
Algebrization: A New Barrier in Complexity Theory∗

Scott Aaronson
MIT

aaronson@csail.mit.edu

Avi Wigderson
Institute for Advanced Study

avi@ias.edu

ABSTRACT
Any proof of P 6= NP will have to overcome two barriers:
relativization and natural proofs. Yet over the last decade,
we have seen circuit lower bounds (for example, that PP does
not have linear-size circuits) that overcome both barriers
simultaneously. So the question arises of whether there
is a third barrier to progress on the central questions in
complexity theory.

In this paper we present such a barrier, which we call alge-
braic relativization or algebrization. The idea is that, when
we relativize some complexity class inclusion, we should give
the simulating machine access not only to an oracle A, but
also to a low-degree extension of A over a finite field or ring.

We systematically go through basic results and open prob-
lems in complexity theory to delineate the power of the
new algebrization barrier. First, we show that all known
non-relativizing results based on arithmetization—both in-
clusions such as IP = PSPACE and MIP = NEXP, and sepa-
rations such as MAEXP 6⊂ P/poly —do indeed algebrize. Sec-
ond, we show that almost all of the major open problems—
including P versus NP, P versus RP, and NEXP versus P/poly—
will require non-algebrizing techniques. In some cases al-
gebrization seems to explain exactly why progress stopped
where it did: for example, why we have superlinear circuit
lower bounds for PromiseMA but not for NP.

Our second set of results follows from lower bounds in a
new model of algebraic query complexity, which we introduce
in this paper and which is interesting in its own right. Some
of our lower bounds use direct combinatorial and algebraic
arguments, while others stem from a surprising connection
between our model and communication complexity. Using
this connection, we are also able to give an MA-protocol for
the Inner Product function with O (

√
n log n) communica-

tion (essentially matching a lower bound of Klauck).

∗Extended abstract. For the full version, please go to
www.scottaaronson.com/papers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

Categories and Subject Descriptors
F.1 [Theory of Computation]: Computation by Abstract
Devices

General Terms
Theory

1. INTRODUCTION
In the history of the P versus NP problem, there were two

occasions when researchers stepped back, identified some
property of almost all the techniques that had been tried
up to that point, and then proved that no technique with
that property could possibly work. These “meta-discoveries”
constitute an important part of what we understand about
the P versus NP problem beyond what was understood in
1971.

The first meta-discovery was relativization. In 1975, Baker,
Gill, and Solovay [4] showed that techniques borrowed from
logic and computability theory, such as diagonalization, can-
not be powerful enough to resolve P versus NP. For these
techniques would work equally well in a “relativized world,”
where both P and NP machines could compute some func-
tion f in a single time step. However, there are some rel-
ativized worlds where P = NP, and other relativized worlds
where P 6= NP. Therefore any solution to the P versus NP

problem will require non-relativizing techniques: techniques
that exploit properties of computation that are specific to
the real world.

The second meta-discovery was natural proofs. In 1993,
Razborov and Rudich [25] analyzed the circuit lower bound
techniques that had led to some striking successes in the
1980’s, and showed that, if these techniques worked to prove
separations like P 6= NP, then we could turn them around
to obtain faster ways to distinguish random functions from
pseudorandom functions. But in that case, we would be
finding fast algorithms for some of the very same problems
(like inverting one-way functions) that we wanted to prove
were hard.

1.1 The Need for a New Barrier
Yet for both of these barriers—relativization and natural

proofs—we do know ways to circumvent them.
In the early 1990’s, researchers managed to prove IP =

PSPACE [19, 27] and other celebrated theorems about in-
teractive protocols, even in the teeth of relativized worlds
where these theorems were false. To do so, they created a
new technique called arithmetization. The idea was that,

instead of treating a Boolean formula ϕ as just a black box
mapping inputs to outputs, one can take advantage of the
structure of ϕ, by “promoting” its AND, OR, or NOT gates
to arithmetic operations over some larger field F. One can
thereby extend ϕ to a low-degree polynomial ϕ̃ : F

n → F,
which has useful error-correcting properties that were un-
available in the Boolean case.

In the case of the natural proofs barrier, a way to cir-
cumvent it was actually known since the work of Hartmanis
and Stearns [12] in the 1960’s. Any complexity class sep-
aration proved via diagonalization—such as P 6= EXP or
ΣEXP

2 6⊂ P/poly [16]—is inherently non-naturalizing. For di-
agonalization zeroes in on a specific property of the function
f being lower-bounded—namely, the ability of f to simulate
a whole class of machines—and thereby avoids the trap of
arguing that “f is hard because it looks like a random func-
tion.”

Until a decade ago, one could at least say that all known
circuit lower bounds were subject either to the relativiza-
tion barrier, or to the natural proofs barrier. But not even
that is true any more. We now have circuit lower bounds
that evade both barriers, by cleverly combining arithmetiza-
tion (which is non-relativizing) with diagonalization (which
is non-naturalizing).

The first such lower bound was due to Buhrman, Fortnow,
and Thierauf [5], who showed that MAEXP, the exponential-
time analogue of MA, is not in P/poly. To prove that
their result was non-relativizing, Buhrman et al. also gave
an oracle A such that MAA

EXP ⊂ PA/poly. Using similar
ideas, Vinodchandran [29] showed that for every fixed k,
the class PP does not have circuits of size nk; and Aaronson
[1] showed that Vinodchandran’s result was non-relativizing,
by giving an oracle A such that PPA ⊂ SIZEA (n). Recently,
Santhanam [26] gave a striking improvement of Vinodchan-
dran’s result, by showing that for every fixed k, the class
PromiseMA does not have circuits of size nk.

As Santhanam [26] stressed, these results raise an im-
portant question: given that current techniques can already
overcome the two central barriers of complexity theory, how
much further can one push those techniques? Could arith-
metization and diagonalization already suffice to prove cir-
cuit lower bounds for NEXP, or even P 6= NP? Or is there
a third barrier, beyond relativization and natural proofs, to
which even the most recent results are subject?

1.2 Our Contribution
In this paper we show that there is, alas, a third barrier

to solving P versus NP and the other central problems of
complexity theory.

Recall that a key insight behind the non-relativizing in-
teractive proof results was that, given a Boolean formula
ϕ, one need not treat ϕ as merely a black box, but can
instead reinterpret it as a low-degree polynomial ϕ̃ over a
larger field or ring. To model that insight, in this paper
we consider algebraic oracles: oracles that can evaluate not
only a Boolean function f , but also a low-degree extension

f̃ of f over a finite field or the integers. We then define
algebrization (short for “algebraic relativization”), the main
notion of this paper.

Roughly speaking, we say that a complexity class inclu-

sion C ⊆ D algebrizes if CA ⊆ DÃ for all oracles A and all

low-degree extensions Ã of A. Likewise, a separation C 6⊂ D
algebrizes if CÃ 6⊂ DA for all A, Ã. Notice that algebriza-

tion is defined differently for inclusions and separations; and
that in both cases, only one complexity class gets the alge-

braic oracle Ã, while the other gets the Boolean version A.
These subtle asymmetries are essential for this new notion
to capture what we want, and will be explained in Section
2.

We demonstrate how algebrization captures a new barrier
by proving two sets of results. The first set shows that, of
the known results based on arithmetization that fail to rel-
ativize, all of them algebrize. This includes the interactive
proof results, as well as their consequences for circuit lower
bounds. More concretely, we show (among other things)

that, for all oracles A and low-degree extensions Ã of A:

• PSPACEA ⊆ IPÃ

• NEXPA ⊆ MIPÃ

• MAÃ
EXP 6⊂ PA/poly

• PromiseMAÃ 6⊂ SIZEA
(
nk

)

The second set of results shows that, for many basic com-
plexity questions, any solution will require non-algebrizing
techniques. We show (among other things) that there exist

oracles A, Ã relative to which:

• NPÃ ⊆ PA, and indeed PSPACEÃ ⊆ PA

• NPA 6⊂ PÃ, and indeed RPA 6⊂ PÃ

• NPA 6⊂ BPPÃ, NPA 6⊂ BQPÃ, and NPA 6⊂ coMAÃ

• NEXPÃ ⊂ PA/poly

• NPÃ ⊂ SIZEA (n)

These results imply, in particular, that any resolution of
the P versus NP problem will need to use non-algebrizing
techniques. But the take-home message is stronger: non-
algebrizing techniques will be needed even to derandomize
RP, to separate NEXP from P/poly, or to prove superlinear
circuit lower bounds for NP.

By contrast, recall that the separations MAEXP 6⊂ P/poly

and PromiseMA 6⊂ SIZE
(
nk

)
have already been proved with

algebrizing techniques. Thus, we see that known techniques
can prove superlinear circuit lower bounds for PromiseMA,
but cannot do the same for NP—even though MA = NP un-
der standard hardness assumptions [18]. Similarly, known
techniques can prove superpolynomial circuit lower bounds
for MAEXP but not for NEXP. To summarize:

Algebrization provides nearly the precise limit on
the non-relativizing techniques of the last two decades.

We speculate that going beyond this limit will require fun-
damentally new methods.1

1.3 Techniques
This section naturally divides into two, one for each of our

main sets of results.

1While we have shown that most non-relativizing re-
sults algebrize, we note that we have skipped some fa-
mous examples—involving zero-knowledge protocols for NP,
small-depth circuits, time-space tradeoffs for SAT , and the
like. We discuss some of these examples in Section 7.

1.3.1 Proving That Existing Results Algebrize
Showing that the interactive proof results algebrize is con-

ceptually simple (though a bit tedious in some cases), once
one understands the specific way these results use arithme-
tization. In our view, it is the very naturalness of the alge-
brization concept that makes the proofs so simple.

To illustrate, consider the result of Lund, Fortnow, Karloff,
and Nisan [19] that coNP ⊆ IP. In the LFKN proto-
col, the verifier (Arthur) starts with a Boolean formula ϕ,
which he arithmetizes to produce a low-degree polynomial
ϕ̃ : F

n → F. The prover (Merlin) then wants to convince
Arthur that

∑
x∈{0,1}n ϕ̃ (x) = 0. To do so, Merlin engages

Arthur in a conversation about the sums of ϕ̃ over various
subsets of points in F

n. For almost all of this conversation,
Merlin is“doing the real work.” Indeed, the only time Arthur
ever uses his description of ϕ̃ is in the very last step, when
he checks that ϕ̃ (r1, . . . , rn) is equal to the value claimed
by Merlin, for some random field elements r1, . . . , rn chosen
earlier in the protocol.

Now suppose we want to prove coNPA ⊆ IPÃ. The only
change is that now Arthur’s formula ϕ will in general contain
A gates, in addition to the usual AND, OR, and NOT gates.
And therefore, when Arthur arithmetizes ϕ to produce a low-
degree polynomial ϕ̃, his description of ϕ̃ will contain terms
of the form A (z1, . . . , zk). Arthur then faces the problem of
how to evaluate these terms when the inputs z1, . . . , zk are
non-Boolean. At this point, though, the solution is clear:

Arthur simply calls the oracle Ã to get Ã (z1, . . . , zk)!
While the details are slightly more complicated, the same

idea can be used to show PSPACEA ⊆ IPÃ and NEXPA ⊆
MIPÃ.

But what about the non-relativizing separation results,

like MAÃ
EXP 6⊂ PA/poly? When we examine the proofs of

these results, we find that each of them combines a sin-
gle non-relativizing ingredient—namely, an interactive proof
result—with a sequence of relativizing results. Therefore,
having shown that the interactive proof results algebrize, we
have already done most of the work of showing the separa-
tions algebrize as well.

1.3.2 Proving The Necessity of Non-Algebrizing Tech-
niques

It is actually easy to show that any proof of NP 6⊂ P will
need non-algebrizing techniques. One simply lets A be a

PSPACE-complete language and Ã be a PSPACE-complete

extension of A; then NPÃ = PA = PSPACE. What is
harder is to show that any proof of RP ⊆ P, NP ⊆ BPP, and
so on will need non-algebrizing techniques. For the latter
problems, we are faced with the task of proving algebraic
oracle separations. In other words, we need to show (for

example) that there exist oracles A, Ã such that RPA 6⊂ PÃ

and NPA 6⊂ BPPÃ.
Just like with standard oracle separations, to prove an

algebraic oracle separation one has to do two things:

(1) Prove a concrete lower bound on the query complexity
of some function.

(2) Use the query complexity lower bound to diagonalize
against a class of Turing machines.

Step (2) is almost the same for algebraic and standard or-
acle separations; it uses the bounds from (1) in a diagonal-

ization argument. Step (1), on the other hand, is extremely
interesting; it requires us to prove lower bounds in a new
model of algebraic query complexity.

In this model, an algorithm is given oracle access to a
Boolean function A : {0, 1}n → {0, 1}. It is trying to
answer some question about A—for example, “is there an
x ∈ {0, 1}n such that A (x) = 1?”—by querying A on various
points. The catch is that the algorithm can query not just A
itself, but also an adversarially-chosen low-degree extension

Ã : F
n → F of A over some finite field F.2 In other words,

the algorithm is no longer merely searching for a needle in
a haystack: it can also search a low-degree extension of the
haystack for “nonlocal clues” of the needle’s presence!

This model is clearly at least as strong as the standard
one, since an algorithm can always restrict itself to Boolean

queries only (which are answered identically by A and Ã).
Furthermore, we know from interactive proof results that
the new model is sometimes much stronger: sampling points
outside the Boolean cube does, indeed, sometimes help a
great deal in determining properties of A. This suggests
that, to prove lower bounds in this model, we are going to
need new techniques.

In this paper we develop two techniques for lower-bounding
algebraic query complexity, with complementary strengths
and weaknesses.

The first technique is based on direct construction of ad-
versarial polynomials. Suppose an algorithm has queried
the points y1, . . . , yt ∈ F

n. Then by a simple linear algebra
argument, it is possible to create a multilinear polynomial
p that evaluates to 0 on all the yi’s, and that simultane-
ously has any values we specify on 2n − t points of the
Boolean cube. The trouble is that, on the remaining t
Boolean points, p will not necessarily be Boolean: that is, p
will not necessarily be an extension of a Boolean function.
We solve this problem by multiplying p with a second multi-
linear polynomial, to produce a“multiquadratic”polynomial
(a polynomial of degree at most 2 in each variable) that is
Boolean on the Boolean cube and that also has the desired
adversarial behavior.

The idea above becomes more complicated for random-
ized lower bounds, where we need to argue about the in-
distinguishability of distributions over multiquadratic poly-
nomials conditioned on a small number of queries. And
it becomes more complicated still when (in the full version

of this paper) we consider extensions Â : Z
n → Z over the

integers. In the latter case, we can no longer use linear alge-
bra to construct the multilinear polynomial p, and we need
to compensate by bringing in some tools from elementary
number theory, namely Chinese remaindering and Hensel
lifting. Even then, a technical problem (that the number of

bits needed to express Â (x) grows with the running times of
the machines being diagonalized against) currently prevents
us from turning query complexity lower bounds obtained
by this technique into algebraic oracle separations over the
integers.

Our second lower-bound technique comes as an “unex-
pected present” from communication complexity. Given a
Boolean function A : {0, 1}n → {0, 1}, let A0 and A1 be the
subfunctions obtained by fixing the first input bit to 0 or
1 respectively. Also, suppose Alice is given the truth table

2In the full version of this paper, we also study extensions
over the integers.

of A0, while Bob is given the truth table of A1. Then we
observe the following connection between algebraic query
complexity and communication complexity: If some prop-
erty of A can be determined using T queries to a multilinear

extension Ã of A over the finite field F, then it can also
be determined by Alice and Bob using O (Tn log |F|) bits of
communication.

This connection is extremely generic: it lets us convert

randomized algorithms querying Ã into randomized commu-
nication protocols, quantum algorithms into quantum pro-
tocols, MA-algorithms into MA-protocols, and so on. Turn-
ing the connection around, we find that any communication
complexity lower bound automatically leads to an algebraic
query complexity lower bound. This means, for example,
that we can use celebrated lower bounds for the Disjointness

problem [23, 15, 17, 24] to show that there exist oracles A, Ã

relative to which NPA 6⊂ BPPÃ, and even NPA 6⊂ BQPÃ and

NPA 6⊂ coMAÃ. For the latter two results, we do not know
of any proof by direct construction of polynomials.

The communication complexity technique has two further
advantages: it yields multilinear extensions instead of mul-
tiquadratic ones, and it works just as easily over the inte-
gers as over finite fields. On the other hand, the lower
bounds one gets from communication complexity are more
contrived. For example, one can show that solving the Dis-
jointness problem requires exponentially many queries to

Ã, but not that finding a Boolean x such that A (x) = 1
does. Also, we do not know how to use communication

complexity to construct A, Ã such that NEXPÃ ⊂ PA/poly

and NPÃ ⊂ SIZEA (n).

1.4 Related Work
In a survey article on “The Role of Relativization in Com-

plexity Theory,”Fortnow [9] defined a class of oracles O rela-
tive to which IP = PSPACE. His proof that IPA = PSPACEA

for all A ∈ O was similar to our proof that IP = PSPACE

algebrizes. However, because he wanted both complexity
classes to have access to the same oracle A, Fortnow had to
define his oracles in a subtle recursive way, as follows: start

with an arbitrary Boolean oracle B, then let B̃ be the mul-
tilinear extension of B, then let f be the “Booleanization”

of B̃ (i.e., f (x, i) is the ith bit in the binary representation

of B̃ (x)), then let
˜̃
B be the multilinear extension of f , and

so on ad infinitum. Finally let A be the concatenation of
all these oracles.

As we discuss in the full version of the paper, it seems
extremely difficult to prove separations relative to these re-
cursively defined oracles. So if the goal is to show the lim-
itations of current proof techniques for solving open prob-
lems in complexity theory, then a non-recursive definition
like ours seems essential.

Recently (and independently of us), Juma, Kabanets, Rack-
off and Shpilka [14] studied an algebraic query complexity
model closely related to ours, and proved lower bounds in
this model. In our terminology, they “almost” constructed

an oracle A, and a multiquadratic extension Ã of A, such

that #PA 6⊂ FPÃ/poly.3 Our results in Section 4 extend
those of Juma et al. and solve some of their open problems.

3We say “almost” because they did not ensure Ã (x) was
Boolean for all Boolean x; this is an open problem of theirs
that we solve in Section 4.2.1. Also, their result is only for

Juma et al. also made the interesting observation that, if

the extension Ã is multilinear rather than multiquadratic,

then oracle access to Ã sometimes switches from being use-
less to being extraordinarily powerful. For example, let A :

{0, 1}n → {0, 1} be a Boolean function, and let Ã : F
n → F

be the multilinear extension of A, over any field F of char-
acteristic other than 2. Then we can evaluate the sum∑

x∈{0,1}n A (x) with just a single query to Ã, by using the
fact that

∑

x∈{0,1}n

A (x) = 2nÃ

(
1

2
, . . . ,

1

2

)
.

This observation helps to explain why, in Section 4, we will
often need to resort to multiquadratic extensions instead of
multilinear ones.

2. ORACLES AND ALGEBRIZATION
In this section we discuss some preliminaries, and then

formally define the main notions of the paper: extension
oracles and algebrization.

Given a multivariate polynomial p (x1, . . . , xn), we define
the multidegree of p, or mdeg (p), to be the maximum de-
gree of any xi. We say p is multilinear if mdeg (p) ≤ 1,
and multiquadratic if mdeg (p) ≤ 2. Also, we call p an ex-
tension polynomial if p (x) ∈ {0, 1} whenever x ∈ {0, 1}n.
Intuitively, this means that p is the polynomial extension of
some Boolean function f : {0, 1}n → {0, 1}.

The right way to relativize complexity classes such as
PSPACE and EXP has long been a subject of dispute: should
we allow exponentially-long queries to the oracle, or only
polynomially-long queries? On the one hand, if we al-
low exponentially-long queries, then statements like “IP =
PSPACE is non-relativizing” are reduced to trivialities, since
the PSPACE machine can simply query oracle bits that the
IP machine cannot reach. Furthermore the result of Chan-
dra, Kozen, and Stockmeyer [8] that APSPACE = EXP be-
comes non-relativizing, which seems perverse. On the other
hand, if we allow only polynomially-long queries, then re-
sults based on padding—for example, P = NP =⇒ EXP =
NEXP—will generally fail to relativize.4

In this paper we adopt a pragmatic approach, writing CA

or CA[poly] to identify which convention we have in mind.
More formally:

Definition 2.1 (Oracle). An oracle A is a collection
of Boolean functions Am : {0, 1}m → {0, 1}, one for each
m ∈ N. Then given a complexity class C, by CA we mean
the class of languages decidable by a C machine that can
query Am for any m of its choice. By CA[poly] we mean the
class of languages decidable by a C machine that, on inputs
of length n, can query Am for any m = O (poly (n)). For
classes C such that all computation paths are polynomially
bounded (for example, P, NP, BPP, #P...), it is obvious that

CA[poly] = CA.

We now define the key notion of an extension oracle over
a finite field.

field extensions and not integer extensions.
4Indeed, let A be any PSPACE-complete language. Then
PA = NPA, but EXPA[poly] = NEXPA[poly] if and only if
EXP = NEXP in the unrelativized world.

Definition 2.2 (Extension). Let Am : {0, 1}m → {0, 1}
be a Boolean function, and let F be a finite field. Then an

extension of Am over F is a polynomial Ãm,F : F
m → F such

that Ãm,F (x) = Am (x) whenever x ∈ {0, 1}m. Also, given

an oracle A = (Am), an extension Ã of A is a collection of

polynomials Ãm,F : F
m → F, one for each positive integer m

and finite field F, such that

(i) Ãm,F is an extension of Am for all m,F, and

(ii) there exists a constant c such that mdeg(Ãm,F) ≤ c for
all m, F.5

Then given a complexity class C, by CÃ we mean the class

of languages decidable by a C machine that can query Ãm,F

for any integer m and finite field F. By CÃ[poly] we mean the
class of languages decidable by a C machine that, on inputs

of length n, can query Ãm,F for any integer m = O (poly (n))

and finite field with |F| = 2O(m).

We use mdeg(Ã) to denote the maximum multidegree of

any Ãm.
In this extended abstract, we will restrict ourselves to ex-

tensions over finite fields, as they are easier to work with
than integer extensions and let us draw almost the same
conceptual conclusions. We note that many of our results
(including all results showing that existing results algebrize,
and all oracle separations proved via communication com-
plexity) easily carry over to the integer setting. Further-
more, even our oracle separations proved via direct construc-
tion can be “partly” carried over to the integer setting. The
full version of the paper studies integer extensions in more
detail.

Definition 2.3 (Algebrization). We say the complex-

ity class inclusion C ⊆ D algebrizes if CA ⊆ DÃ for all ora-

cles A and all finite field extensions Ã of A. Likewise, we
say that C ⊆ D does not algebrize, or that proving C ⊆ D
would require non-algebrizing techniques, if there exist A, Ã

such that CA 6⊂ DÃ.

We say the separation C 6⊂ D algebrizes if CÃ 6⊂ DA for

all A, Ã. Likewise, we say that C 6⊂ D does not algebrize, or
that proving C 6⊂ D would require non-algebrizing techniques,

if there exist A, Ã such that CÃ ⊆ DA.

When we examine the above definition, two questions
arise. First, why can one complexity class access the ex-

tension Ã, while the other class can only access the Boolean
part A? And second, why is it the “right-hand class” that

can access Ã for inclusions, but the “left-hand class” that

can access Ã for separations?
The basic answer is that, under a more stringent notion of

algebrization, we would not know how to prove that existing
interactive proof results algebrize. So for example, while

we will prove that PSPACEA[poly] ⊆ IPÃ for all oracles A

and extensions Ã of A, we do not know how to prove that

PSPACEÃ[poly] = IPÃ for all Ã.

5All of our results would work equally well if we instead

chose to limit mdeg(Ãm,F) by a linear or polynomial func-
tion of m. On the other hand, nowhere in this paper will

mdeg(Ãm,F) need to be greater than 2.

3. WHY EXISTING TECHNIQUES ALGE-
BRIZE

In the full version of the paper, we go through existing
non-relativizing results based on arithmetization, and show
that they can all be recast in algebrizing form. The details
are mostly omitted here due to space limitations.

As one prototypical example, though, let us sketch why
the result of Lund, Fortnow, Karloff, and Nisan [19] that
#P ⊂ FP/poly ⇒ P#P = MA is algebrizing.

Theorem 3.1. For all A, Ã, if #PÃ ⊂ FPÃ/poly then

P#P
A ⊆ MAÃ.

Proof Sketch. Let #SAT A be the #PA-complete prob-
lem in which we are given a Boolean formula F A consisting
of AND, OR, NOT, and A-oracle gates, and want to count
the number of inputs that cause F A to accept. Then it

suffices to show how to solve #SAT A problems in MAÃ, as-

suming #PÃ ⊂ FPÃ/poly. The procedure is simply this:

first guess a FPÃ/poly circuit for #PÃ; then use that circuit
to simulate the prover in an interactive protocol for #SAT A.
The interactive protocol in question is just the usual one due
to Lund et al. [19]—with the one further detail that, when
arithmetizing the Boolean formula F A, Arthur replaces ev-

ery A-gate by an Ã-gate, which he then calls the extension

oracle Ã to evaluate.6

Using similar ideas, one can show that the famous results
IP = PSPACE and MIP = NEXP, due to Shamir [27] and
Babai, Fortnow, and Lund [3] respectively, are also algebriz-
ing:

Theorem 3.2. For all A, Ã, PSPACEA[poly] ⊆ IPÃ.

Theorem 3.3. For all A, Ã, NEXPA[poly] ⊆ MIPÃ.

Let MIPEXP be the subclass of MIP where the provers are
in EXP. Then Babai, Fortnow, and Lund [3] showed that
MIPEXP = EXP. We can likewise show the following:

Theorem 3.4. For all A, Ã, EXPA[poly] ⊆ MIPÃ
EXP.

Finally let us consider non-relativizing circuit lower bounds,
such as PP 6⊂ SIZE

(
nk

)
and MAEXP 6⊂ P/poly. The key

point is that each of these results actually has a conditional
collapse as its only non-relativizing ingredient. So having
shown that the conditional collapses algebrize, we have al-
ready done most of the work of showing that the circuit
lower bounds algebrize as well.

To illustrate, let us now use Theorem 3.1 to show that
the MAEXP 6⊂ P/poly theorem of Buhrman, Fortnow, and
Thierauf [5] algebrizes.

Theorem 3.5. For all A, Ã, we have MAÃ
EXP 6⊂ PA/poly.

6Unlike for #SAT A, we do not know how to give an IPÃ pro-

tocol for #SAT Ã—intuitively because a #SAT Ã formula

could query Ã in ways that do not respect Ã’s structure as
a polynomial. This is why, for example, we can only show

that P#P
A ⊆ IPÃ and not that P#P

Ã ⊆ IPÃ.

Proof. Suppose MAÃ
EXP ⊂ PA/poly ⊆ PÃ/poly. Then

certainly P#P
Ã ⊂ PÃ/poly as well, so Theorem 3.1 im-

plies that P#P
A ⊆ MAÃ. Hence we also have

(
ΣP

2

)A ⊆
MAÃ by Toda’s Theorem [28], and hence

(
ΣEXP

2

)A ⊆ MAÃ
EXP

by padding. But Kannan’s Theorem [16] tells us that(
ΣEXP

2

)A 6⊂ PA/poly, so MAÃ
EXP 6⊂ PA/poly as well.

Using a tighter version of Theorem 3.1, we can also show
that the recent PromiseMA 6⊂ SIZE

(
nk

)
theorem of San-

thanam [26] algebrizes:

Theorem 3.6. For all A, Ã and constants k, we have

PromiseMAÃ 6⊂ SIZEA
(
nk

)
.

4. ALGEBRAIC QUERY COMPLEXITY
What underlies our algebraic oracle separations is a new

model of algebraic query complexity. In the standard query
complexity model, an algorithm is trying to compute some
property of a Boolean function A : {0, 1}n → {0, 1} by
querying A on various points. In our model, the function
A : {0, 1}n → {0, 1} is still Boolean, but the algorithm is
allowed to query not just A, but also a low-degree exten-

sion Ã : F
n → F of A over some field F. In this section

we develop the algebraic query complexity model in its own
right, and prove several lower bounds in this model. Then,
in Section 5, we apply our lower bounds to prove algebraic
oracle separations. The full version of the paper considers
the variant where the algorithm can query an extension of
A over the integers.

Throughout this section we let N = 2n. Algorithms
will compute Boolean functions (properties) f : {0, 1}N →
{0, 1}. An input A to f will be viewed interchangeably as

an N-bit string A ∈ {0, 1}N , or as a Boolean function A :
{0, 1}n → {0, 1} of which the string is the truth table.

Let us recall some standard query complexity measures.
Given a Boolean function f : {0, 1}N → {0, 1}, the deter-
ministic query complexity of f , or D (f), is defined to be
the minimum number of queries made by any deterministic
algorithm that evaluates f on every input. Likewise, the
(bounded-error) randomized query complexity R (f) is de-
fined to be the minimum expected7 number of queries made
by any randomized algorithm that evaluates f with probabil-
ity at least 2/3 on every input. The bounded-error quantum
query complexity Q(f) is defined analogously, with quantum
algorithms in place of randomized ones. See Buhrman and
de Wolf [7] for a survey of these measures.

We now define similar measures for algebraic query com-
plexity. In our definition, an important parameter will be
the multidegree of the allowed extension (recall that mdeg (p)
is the largest degree of any of the variables of p). In all of
our results, this parameter will be either 1 or 2.

Definition 4.1. Let f : {0, 1}N → {0, 1} be a Boolean
function, let F be any field, and let c be a positive integer.
Also, let M be the set of deterministic algorithms M such

that M Ã outputs f (A) for every oracle A : {0, 1}n → {0, 1}
and every finite field extension Ã : F

n → F of A with

7Or the worst-case number of queries: up to the exact con-
stant in the success probability, one can always ensure that
this is about the same as the expected number.

mdeg(Ã) ≤ c. Then the deterministic algebraic query com-
plexity of f over F is defined as

D̃F,c (f) := min
M∈M

max
A,Ã : mdeg(Ã)≤c

TM (Ã),

where TM (Ã) is the number of queries to Ã made by M Ã.
The randomized and quantum algebraic query complexities

R̃F,c (f) and Q̃
F,c (f) are defined similarly, except with bounded-

error randomized and quantum algorithms in place of deter-
ministic ones.

4.1 Multilinear Polynomials
The construction of “adversary polynomials” in our lower

bound proofs will require some useful facts about multilinear
polynomials. In particular, the basis of delta functions for
these polynomials will come in handy.

In what follows F is an arbitrary field (finite or infinite).
Given a Boolean point z, define

δz (x) :=
∏

i:zi=1

xi

∏

i:zi=0

(1 − xi)

to be the unique multilinear polynomial that is 1 at z and
0 elsewhere on the Boolean cube. Then for an arbitrary
multilinear polynomial m : F

n → F, we can write m uniquely
in the basis of δz’s as follows:

m (x) =
∑

z∈{0,1}n

mzδz (x)

We will often identify a multilinear polynomial m with its
coefficients mz in this basis. Note that for any Boolean
point z, the value m (z) is simply the coefficient mz in the
above representation.

4.2 Lower Bounds by Direct Construction
We now prove lower bounds on algebraic query complex-

ity over fields. The goal will be to show that querying points
outside the Boolean cube is useless if one wants to gain infor-
mation about values on the Boolean cube. In full generality,
this is of course false (as witnessed by interactive proofs and
PCPs on the one hand, and by the result of Juma et al. [14]
on the other). To make our adversary arguments work, it
will be crucial to give ourselves sufficient freedom, by using
polynomials of multidegree 2 rather than multilinear poly-
nomials.

We first prove deterministic lower bounds, which are quite
simple, and then extend them to probabilistic lower bounds.
Both work for the natural NP predicate of finding a Boolean
point z such that A (z) = 1.

4.2.1 Deterministic Lower Bounds

Lemma 4.2. Let F be a field and let y1, . . . , yt be points in
F

n. Then there exists a multilinear polynomial m : F
n → F

such that

(i) m (yi) = 0 for all i ∈ [t], and

(ii) m (z) = 1 for at least 2n − t Boolean points z.

Proof. If we represent m as

m (x) =
∑

z∈{0,1}n

mzδz (x) ,

then the constraint m (yi) = 0 for all i ∈ [t] corresponds to t
linear equations over F relating the 2n coefficients mz. By

basic linear algebra, it follows that there must be a solution
in which at least 2n − t of the mz’s are set to 1, and hence
m (z) = 1 for at least 2n − t Boolean points z.

Lemma 4.3. Let F be a field and let y1, . . . , yt be points
in F

n. Then for at least 2n − t Boolean points w ∈ {0, 1}n,
there exists a multiquadratic extension polynomial p : F

n →
F such that

(i) p (yi) = 0 for all i ∈ [t],
(ii) p (w) = 1, and
(iii) p (z) = 0 for all Boolean z 6= w.

Proof. Let m : F
n → F be the multilinear polynomial

from Lemma 4.2, and pick any Boolean w such that m (w) =
1. Then a multiquadratic extension polynomial p satisfying
properties (i)-(iii) can be obtained from m as follows:

p (x) := m (x) δw (x) .

Given a Boolean function A : {0, 1}n → {0, 1}, let the
OR problem be that of deciding whether there exists an
x ∈ {0, 1}n such that A (x) = 1. Then Lemma 4.3 easily
yields an exponential lower bound on the algebraic query
complexity of the OR problem.

Theorem 4.4. D̃F,2 (OR) = 2n for every field F.

Proof. Let Y be the set of points queried by a deter-
ministic algorithm, and suppose |Y| < 2n. Then Lemma 4.3
implies that there exists a multiquadratic extension polyno-

mial Ã : F
n → F such that Ã (y) = 0 for all y ∈ Y, but

Ã (w) = 1 for some Boolean w. So even if the algorithm is
adaptive, we can let Y be the set of points it queries assum-

ing each query is answered with 0, and then find Ã, B̃ such

that Ã (y) = B̃ (y) = 0 for all y ∈ Y, but nevertheless Ã and

B̃ lead to different values of the OR function.

Again, the results of Juma et al. [14] imply that multi-
degree 2 is essential here, since for multilinear polynomials
it is possible to solve the OR problem with only one query
(over fields of characteristic greater than 2).

4.2.2 Probabilistic Lower Bounds
In the full version of this paper, we generalize Theorem

4.4 to a lower bound against randomized algorithms. As
usual, this is done via the Yao minimax principle, namely
by constructing a distribution over oracles which is hard for
every deterministic algorithm that queries few points.

Lemma 4.5. Let F be a finite field.8 Also, for all w ∈
{0, 1}n, let Dw be the uniform distribution over multiquadratic
polynomials p : F

n → F such that p (w) = 1 and p (z) = 0
for all Boolean z 6= w. Suppose an adversary chooses a
“marked point” w ∈ {0, 1}n uniformly at random, and then
chooses p according to Dw. Then any deterministic algo-
rithm, after making t queries to p, will have queried w with
probability at most t/2n.

An immediate corollary of Lemma 4.5 is that, over a finite
field, randomized algebraic query algorithms do no better
than deterministic ones at evaluating the OR function.

Theorem 4.6. R̃F,2 (OR) = Ω (2n) for every finite field
F.
8Note that we are only able to prove this lemma for finite
fields—the reason being that we need to consider a uniform
distribution over all polynomials with given restrictions.

4.3 Lower Bounds by Communication Com-
plexity

In this section we point out a simple connection between
algebraic query complexity and communication complexity.
Specifically, we show that algebraic query algorithms can be
efficiently simulated by Boolean communication protocols.
This connection allows us to derive many lower bounds on
algebraic query complexity that we do not know how to
prove with the direct techniques of the previous section.

For concreteness, we first state our “transfer principle” for
deterministic query and communication complexities—but
as we will see, the principle is much broader.

Theorem 4.7. Let A : {0, 1}n → {0, 1} be a Boolean

function, and let Ã : F
n
q → Fq be the unique multilinear

extension of A over a finite field F. Suppose one can eval-
uate some Boolean predicate f of A using T deterministic

adaptive queries to Ã. Also, let A0 and A1 be the sub-
functions of A obtained by restricting the first bit to 0 or 1
respectively. Then if Alice is given the truth table of A0 and
Bob is given the truth table of A1, they can jointly evaluate
f (A) using O (Tn log |F|) bits of communication.

Proof. Given any point y ∈ F
n, we can write Ã (y) as a

linear combination of the values taken by A on the Boolean
cube, like so:

Ã (y) =
∑

z∈{0,1}n

δz (y)A (z) .

Now let M be an algorithm that evaluates f using T queries

to Ã. Our communication protocol will simply perform a
step-by-step simulation of M , as follows. Let y1 ∈ F

n be the
first point queried by M . Then Alice computes the partial
sum

Ã0 (y1) :=
∑

z∈{0,1}n−1

δ0z (y)A (0z)

and sends (y1, Ã0 (y1)) to Bob. Next Bob computes

Ã1 (y1) :=
∑

z∈{0,1}n−1

δ1z (y)A (1z) ,

from which he learns Ã (y1) = Ã0 (y1) + Ã1 (y1). Bob can
then determine y2, the second point queried by M given that

the first query had outcome Ã (y1). So next Bob computes

Ã1 (y2) and sends (y2, Ã1 (y2)) to Alice. Next Alice com-

putes Ã (y2) = Ã0 (y2) + Ã1 (y2), determines y3, and sends

(y3, Ã0 (y3)) to Bob, and so on for T rounds. Each message
uses O (n log |F|) bits, from which it follows that the total
communication cost is O (Tn log |F|).

In proving Theorem 4.7, notice that we never needed the
assumption that M was deterministic. Had M been ran-
domized, our simulation would have produced a randomized
protocol; had M been quantum, it would have produced a
quantum protocol; had M been an MA machine, it would
have produced an MA protocol, and so on.

To illustrate the power of Theorem 4.7, let us now prove
a lower bound on algebraic query complexity without using
anything about polynomials.

Given two Boolean strings x = x1 . . . xN and y = y1 . . . yN ,
recall that the Disjointness problem is to decide whether

there exists an index i ∈ [N] such that xi = yi = 1. Sup-
posing that Alice holds x and Bob holds y, Kalyasundaram
and Schnitger [15] showed that any randomized protocol to
solve this problem requires Alice and Bob to exchange Ω (N)
bits (see also the simpler proof by Razborov [23]).

In our setting, the problem becomes the following: given
a Boolean function A : {0, 1}n → {0, 1}, decide whether
there exists an x ∈ {0, 1}n−1 such that A (0x) = A (1x) = 1.
Call this problem DISJ, and suppose we want to solve DISJ
using a randomized algorithm that queries the multilinear

extension Ã : F
n → F of A. Then Theorem 4.7 immediately

yields a lower bound on the number of queries we need:

Theorem 4.8. R̃F,1 (DISJ) = Ω
(

2n

n log|F|

)
for all finite

fields F.

Proof. Suppose R̃F,1 (DISJ) = o
(

2n

n log|F|

)
. Then by

Theorem 4.7, we get a randomized protocol for the Dis-
jointness problem with communication cost o (N), where
N = 2n−1. But this contradicts [23, 15].

5. THE NEED FOR NON-ALGEBRIZING
TECHNIQUES

In this section we show that solving many of the open
problems in complexity theory will require non-algebrizing
techniques. We have already done much of the work in
Section 4, by proving lower bounds on algebraic query com-
plexity. What remains is to combine these query complex-
ity results with diagonalization-type arguments, in order to
achieve the oracle separations and collapses we want.

5.1 Non-Algebrizing Techniques Needed for P

vs. NP

We start with an easy but fundamental result: that any
proof of P 6= NP will require non-algebrizing techniques.

Theorem 5.1. There exist A, Ã such that NPÃ ⊆ PA.

Proof. Let A be any PSPACE-complete language, and

let Ã be the unique multilinear extension of A. As ob-
served by Babai, Fortnow, and Lund [3], the multilinear
extension of any PSPACE language is also in PSPACE. So
as in the usual argument of Baker, Gill, and Solovay [4], we

have NPÃ = NPPSPACE = PSPACE = PA.

Note that the same argument immediately implies that
any proof of P 6= PSPACE will require non-algebrizing tech-
niques.

Next we show that any proof of P = NP would require non-
algebrizing techniques, by giving an algebraic oracle separa-
tion between P and NP.

Theorem 5.2. There exist A, Ã such that NPA 6⊂ PÃ.
Furthermore, the language L that achieves the separation
simply corresponds to deciding, on inputs of length n, whether
there exists a w ∈ {0, 1}n with An (w) = 1.

Proof Sketch. The proof closely follows the usual diag-
onalization argument of Baker, Gill, and Solovay [4]. The
only difference is that we have to use a variant of Lemma
4.3 to handle the fact that the P machine can query a low-
degree extension. More precisely, for every n, the oracle A

contains a Boolean function An : {0, 1}n → {0, 1}, while Ã

contains a multiquadratic extension Ãn,F : F
n → F of An for

every n and finite field F. Let L be the unary language con-
sisting of all strings 1n for which there exists a w ∈ {0, 1}n

such that An (w) = 1. Then clearly L ∈ NPA for all A. On
the other hand, by using a variant of Lemma 4.3, it is not

hard to choose A, Ã so that L /∈ PÃ. (Details are deferred
to the full version.)

The same idea also yields the stronger result that there

exist A, Ã such that RPA 6⊂ PÃ. Indeed, by interleaving

oracles such that RPA 6⊂ PÃ and coRPA 6⊂ PÃ, it is also

possible to construct A, Ã such that ZPPA 6⊂ PÃ.

5.2 Non-Algebrizing Techniques Needed for
Circuit Lower Bounds

In the full version of this paper, we combine (i) a variant
of Lemma 4.3 with (ii) a standard forcing proof that there
exists an oracle A such that NTIMEA (2n) ⊂ SIZEA (n), to
obtain the following:

Theorem 5.3. There exist oracles A, Ã such that

NTIMEÃ (2n) ⊂ SIZEA (n).

By a padding argument, Theorem 5.3 immediately gives

A, Ã such that NEXPÃ ⊂ PA/poly. This then implies that
any proof of NEXP 6⊂ P/poly will require non-algebrizing
techniques. Note that this is almost the best result possible,

since Theorem 3.5 implies that there do not exist A, Ã such

that MAÃ
EXP ⊂ PA/poly.

Wilson [30] gave an oracle A relative to which EXPNP
A ⊂

PA/poly. Using similar ideas, one can generalize the con-

struction of Theorem 5.3 to obtain A, Ã such that EXPNP
Ã ⊂

PA/poly. One can also give A, Ã such that BPEXPÃ ⊂
PA/poly. We omit the details.

5.3 Non-Algebrizing Techniques Needed for
Other Problems

Using the communication complexity transfer principle
from Section 4.3, we can convert essentially any separation
of communication complexity classes into the corresponding
separation in the algebraic oracle world. So for example,
by using communication complexity lower bounds due to
Kalyasundaram and Schnitger [15], Klauck [17], Razborov
[24], Raz [20], Raz and Shpilka [21], and Buhrman et al. [6]
respectively, we are able to show the following.

Theorem 5.4. There exist A, Ã such that

(i) NPA 6⊂ BPPÃ,

(ii) coNPA 6⊂ MAÃ,

(iii) NPA 6⊂ BQPÃ,

(iv) BQPA 6⊂ BPPÃ,

(v) QMAA 6⊂ MAÃ, and

(vi) PNP
A 6⊂ PPÃ.

Furthermore, for all of these separations Ã is simply the
multilinear extension of A.

6. APPLICATION TO COMMUNICATION
COMPLEXITY

Klauck [17] showed that any MA-protocol for the Disjoint-
ness problem has communication cost Ω (

√
n). The “natu-

ral” conjecture would be that the
√

n was merely an artifact
of his proof, and that a more refined argument would yield
the optimal lower bound of Ω (n). However, using a pro-
tocol directly inspired by our algebrization framework, we
are able to show that this conjecture is false. Below, we
give an O (

√
n log n)-communication MA-protocol (which is

nearly optimal) not only for Disjointness, but also for the In-
ner Product problem, where Alice and Bob want to compute
IP (x, y) :=

∑n

i=1 xiyi as an integer.

Theorem 6.1. There exist MA-protocols for the Disjoint-
ness and Inner Product problems, in which Alice receives an
O (

√
n log n)-bit witness from Merlin and an O (

√
n log n)-

bit message from Bob.

Proof. It suffices to give a protocol for Inner Product; a
protocol for Disjointness then follows immediately. Assume
n is a perfect square. Then Alice and Bob can be thought
of as holding functions a : [

√
n] × [

√
n] → {0, 1} and b :

[
√

n]× [
√

n] → {0, 1} respectively. Their goal is to compute
the inner product

IP :=
∑

x,y∈[
√

n]

a (x, y) b (x, y) .

Choose a prime q ∈ [n, 2n]. Then a and b have unique

extensions ã : F
2
q → Fq and b̃ : F

2
q → Fq respectively as

degree-(
√

n − 1) polynomials. Also, define the polynomial
s : Fq → Fq by

s (x) :=

√
n∑

y=1

ã (x, y) b̃ (x, y) (mod q).

Notice that deg (s) ≤ 2 (
√

n − 1). Merlin’s message to Al-
ice will consist of a polynomial s′ : Fq → Fq, which also
has degree at most 2 (

√
n − 1), and which is specified by

its coefficients. Merlin claims that s = s′. If Merlin is
honest, then Alice can easily compute the inner product as

IP =
∑√

n

x=1 s (x). So the problem reduces to checking that
s = s′. This is done as follows: first Bob chooses r ∈ Fq

uniformly at random and sends it to Alice, along with the

value of b̃ (r, y) for every y ∈ [
√

n]. Then Alice checks that

s′ (r) =

√
n∑

y=1

ã (r, y) b̃ (r, y) (mod q) .

If s = s′, then the above test succeeds with certainty. On
the other hand, if s 6= s′, then

Pr
r∈Fq

[
s (r) = s′ (r)

]
≤ deg (s)

q
≤ 1

3
,

and hence the test fails with probability at least 2
3
.

7. CONCLUSIONS AND OPEN PROBLEMS
Arithmetization is one of the most powerful ideas in the

history of complexity theory. It led to the IP = PSPACE

Theorem, the PCP Theorem, non-relativizing circuit lower
bounds, and many other achievements of the last two decades.

Yet we showed that arithmetization is fundamentally unable
to resolve many of the barrier problems in the field, such as P

versus NP, derandomization of RP, and circuit lower bounds
for NEXP.

Can we pinpoint what it is about arithmetization that
makes it incapable of solving these problems? In our view,
arithmetization simply fails to “open the black box wide
enough.” In a typical arithmetization proof, one starts with
a polynomial-size Boolean formula ϕ, and uses ϕ to produce
a low-degree polynomial p. But having done so, one then
treats p as an arbitrary black-box function, subject only to
the constraint that deg (p) is small. Nowhere does one ex-
ploit the small size of ϕ, except insofar as it lets one evaluate
p in the first place. The message of this paper has been that,
to make further progress, one will have to probe ϕ in some
“deeper” way. To reach this conclusion, we introduced a
new model of algebraic query complexity, which has already
found independent applications in communication complex-
ity, and which has numerous facets to explore in its own
right.

We now propose five directions for future work, and list
some of the main open problems in each direction.

(1) Find non-algebrizing techniques. This, of course,
is the central challenge we leave.

The best example we have today of a non-algebrizing re-
sult is arguably the set of cryptographic protocols—including
those of Goldreich-Micali-Wigderson [10] and Yao [31]—that
exploit the locality of computation in manifestly non-algebraic
ways. Yet in the full version of this paper, we show (per-
haps surprisingly) that even the GMW protocol algebrizes,
assuming the existence of a one-way function that is com-
putable in P (with no oracle) but is secure even against

BPPÃ adversaries. It would be interesting to know whether
the GMW protocol algebrizes under a more standard cryp-
tographic assumption.

A few other examples of non-relativizing results predat-
ing the “interactive proofs revolution” have been proposed.
Small-depth circuit lower bounds, such as AC0 6= TC0 [22],
can be shown to fail relative to suitable oracle gates, and are
almost certainly non-algebrizing as well. On the other hand,
these results are already“well covered”by the natural proofs
barrier. In another direction, Arora, Impagliazzo, and Vazi-
rani [2] argue that even the Cook-Levin Theorem (and by
extension, the PCP Theorem) should be considered non-
relativizing, while Hartmanis et al. [11] make a similar case
for the 1977 result of Hopcroft, Paul, and Valiant [13] that
TIME (f (n)) 6= SPACE (f (n)) for any space-constructible f .
However, because of subtleties in defining the oracle access
mechanism, there is legitimate debate about whether these
examples should “truly” be considered non-relativizing; see
Fortnow [9] for a contrary perspective.9

If arithmetization—which embeds the Boolean field F2

into a larger field or the integers—is not enough, then a nat-
ural idea is to embed F2 into a non-commutative algebra.
But in the full version of this paper, we show that for every
subexponential k, the algebra of k×k matrices still does not
suffice. So the question arises: what other useful algebraic
structures can mathematics offer complexity theory?

Another potential way around the algebrization barrier
is “recursive arithmetization”: first arithmetizing a Boolean

9Eric Allender has suggested the delightful term“irrelativiz-
ing,” for results that neither relativize nor fail to relativize.

formula, then reinterpreting the result as a Boolean function,
then arithmetizing that function, and so on ad infinitum. In
the full version of this paper, we show that k-arithmetization
is still not powerful enough to prove P 6= NP, for any con-
stant k. On the other hand, we have no idea whether
double-arithmetization is already powerful enough to prove
P = RP or NEXP 6⊂ P/poly.

(2) Find ways to exploit the structure of polynomi-
als produced by arithmetization. This is also a possible
way around the algebrization barrier, but seems important
enough to deserve its own heading. The question is: given

that a polynomial Ã : F
n → F was produced by arithme-

tizing a small Boolean formula, does Ã have any properties
besides low degree that a polynomial-time algorithm querying
it could exploit? Or alternatively, do there exist “pseudo-

random extensions” Ã : F
n → F—that is, low-degree exten-

sions that are indistinguishable from “random” low-degree

extensions by any BPPÃ machine, but that were actually
produced by arithmetizing small Boolean formulas?

(3) Find open problems that can still be solved
with algebrizing techniques. In the short term, this is
perhaps the most “practical” response to the algebrization
barrier. Here is a problem that, for all we know, might
still be solvable with tried-and-true arithmetization meth-
ods: improve the result of Santhanam [26] that PromiseMA 6⊂
SIZE

(
nk

)
to MA 6⊂ SIZE

(
nk

)
.

(4) Prove algebraic oracle separations. Can we show
that the interactive protocol of Lund, Fortnow, Karloff, and
Nisan [19] cannot be made constant-round by any algebriz-
ing technique? In other words, can we give an oracle A

and extension Ã such that coNPA 6⊂ AMÃ? In the com-
munication complexity setting, Klauck [17] mentions coNP

versus AM as a difficult open problem; perhaps the alge-
braic query version is easier. The larger challenge is to give
algebraic oracles that separate all the levels of the polyno-
mial hierarchy—or at least separate the polynomial hierar-
chy from larger classes such as P#P and PSPACE.

(5) Understand algebrization better. In defining al-
gebrization, was it essential to give only one machine access

to the extension oracle Ã, and the other access to A? Or

could we show (for example) not only that coNPA ⊆ IPÃ,

but also that coNPÃ ⊆ IPÃ? Also, low-degree extensions
can be seen as just one example of an error-correcting code.
To what extent do our results carry over to arbitrary error-
correcting codes?

Acknowledgments
We thank Benny Applebaum, Sanjeev Arora, Boaz Barak,
Andy Drucker, Lance Fortnow, Russell Impagliazzo, Hart-
mut Klauck, Adam Klivans, Ryan O’Donnell, Rahul San-
thanam, Sasha Sherstov, Amir Shpilka, Madhu Sudan, Luca
Trevisan, and Ryan Williams for helpful discussions.

8. REFERENCES
[1] S. Aaronson. Oracles are subtle but not malicious. In Proc.

IEEE Complexity, p. 340–354, 2006.
[2] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing

versus nonrelativizing techniques: the role of local
checkability. Manuscript, 1992.

[3] L. Babai, L. Fortnow, and C. Lund. Nondeterministic
exponential time has two-prover interactive protocols.
Computational Complexity, 1(1):3–40, 1991.

[4] T. Baker, J. Gill, and R. Solovay. Relativizations of the
P=?NP question. SIAM J. Comput., 4:431–442, 1975.

[5] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing
separations. In Proc. IEEE Complexity, p. 8–12, 1998.

[6] H. Buhrman, N. Vereshchagin, and R. de Wolf. On
computation and communication with small bias. In Proc.
IEEE Complexity, p. 24–32, 2007.

[7] H. Buhrman and R. de Wolf. Complexity measures and
decision tree complexity: a survey. Theoretical Comput.
Sci., 288:21–43, 2002.

[8] A. K. Chandra, D. Kozen, and L. J. Stockmeyer.
Alternation. J. ACM, 28(1):114–133, 1981.

[9] L. Fortnow. The role of relativization in complexity theory.
Bulletin of the EATCS, 52:229–244, February 1994.

[10] O. Goldreich, S. Micali, and A. Wigderson. Proofs that
yield nothing but their validity or all languages in NP have
zero-knowledge proof systems. J. ACM, 38(1):691–729,
1991.

[11] J. Hartmanis, R. Chang, S. Chari, D. Ranjan, and
P. Rohatgi. Relativization: a revisionistic perspective.
Bulletin of the EATCS, 47:144–153, 1992.

[12] J. Hartmanis and R. E. Stearns. On the computational
complexity of algorithms. Transactions of the American
Mathematical Society, 117:285–306, 1965.

[13] J. E. Hopcroft, W. J. Paul, and L. G. Valiant. On time
versus space. J. ACM, 24(2):332–337, 1977.

[14] A. Juma, V. Kabanets, C. Rackoff, and A. Shpilka. The
black-box query complexity of polynomial summation.
ECCC TR07-125, 2007.

[15] B. Kalyanasundaram and G. Schnitger. The probabilistic
communication complexity of set intersection. SIAM J.
Discrete Math, 5(4):545–557, 1992.

[16] R. Kannan. Circuit-size lower bounds and non-reducibility
to sparse sets. Information and Control, 55:40–56, 1982.

[17] H. Klauck. Rectangle size bounds and threshold covers in
communication complexity. In Proc. IEEE Complexity, p.
118–134, 2003.

[18] A. Klivans and D. van Melkebeek. Graph nonisomorphism
has subexponential size proofs unless the polynomial-time
hierarchy collapses. SIAM J. Comput., 31:1501–1526, 2002.

[19] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic
methods for interactive proof systems. J. ACM,
39:859–868, 1992.

[20] R. Raz. Exponential separation of quantum and classical
communication complexity. In Proc. ACM STOC, p.
358–367, 1999.

[21] R. Raz and A. Shpilka. On the power of quantum proofs. In
Proc. IEEE Complexity, p. 260–274, 2004.

[22] A. A. Razborov. Lower bounds for the size of circuits of
bounded depth with basis {&,⊕}. Mathematicheskie
Zametki, 41(4):598–607, 1987.

[23] A. A. Razborov. On the distributional complexity of
disjointness. Theoretical Comput. Sci., 106:385–390, 1992.

[24] A. A. Razborov. Quantum communication complexity of
symmetric predicates. Izvestiya Math., 67(1):145–159, 2003.

[25] A. A. Razborov and S. Rudich. Natural proofs. J. Comput.
Sys. Sci., 55(1):24–35, 1997.

[26] R. Santhanam. Circuit lower bounds for Merlin-Arthur
classes. In Proc. ACM STOC, p. 275–283, 2007.

[27] A. Shamir. IP=PSPACE. J. ACM, 39(4):869–877, 1992.
[28] S. Toda. PP is as hard as the polynomial-time hierarchy.

SIAM J. Comput., 20(5):865–877, 1991.
[29] N. V. Vinodchandran. A note on the circuit complexity of

PP. ECCC TR04-056, 2004.
[30] C. B. Wilson. Relativized circuit complexity. J. Comput.

Sys. Sci., 31(2):169–181, 1985.
[31] A. C-C. Yao. How to generate and exchange secrets

(extended abstract). In Proc. IEEE FOCS, p. 162–167,
1986.

