)
2893aR)
2577aR)
2870aR)
2070aR)
2896aR)
2637aR)
2859aR)
2724aR)
3335aR)
2584aR)
3603aR)
2533aR)
2131aR)
3431aR)
3113aR)
2627aR)
3045aR)
3115aR)
3113aR)
1940aR)
2859aR)
3745aR)
3113aR)
3161aR)
3238aR)
3756aR)
2088aR)
2449aR)
2105aR)
2777aR)
2780aR)
3335aR)
3548aR)
3656aR)
2966aR)
3431aR)
2120aR)
2599aR)
3080aR)
2076aR)
2451aR)
2951aR)
2584aR)
2865aR)
2663aR)
2870aR)
2128aR)
2128aR)
2068aR)
3737aR)
2088aR)
2695aR)
2639aR)
3780aR)
3151aR)
3612aR)
2627aR)
3606aR)
3748aR)
3089aR)
2748aR)
3205aR)
2919aR)
2588aR)
2859aR)
3756aR)
2012aR)
2870aR)
2593aR)
3081aR)
3048aR)
2620aR)
2075aR)
2454aR)
2085aR)
3429aR)
2827aR)
2625aR)
2569aR)
3091aR)
3560aR)
2660aR)
3593aR)
3205aR)
2651aR)
2649aR)
3881aR)
2115aR)
3748aR)
2075aR)
1929aR)
2125aR)
2820aR)
2107aR)
2115aR)
2692aR)
2952aR)
3292aR)
2108aR)
2584aR)
2065aR)
2691aR)
2827aR)
2105aR)
2788aR)
2788aR)
2535aR)
1939aR)

0307 (0308aR
0317(0338aR
0327(0328aR
0337(0338aR
0347 (0348bL
0357(0371aR

0308bR)
0318bL)
0328aR)
0338bR)
ERROR-
0371bR)

0367(0368aR |0368aR)

0377(0378aR

0747 (0748bR
0757 (0758bR
0767 (0768bR
0777 (0778bR
0787 (0788bR
0797 (0798bR.
0807 (0808bR

1047 (1048bR
1057 (1058bR
1067 (1068bR.
1077 (1078bR
1087 (1088bR
1097 (1098bR
1107 (1108bR
1117(1118bR

1127(1128bR|2

1137(1138bR
1147(1148bR
1167(1158bR
1167 (1168bR
1177(1178bR
1187 (1188bR
1197 (1198bR
1207 (1208bR
1217(1218bR

1227(1228bR | 25¢

1237 (1238bR

1297 (1298bR
1307 (1308bR
1317(1318bR
1327 (1328bR
1337 (1338bR
1347 (1348bR

1357 (1358bR|2

1367 (1368bR.

1377(1378bR| 35

1387 (1388bR
1397 (1398bR
1407 (1408bR
1417 (1418bR

1427 (1428bR | 2

1437 (1438bR
1447 (1448bR
1457 (1458bR
1467 (1468bR
1477 (1478bR
1487 (1488bR
1497 (1498bR

1507 (1508bR | 32

1517 (1518bR

1527 (1528bR | 37

1537 (1538bR
1547 (1548bR.

1557 (1558bR | 2

1567 (1568bR.
1577 (1578bR.
1587 (1588bR
1597 (1598bR.
1607 (1608bR.
1617 (1618bR
1627 (1628bR.
1637 (1638bR
1647 (1648bR

0378bR)
0306bR)
2269aR)
2234aR)
3185aR)
3293aR)
2654aR)
3283aR)
3741aR)
3678aR)
2138aR)
3434aR)
1966aR.

2238aR)
1967aR]

2350aR)
3249aR)
3759aR)

1657 (1658bR | 2259aR)

1757 (1758bR.
1767 (1768bR
1777 (1778bR
1787 (1788bR
1797 (1798bR.

1807 (1808bR | 225!

1817 (1818bR
1827 (1828bR

1946aR)
2935aR)
2350aR)
3760aR)
3250aR)
2397aR)
3226aR)
2266aR)
2415aR)
2272aR)
3760aR)
3424aR)
3434aR]
3546aR)
259aR

1982aR)
3296aR)

0308(0309aR
0318(0319aR
0328(0338aR
0338(0339aR
0348 (0349aL.
0358 (0359aL.
0368(0371aR

0378 (0379bR | ERRO]

0388(0306aR
0398 (0399bR
0408 (0409bR

0438 (0439bR
0448 (0449bR
0458 (0459bR
0468 (0469bR
0478 (0479bR
0488 (0489bR

) 0498 (0499bR

0508 (0509bR
0518(0519bR
0528 (0529bR
0538 (0539bR

) 0548(0549bR

0558 (0559bR
0568 (0569bR
0578 (0579bR
0588 (0589bR
0598 (0599bR
0608 (0609bR
0618(0619bR
0628 (0629bR
0638 (0639bR

) 0648(0649bR

0658 (0659bR
0668 (0669bR.
0678(0679bR.
0688 (0689bR

) 0698 (0699bR

0708 (0709bR
0718(0719bR
0728 (0729bR
0738(0739bR
0748(0749bR
0758 (0759bR
0768(0769bR
0778(0779bR
0788 (0789bR
0798(0799bR
0808 (0809bR
0818(0819bR
0828 (0829bR
0838 (0839bR
0848 (0849bR
0858 (0859bR
0868 (0869bR
0878 (0879bR
0888 (0889bR
0898 (0899bR
0908 (0909bR
0918(0919bR

) 0928(0929bR

0938 (0939bR
0948 (0949bR
0958 (0959bR
0968 (0969bR.

) 0978(0979bR

0988 (0989bR
0998 (0999bR
1008 (1009bR
1018(1019bR
1028 (1029bR.
1038(1039bR
1048 (1049bR
1058 (1059bR

] 1068 (1069bR.

1078(1079bR.
1088(1089bR
1098 (1099bR
1108(1109bR
1118(1119bR

) 1128(1129bR

1138(1139bR
1148(1149bR
1158 (1159bR
1168(1169bR
1178(1179bR.
1188(1189bR
1198(1199bR
1208 (1209bR

J 1218(1219bR

1228 (1229bR.
1238(1239bR
1248(1249bR
1258 (1259bR
1268(1269bR
1278(1279bR.
1288(1289bR
1298(1299bR
1308 (1309bR
1318(1319bR
1328(1329bR
1338(1339bR
1348(1349bR
1358 (1359bR.
1368(1369bR
1378(1379bR
1388(1389bR
1398(1399bR
1408 (1409bR.

)
1418(1419bR

1428(1429bR
1438(1439bR
1448(1449bR
1458 (1459bR.
1468 (1469bR
1478(1479bR
1488 (1489bR

1498 (1499bR
aR)

1508 (1509bR.
1518(1519bR
1528 (1529bR
1538 (1539bR
1548 (1549bR

) 1558 (1559bR

1568 (1569bR
1578(1579bR
1588 (1589bR
1598 (1599bR.
1608 (1609bR.
1618(1619bR
1628 (1629bR
1638 (1639bR
1648 (1649bR
1658 (1659bR.
1668 (1669bR
1678(1679bR
1688 (1689bR
1698 (1699bR
1708 (1709bR.
1718(1719bR
1728(1729bR
1738(1739bR
1748(1749bR
1758 (1759bR.
1768(1769bR
1778(1779bR
1788(1789bR
1798(1799bR
1808 (1809bR
1818(1819bR
1828(1829bR

0310bR)
0319aR)
0338bR)
0344bR)
0349bL)
0359bL)
0371bR)
R-)
0306bR)
2637aR)
2070aR)
2440aR)
2585aR)
2617aR)
2587aR)
2820aR)
3420aR)
2788aR)
2696aR)
2115aR)
2859aR)
1916aR)
2070aR)
2637aR)
3193aR)
2107aR)
2708aR)
3033aR)
2649aR)
2569aR)
3431aR)
2659aR)
2440aR)
2582aR)
2569aR)
2659aR)
2820aR)
1939aR)
3079aR)
2115aR)
3664aR)
2070aR)
3149aR)
3205aR)
3804aR)
2697aR)
2105aR)
2524aR)
3047aR)
2596aR)
2128aR)
2870aR)
2947aR)
2131aR)
3149aR)
2820aR)
3473aR)
1889aR)
1881aR)
3161aR)
2134aR)
3739aR)
3748aR)
2791aR)
3238aR)
2859aR)
3045aR)
3612aR)
2627aR)
1937aR)
2599aR)
1942aR)
2907aR)
3603aR)
2088aR)
2937aR)
2076aR)
2865aR)
2812aR)
2937aR)
2115aR)
3213aR)
3213aR)
2620aR)
2595aR)
2595aR)
2684aR)
2620aR)
2663aR)
1942aR)
2444aR)
2588aR)
2060aR)
2838aR)
2966aR)
3152aR)
1942aR)
2065aR)
2627aR)
3606aR)
2596aR)
2693aR)
3089aR)
3756aR)
2521aR)
3303aR)
3089aR)
2824aR)
2065aR)
3747aR)
3151aR)
2780aR)
2444aR)
3113aR)
3289aR)
2084aR)
2593aR)
2105aR)
1929aR)
3559aR)
2893aR)
2692aR)
3163aR)
2052aR)
3065aR)
3163aR)
3756aR)
3790aR)
3756aR)
2567aR)
3193aR)
2085aR)
3881aR)
2127aR)
1893aR)
1913aR)
2684aR)
3081aR)
3896aR)
2582aR)
2637aR)
2697aR)
3432aR)
2961aR)
1937aR)
2569aR)
3739aR)
2067aR)
3592aR)
2057aR)
2588aR)
3780aR)
3303aR)

0309(0308aR
0319(0360aL
0329(0330aR
0339 (0340bL
0349(0350aR
0359 (0349aL.
0369(0370aL
0379 (0380bR

0409 (0410bR

0419 (0420bR | 21

0429 (0430bR
0439 (0440bR
0449 (0450bR
0459 (0460bR
0469 (0470bR
0479 (0480bR
0489 (0490bR

0308bR)
0360bL)
0333bR)
0342bL)

0499 (0500bR | 3762aR)

0509 (0510bR

0519 (0520bR | 3:

0529 (0530bR
0539 (0540bR
0549 (0550bR
0559 (0560bR
0569 (0570bR
0579 (0580bR
0589 (0590bR
0599 (0600bR
0609 (0610bR
0619 (0620bR
0629 (0630bR
0639 (0640bR
0649 (0650bR
0659 (0660bR
0669 (0670bR
0679 (0680bR
0689 (0690bR

0699 (0700bR |3

0709 (0710bR
0719(0720bR
0729(0730bR
0739 (0740bR
0749 (0750bR
0759 (0760bR
0769 (0770bR
0779 (0780bR
0789 (0790bR
0799 (0800bR
0809 (0810bR

0839 (0840bR

0849 (0850bR | 3:

0859 (0860bR
0869 (0870bR
0879 (0880bR
0889 (0890bR
0899 (0900bR
0909 (0910bR
0919 (0920bR
0929 (0930bR
0939 (0940bR

0949 (0950bR | 1

0959 (0960bR
0969 (0970bR
0979 (0980bR
0989 (0990bR
0999 (1000bR.
1009 (1010bR.
1019 (1020bR
1029 (1030bR
1039 (1040bR
1049 (1050bR.
1059 (1060bR
1069 (1070bR.
1079 (1080bR
1089 (1090bR.
1099 (1100bR.
1109(1110bR
1119(1120bR

1129(1130bR|3

1139(1140bR
1149(1150bR.
1169(1160bR
1169(1170bR
1179(1180bR
1189(1190bR
11