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ABSTRACT
A celebrated 1976 theorem of Aumann asserts that Bayesian
agents with common priors can never “agree to disagree”:
if their opinions about any topic are common knowledge,
then those opinions must be equal. But two key questions
went unaddressed: first, can the agents reach agreement af-
ter a conversation of reasonable length? Second, can the
computations needed for that conversation be performed ef-
ficiently? This paper answers both questions in the affirma-
tive, thereby strengthening Aumann’s original conclusion.

We show that for two agents with a common prior to
agree within ε about the expectation of a [0, 1] variable with
high probability over their prior, it suffices for them to ex-
change O

�
1/ε2

�
bits. This bound is completely indepen-

dent of the number of bits n of relevant knowledge that the
agents have. We also extend the bound to three or more
agents; and we give an example where the “standard proto-
col” (which consists of repeatedly announcing one’s current
expectation) nearly saturates the bound, while a new “at-
tenuated protocol” does better. Finally, we give a proto-
col that would cause two Bayesians to agree within ε after
exchanging O

�
1/ε2

�
messages, and that can be simulated

by agents with limited computational resources. By this
we mean that, after examining the agents’ knowledge and
a transcript of their conversation, no one would be able to
distinguish the agents from perfect Bayesians. The time
used by the simulation procedure is exponential in 1/ε6 but
not in n.
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1. INTRODUCTION

“Not only do people disagree; they often consider
their disagreements to be about what is objec-
tively true, rather than about how they each feel
or use words. Furthermore, people often con-
sider their disagreements to be honest, meaning
that the disputants respect each other’s relevant
abilities, and consider each person’s stated opin-
ion to be his best estimate of the truth, given his
information and effort. Yet according to well-
known theory, such honest disagreement is im-
possible.” —Cowen and Hanson [6, p.3]

Suppose Alice and Bob are Bayesian agents, who have the
same prior probability distribution over a finite set of pos-
sible states of the world. They are interested in estimating
the population of New York City, and they have gathered
different pieces of evidence related to that variable. Let EA

be Alice’s expectation of the population conditioned on her
evidence, and let EB be Bob’s expectation conditioned on
his evidence. Of course EA might differ from EB. However,
suppose EA and EB are common knowledge between Alice
and Bob—meaning that both agents know the values of EA

and EB, both know that they both know the values, both
know that they both know that they both know the values,
and so on. Then a 1976 theorem of Aumann asserts that
EA = EB. In other words, Alice and Bob cannot “agree
to disagree”; common knowledge of each other’s opinions
implies that their opinions are equal.

This counterintuitive theorem has already had an indirect
impact on computer science, for it inspired the fields of in-
teractive epistemology and reasoning about knowledge [12].
However, Aumann’s theorem itself has so far mostly been
studied in the economics and philosophy literature. Numer-
ous papers have been written generalizing the theorem—for
example, to three or more agents [16], to certain types of
non-Bayesian agents [5], to approximate common knowledge
[14], and to infinite state spaces [4]. Other papers have ex-
amined the justification for the Common Prior Assumption



[2, 6, 8, 11], the assumption that Alice and Bob start out
with the same prior before they receive different evidence.

However, if we wish to draw a “real-world” moral from
Aumann’s theorem—for example, that human beings are
not well approximated by Bayesian agents with common
priors—then there is a crucial further issue to consider, name-
ly complexity. To achieve common knowledge, it is not
enough for Alice and Bob simply to exchange EA and EB .
For Alice’s expectation might change when she learns EB ,
and Bob’s expectation might change when he learns EA.
Then Alice and Bob would have to exchange their new ex-
pectations, and so on indefinitely. Provided the probability
space is finite, Geanakoplos and Polemarchakis [7] showed
that the resulting protocol must terminate after a finite
number of messages, with Alice and Bob having the same
expectation EA = EB. But even setting aside the fact that
the messages in this protocol are unbounded-precision real
numbers, no nontrivial upper bound was known on the num-
ber of messages needed to reach agreement or approximate
agreement.

Of course, if communication cost is not an issue, then Al-
ice and Bob might as well just exchange all of their evidence.
Since they have the same prior probabilities, this will imme-
diately cause them to agree about everything (and indeed, it
will be common knowledge between them that they agree).
The trouble is that “evidence” might include every piece of
information to which the agents were ever exposed, in which
case exchanging the evidence would take a prohibitively long
time.

When we began studying this topic, our conjecture was
that regardless of what protocol they used, Alice and Bob
would in general need to exchange Ω (n) bits to approxi-
mately agree with high probability, where n is the total num-
ber of bits that they know. The intuition for this conjecture
came from ordinary communication complexity, where it is
easy to construct functions (such as the Boolean inner prod-
uct function) for which a linear amount of communication is
necessary. Indeed, communication cost seemed like it would
effectively nullify Aumann’s theorem for agents subject to
realistic constraints. By analogy, several counterintuitive
results in game theory (for example, the all-defect equilib-
rium in the Iterated Prisoners’ Dilemma) can be nullified by
assuming the players’ resources are bounded [15].

Independently of communication cost, it seemed obvious
that computation cost would provide another barrier to agree-
ment. For just to calculate her opinions, Alice might need
to take expectations over sets of size 2Ω(n) that are con-
stantly being updated in response to messages from Bob.
This seems hopeless, even if we assume Alice has the ability
to sample efficiently from the common prior.

1.1 Our Results
This paper initiates the study of the communication com-

plexity and computational complexity of agreement proto-
cols. Its surprising conclusion is that, in spite of the above
arguments, complexity is not a fundamental barrier to agree-
ment. In our view, this conclusion closes a major gap be-
tween Aumann’s theorem and its informal interpretation, by
showing that agreeing to disagree is problematic not merely
“in the limit” of common knowledge, but even for agents
subject to realistic constraints on communication and com-
putation.

From a computer science perspective, the main novelty of

the paper will be that, when we analyze the communication
complexity of a function f , we care only about how long it
takes some set of agents to agree among themselves about
the expectation of f . Whether the agents’ expectations
agree with the true value of f is irrelevant.

After introducing notation and definitions in Section 2, in
Section 3 we study the “standard protocol,” introduced by
Geanakoplos and Polemarchakis [7] and alluded to earlier.
In that protocol, Alice and Bob repeatedly announce their
current expectations EA and EB, conditioned on all previous
announcements. A curious feature of this protocol is that
the agents only exchange their opinions, not the evidence on
which their opinions are based. Yet an opinion, coming from
an honest Bayesian agent, turns out to serve as a powerful
summary of everything that agent knows.

The question we ask is how many messages are needed
before the agents’ expectations agree within ε with proba-
bility at least 1−δ over their prior, given parameters ε and δ.
We show that 1/

�
δε2
�

messages suffice. We then show that

O
�
1/
�
δε2
��

messages still suffice, if instead of sending their
whole expectations (which are real numbers), the agents
send “summary” messages consisting of only 2 bits each.
What makes these upper bounds surprising is that they are
completely independent of n, the number of bits needed to
represent the agents’ knowledge. By contrast, in ordinary
communication complexity (see [13]), it is easy to show that
given a random function f : {0, 1}n × {0, 1}n → [0, 1], Alice
and Bob would need to exchange Ω (n) bits to approximate
f to within (say) 1/10 with high probability.

Intuitively, the key point is that Alice’s and Bob’s ex-
pectations follow an unbiased random walk [9], which has
absorbing barriers at 0 and 1 since the range of f is [0, 1].
Furthermore, the step size of this walk is proportional to the
amount by which Alice and Bob disagree. So for example, if
the agents disagreed by ε with certainty at every time step,
then the walk would hit one of the absorbing barriers after
an expected number of steps O

�
1/ε2

�
. The actual proof

will formalize this idea by defining a progress measure based
on the L2-norm, and then analyzing the rate at which this
measure increases from 0 to 1.

Given the results of Section 3, several questions demand
our attention. Is the upper bound of 1/

�
δε2
�

bits tight,
or can it be improved even further? Also, is the standard
protocol always optimal, or do other protocols sometimes
need even less communication? Section 3.2 addresses these
questions. Though we are unable to show any lower bound
better than Ω (log 1/ε) that applies to all protocols, we do
give examples where both the continuous and discretized
standard protocols need Ω

�
1/ε2

�
messages. We also show

that the standard protocol is not optimal: for all ε there
exists a scenario where the standard protocol needs Ω

�
1/ε2

�
bits, while a new protocol (which we call the attenuated

protocol) uses fewer bits.
In earlier work, Parikh and Krasucki [16] extended the

Geanakoplos-Polemarchakis protocol to three or more agents,
who send messages along the edges of a directed graph.
Thus, it is natural to ask whether our complexity results
extend to this setting as well. Section 3.1 shows that they
do: given N agents with a common prior, who send mes-
sages along a strongly connected graph of diameter d, order
Nd2/

�
δε2
�

messages suffice for every pair of agents to agree
within ε about the expectation of a [0, 1] random variable
with probability at least 1 − δ over their prior.



In Section 4 we shift attention to the computational com-
plexity of agreement, the subject of our deepest technical
result. What we want to show is that, even if two agents
are computationally bounded, after a conversation of rea-
sonable length they can still probably approximately agree
about the expectation of a [0, 1] random variable. A large
part of the problem is to say what this even means. After
all, if the agents both ignored their evidence and estimated
(say) 1/2, then they would agree before exchanging even
a single message. So agreement is only interesting if the
agents have made some sort of “good-faith effort” to emu-
late Bayesian rationality.

Though it is unclear exactly what sort of effort is nec-
essary, we do propose a criterion that we think is suffi-

cient. This is that the agents be able to simulate a Bayesian
agreement protocol, in such a way that a computationally-
unbounded referee, given the agents’ knowledge together
with a transcript of their conversation, be unable to decide
(with non-negligible bias) whether the agents are computa-
tionally bounded or not. By analogy to the Turing test
for intelligence, we would argue that a statistically perfect
simulation of Bayesian rationality is Bayesian rationality.

But what do we mean by computationally-bounded agents?
We discuss this question in detail in Section 4, but the basic
point is that we assume two “subroutines”: one that com-
putes the [0, 1] variable of interest, given a state of the world
ω; and another that samples a state ω from any set in ei-
ther agent’s initial knowledge partition. The complexity of
the simulation procedure is then expressed in terms of the
number of calls to these subroutines.

Unfortunately, there is no way to simulate the standard
protocol—even our discretized version of it—using a small
number of subroutine calls. The reason is that Alice’s ideal
estimate p might lie on a “knife-edge” between the set of
estimates that would cause her to send message m1 to Bob,
and the set that would cause her to send a different message
m2. In that case, it does not suffice for her to approximate
p using random sampling; she needs to determine it exactly.
Our solution, which we develop in Section 4.1, is to have
the agents “smooth” their messages by adding random noise
to them. By hiding small errors in the agents’ estimates,
such noise makes the knife-edge problem disappear. On
the other hand, in the computationally-unbounded case, the
noise does not prevent the agents from agreeing within ε
with probability 1 − δ after O

�
1/
�
δε2
��

messages. Our
main result is that the smoothed standard protocol can be
simulated using a number of subroutine calls that depends
only on ε and δ, not on n. The dependence, unfortunately,
is exponential in 1/

�
δ3ε6

�
, but we expect that both the

procedure and its analysis could be improved.
We conclude in Section 5 with some open problems.

2. PRELIMINARIES
Let Ω be a set of possible states of the world. Through-

out this paper, Ω will be finite for simplicity of presenta-
tion. Let D be a prior probability distribution over Ω that
is shared by some set of agents. We assume D assigns
nonzero probability to every ω ∈ Ω, for if not, we simply re-
move the probability-0 states from Ω. We can identify any
subset S ⊆ Ω with the event (or proposition) that ω ∈ S.
Whenever we talk about a probability or expectation over a
subset S ⊆ Ω, unless otherwise indicated we mean that we
start from D and then conditionalize on S.

Let I be a set of agents; except in Section 3.1, I will con-
sist of exactly two agents, Alice (A) and Bob (B). We will
consider protocols in which agents i ∈ I send messages to
each other in some order. Let Πt

i (ω) be the set of states
that agent i considers possible immediately after the tth mes-
sage has been sent, given that the true state of the world is
ω.1 Then ω ∈ Πt

i (ω) ⊆ Ω, and indeed the set
�
Πt

i (ω)
	

ω∈Ω

(where we might have Πt
i (ω) = Πt

i (ω′) for distinct ω, ω′)
forms a partition of Ω. Furthermore, since the agents never
forget messages, we have Πt

i (ω) ⊆ Πt−1
i (ω). Thus we say

that the partition
�
Πt

i (ω)
	

ω∈Ω
refines

�
Πt−1

i (ω)
	

ω∈Ω
, or

equivalently that
�
Πt−1

i

	
ω∈Ω

coarsens
�
Πt

i

	
ω∈Ω

. Notice

also that if the tth message is not sent to i, then Πt
i (ω) =

Πt−1
i (ω). As a convention, we will freely omit arguments

of ω when doing so will cause no confusion.
As is standard in this field, we assume that the agents

know each other’s initial partitions
�
Π0

i

	
ω∈Ω

. The usual

justification (see [1, 3]) is that a state of the world ω ∈ Ω
includes the agents’ knowledge as part of it. From that
assumption one can show that every agent must have a
uniquely defined partition known to every other agent.

Let f : Ω → [0, 1] be a real-valued function that the agents
are interested in estimating. The assumption f ∈ [0, 1] is
without loss of generality—for since Ω is finite, any func-
tion from Ω to R has a bounded range, which we can take
to be [0, 1] by rescaling. We can think of f (ω) as the
probability of some future event conditioned on ω, but this
is not necessary. By a scenario, we will mean a 5-tuple�
Ω,D, I, f,

�
Π0

i (ω)
	

ω∈Ω,i∈I

�
.

Given a subset S ⊆ Ω, let

EX
S

[f ] =
1

PrD [S]

X
ω∈S

Pr
D

[ω] f (ω)

be the expectation of f over S. Then let

Et
i (ω) = EX

Πt
i
(ω)

[f ]

be agent i’s expectation of f at step t, given that the true
state of the world is ω. Note that Et

i will always mean Ei

at step t, not Ei to the tth power. Also, let

Θt
i (ω) =

�
ω′ : Et

i

�
ω′
�

= Et
i (ω)

	
be the set of states for which i’s expectation of f equals
Et

i (ω). Then the partition
�
Θt

i

	
ω∈Ω

coarsens
�
Πt

i

	
ω∈Ω

, and

Et
i (ω) = EXΘt

i
(ω) [f ].

To build intuition, let us state some simple but impor-
tant observations due to Hanson [9]. First, since

�
Πt

i

	
ω∈Ω

coarsens
�
Πt+1

i

	
ω∈Ω

, we have

EX
Πt

i
(ω)

�
Et+1

i

�
= EX

ω′∈Πt
i
(ω)

"
EX

Πt+1

i
(ω′)

[f ]

#
= EX

Πt
i
(ω)

[f ] = Et
i (ω) .

This says that i’s expectation of its own future expectation
of f always equals its current expectation. Second, if i has
just communicated its expectation of f to j, then

�
Θt

i

	
ω∈Ω

1We assume for now that messages are “noise-free”; that is,
they partition the state space sharply. Later we will remove
this assumption.



coarsens
�
Πt

j

	
ω∈Ω

, and therefore

EX
Θt

i
(ω)

�
Et

j

�
= EX

ω′∈Θt
i
(ω)

"
EX

Πt
j
(ω′)

[f ]

#
= EX

Θt
i
(ω)

[f ] = Et
i (ω) .

Consider a outsider who has the same prior as i and j, and
who sees their messages but not their inputs. Then the
above equation says that, after i sends the message Et

i (ω)
to j, the outsider’s expectation of j’s new expectation of f
is simply Et

i (ω) itself.

2.1 (ε, δ)-Agreement
The basic goal of an agreement protocol is to cause Alice

and Bob to agree about the expectation of f , meaning that
Et

A = Et
B . However, it turns out that in order to prove any-

thing nontrivial, we will need to relax the success condition
to probabilistic and approximate agreement. More formally,
we say that Alice and Bob (ε, δ)-agree after the tth message
if

Pr
ω∈D

���Et
A (ω) − Et

B (ω)
�� > ε

�
≤ δ.

In other words, the agents’ expectations of f should agree to
within ε, with probability at least 1 − δ over ω drawn from
the common prior. We will be interested in the minimum t
such that Alice and Bob (ε, δ)-agree after the tth message.

Let us first remark that (ε, δ)-agreement is arguably a
more fundamental notion than exact agreement. For since
f can take arbitrary values in [0, 1], in general Alice and
Bob need to exchange 2n bits (i.e. everything they know)
to ensure that Et

A = Et
B.2 But this trivial lower bound has

less to do with agreement than with the fact that real num-
bers form a continuum. The real question is, how closely

can Alice and Bob agree after a short conversation? Also,
we should consider a protocol successful if it succeeds with
probability 1 − δ for any δ > 0, using resources that scale
reasonably in 1/δ.

But why do we take the probability over D, as opposed
to some other distribution? That is, what if Alice’s and
Bob’s priors agree with each other, but not with external
reality? Unfortunately, it seems hard to prove anything in
that situation, since the “true” prior could be concentrated
on a few states that the agents consider vanishingly unlikely.
Indeed, we conjecture that there exists a scenario such that
for all agreement protocols, Alice and Bob must exchange
Ω (n) bits to agree within ε on every ω (that is, (ε, 0)-agree).
In any case, it already seems counterintuitive that Alice and
Bob can both enter their conversation expecting to agree
after a short amount of time!

2.2 Communication Complexity
In an agreement protocol, Alice and Bob take turns send-

ing messages to each other. Any such protocol is charac-
terized by a sequence of functions m1, m2, . . . : 2Ω → M,
known to both agents, which map subsets of Ω to elements
of a message space M. Possibilities for M include [0, 1]
in a continuous protocol, or {0, 1} in a discretized proto-
col. In all protocols considered in this paper, the mt’s will

2Note the contrast with ordinary communication complex-
ity, where n bits always suffice. Indeed, even to produce ap-
proximate agreement, two-way communication is necessary
in general, as shown by the example f ((x, y)) = (2x + y) /3,
where x, y ∈ {0, 1} are uniformly distributed.

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

{ΠA}�∈Ω
0

{ΠB}�∈Ω
0 {ΠB}�∈Ω

1

Figure 1: After Alice tells Bob whether E0
A is 1 or

0, Bob’s partition
�
Π0

B

	
ω∈Ω

is refined to
�
Π1

B

	
ω∈Ω

.

be extremely simple; for example, we might have mt (S) =
EXS [f ] be the agent’s current expectation of f .

The protocol proceeds as follows: first Alice computes
m1

�
Π0

A (ω)
�

and sends it to Bob. After seeing Alice’s mes-
sage, and assuming the true state of the world is ω, Bob’s
new set of possible states becomes

Π1
B (ω) =

�
ω′ ∈ Π0

B (ω) : m1

�
Π0

A

�
ω′
��

= m1

�
Π0

A (ω)
�	

as in Figure 1. Then Bob computes m2

�
Π1

B (ω)
�

and sends
it to Alice, whereupon Alice’s set of possible states becomes

Π2
A (ω) =

�
ω′ ∈ Π0

A (ω) : m2

�
Π1

B

�
ω′
��

= m2

�
Π1

B (ω)
�	

.

Then Alice computes m3

�
Π2

A (ω)
�

and sends it to Bob, and
so on.

Our ending condition is simply that the agents (ε, δ)-agree
at some step t. We do not require them to fix t indepen-
dently of the scenario. The reason is that for any t, there
might exist perverse scenarios such that the agents nearly
agree for the first t − 1 steps, then disagree violently at the
tth step. However, it seems unfair to penalize the agents in
such cases.

The following is the best lower bound we are able to show
on agreement complexity.

Proposition 1. For all n, there exists a scenario with

|Ω| = 22n such that for all ε ≥ 2−n and δ ≥ 0, Alice must

send Ω
�
log 1−δ

ε

�
bits to Bob and Bob must send Ω

�
log 1−δ

ε

�
bits to Alice before the agents (ε, δ)-agree. In particular, if

δ is bounded away from 1 by a constant, then Ω(log 1/ε) bits

are needed.

Proof. Let Ω = {1, . . . , 2n}2, let D be uniform over
Ω, and let f ((x, y)) = (x + y) /2n+1 for all (x, y) ∈ Ω.
Thus if bx is Bob’s expectation of x at step t and by is Al-
ice’s expectation of y, then Et

A = (x + by) /2n+1 and Et
B =

(bx + y) /2n+1. Suppose one agent, say Alice, has sent only
t < log2

�
1−δ

ε

�
− 3 bits to Bob. For each i ∈

�
1, . . . , 2t

	
,

let pi be the probability of the ith message sequence from
Alice. Then conditioned on i, there are exactly 2npi values
of x still possible from Bob’s point of view, of which at most
2ε
�
2n+1

�
+ 1 could lead to

��Et
A − Et

B

�� ≤ ε. So regardless

of Et
B, the probability of

��Et
A − Et

B

�� ≤ ε can be at most

2ε
�
2n+1

�
+ 1

2npi
=

4ε + 2−n

pi
≤

5ε

pi

since ε ≥ 2−n. Therefore the agents agree within ε with
total probability at most

2tX
i=1

pi

�
5ε

pi

�
= 5ε2t < 5ε

�
1 − δ

8ε

�
< 1 − δ.



3. CONVERGENCE OF THE STANDARD
PROTOCOL

The two-party “standard protocol” is simply the follow-
ing: first Alice sends E0

A, her current expectation of f , to
Bob. Then Bob sends his expectation E1

B to Alice, then
Alice sends E2

A to Bob, and so on. Geanakoplos and Pole-
marchakis [7] observed that if the agents use the standard
protocol, then after a finite number of messages T , they will
(0, 0)-agree—that is, have ET

A (ω) = ET
B (ω) for all ω ∈ Ω.

The reason is simply that until the agents agree, there will
always be a message that nontrivially refines one of their par-
titions, and the partitions can only be refined a finite number
of times. Unfortunately, this argument does not yield any
upper bound except O (|Ω|) on the number of messages.

In this section we ask how many messages are needed be-
fore the agents (ε, δ)-agree. The surprising and unexpected
answer, in Theorem 3, is that 1/

�
δε2
�

messages always suf-
fice, independently of |Ω| and all other details of a scenario.
One might guess that, since the expectations E0

A, E1
B, . . . are

real numbers, the cost of communication must be hidden in
the length of the messages. However, in Theorem 4 we
show that even if the agents send only 2-bit “summaries”
of their expectations, O

�
1/
�
δε2
��

messages still suffice for
(ε, δ)-agreement.

Given any function F : Ω → [0, 1], let ‖F‖2
2 = EXΩ

�
F 2
�
.

The following proposition will greatly simplify the proofs of
Theorems 3 and 4.

Proposition 2. Suppose the partition
�
Πt

i

	
ω∈Ω

refines�
Θu

j

	
ω∈Ω

. ThenEt
i

2

2
−
Eu

j

2

2
=
Et

i − Eu
j

2

2

so in particular,
Et

i

2

2
≥
Eu

j

2

2
. A special case is thatEt+1

i

2

2
≥
Et

i

2

2
for all i, t.

Proof. Since
�
Πt

i

	
ω∈Ω

refines
�
Θu

j

	
ω∈Ω

, we have

EX
Ω

�
Eu

j Et
i

�
= EX

ω∈Ω

"
Eu

j (ω) EX
ω′∈Θu

j
(ω)

�
Et

i

�
ω′
��#

= EX
Ω

�
Eu

j Eu
j

�
=
Eu

j

2

2

by the observations in Section 2, and thereforeEt
i − Eu

j

2

2
=
Et

i

2

2
+
Eu

j

2

2
− 2EX

Ω

�
Eu

j Et
i

�
=
Et

i

2

2
−
Eu

j

2

2
.

We can now prove an upper bound on the number of mes-
sages needed for agreement.

Theorem 3. The standard protocol causes Alice and Bob

to (ε, δ)-agree after at most 1/
�
δε2
�

messages.

Proof. We need only track the expectation, not of Et
A

and Et
B, but of

�
Et

A

�2
and

�
Et

B

�2
. Suppose Alice sends

the tth message. Then Bob’s partition
�
Πt

B

	
ω∈Ω

refines�
Θt−1

A

	
ω∈Ω

. It follows by Proposition 2 thatEt
B

2

2
−
Et−1

A

2

2
=
Et

B − Et−1
A

2

2
.

Assuming Pr
���Et

B − Et−1
A

�� > ε
�
≥ δ, this implies thatEt

B

2

2
=
Et−1

A

2

2
+
Et

B − Et−1
A

2

2
>
Et−1

A

2

2
+ δε2.

Similarly, after Bob sends Alice the (t + 1)st message, we

have
Et+1

A

2

2
>
Et

B

2

2
+ δε2. So until the agents (ε, δ)-

agree, each message increases max
nEt

A

2

2
,
Et

B

2

2

o
by more

than δε2. But the maximum can never exceed 1 (since
Et

A, Et
B ∈ [0, 1]), which yields an upper bound of 1/

�
δε2
�

on the number of messages.

As mentioned previously, the trouble with the standard
protocol is that sending one’s expectation might require too
many bits. A simple way to discretize the protocol is as fol-
lows. Imagine a “monkey in the middle,” Charlie, who has
the same prior distribution D as Alice and Bob and who
sees all messages between them, but who does not know
either of their inputs. In other words, letting Πt

C (ω) be
the set of states that Charlie considers possible after the
first t messages, we have Π0

C (ω) = Ω for all ω. Then the
partition

�
Πt

C

	
ω∈Ω

coarsens both
�
Πt

A

	
ω∈Ω

and
�
Πt

B

	
ω∈Ω

;
therefore both Alice and Bob can compute Charlie’s expec-
tation Et

C (ω) = EXΠt
C

(ω) [f ] of f .

Now whenever it is her turn to send a message to Bob,
Alice sends the message “high” if Et

A > Et
C + ε/4, “low” if

Et
A < Et

C − ε/4, and “medium” otherwise. This requires 2
bits. Likewise, Bob sends “high” if Et

B > Et
C + ε/4, “low”

if Et
B < Et

C − ε/4, and “medium” otherwise.

Theorem 4. The discretized protocol described above causes

Alice and Bob to (ε, δ)-agree after O
�
1/
�
δε2
��

messages.

Proof. The plan is to show that either
Et

A

2

2
,
Et

B

2

2
,

or
Et

C

2

2
increases by at least δε2/512 with every message

of Alice’s, until Alice and Bob (ε, δ)-agree. Since
Et

i

2

2
≤ 1

for all i, this will imply an upper bound of 3072/
�
δε2
�

on
the number of messages (of course, we did not optimize the
constant). Assume that Pr

���Et
A − Et

B

�� > ε
�
≥ δ and it is

Alice’s turn to send the (t + 1)st message. By the triangle
inequality, either

Pr
h��Et

A − Et
C

�� > ε

2

i
≥

δ

2
or

Pr
h��Et

B − Et
C

�� >
ε

2

i
≥

δ

2
.

We analyze these two cases separately. In the first case,
with probability at least δ/2 Alice’s message is either “high”
or “low.” If the message is “high,” then Et+1

C becomes an
average of numbers each greater than Et

C + ε/4, so Et+1
C >

Et
C + ε/4. If the message is “low,” then likewise Et+1

C <
Et

C − ε/4. Since
�
Πt+1

C

	
ω∈Ω

refines
�
Πt

C

	
ω∈Ω

, Proposition
2 thereby givesEt+1

C

2

2
−
Et

C

2

2
=
Et+1

C − Et
C

2

2
>

δ

2

� ε

4

�2

.

Now for the second case. If, after Alice sends the (t + 1)st

message, we still have

Pr
h��Et+1

B − Et+1
C

�� >
ε

4

i
≥

δ

4
,

then the previous argument applied to Bob implies thatEt+2
C

2

2
−
Et+1

C

2

2
>

δ

4

� ε

4

�2



and we are done. So suppose otherwise. Then the differ-
ence between Bob’s and Charlie’s expectations must have
changed significantly:

Pr
h��Et

B − Et
C

��− ��Et+1
B − Et+1

C

�� >
ε

4

i
>

δ

4
.

Hence by the triangle inequality (again), either

Pr
h��Et+1

B − Et
B

�� >
ε

8

i
>

δ

8
or

Pr
h��Et+1

C − Et
C

�� >
ε

8

i
>

δ

8
.

In the former case, Proposition 2 yieldsEt+1
B

2

2
−
Et

B

2

2
=
Et+1

B − Et
B

2

2
>

δ

8

� ε

8

�2

,

while in the latter case,Et+1
C

2

2
−
Et

C

2

2
>

δ

8

� ε

8

�2

.

3.1 N Agents
What if there are three or more agents, each of whom

talks only to its ‘neighbors’? Will the agents still reach
agreement, and if so, after how long? The answer is not
obvious, even given the results of Section 3. For we could
imagine that the sole intermediary between Alice and Bob
is a weak-willed agent who agrees with Alice after talking to
Alice, then agrees with Bob after talking to Bob, and so on,
but never brings Alice and Bob into agreement with each
other.

Formally, let G be a directed graph with vertices 1, . . . , N ,
each representing an agent. Suppose messages can only be
sent from agent i to agent j if (i, j) is an edge in G. We need
to assume G is strongly connected, since otherwise reaching
agreement could be impossible for trivial reasons. In this
setting, a standard protocol consists of a sequence of edges
(i1, j1) , . . . , (it, jt) , . . . of G. At the tth step, agent it sends
its current expectation Et−1

it
of f to agent jt, whereupon jt

updates its expectation accordingly. Call the protocol fair

if every edge occurs infinitely often in the sequence. Parikh
and Krasucki [16] proved the following important theorem.

Theorem 5 (Parikh and Krasucki). Any fair proto-

col will cause all the agents’ expectations to agree after a

finite number of messages T . Indeed, it will be common

knowledge among the agents that ET
1 = · · · = ET

N .

Our goal is to cause every pair of agents to (ε, δ)-agree,3

after a number of steps polynomial in N , 1/δ, and 1/ε. We
can achieve this via the following “spanning-tree protocol.”
Let T1 and T2 be two spanning trees of G of minimum di-
ameter, with T1 pointing outward from agent 1 to the other
N − 1 agents, and T2 pointing inward back to agent 1. Let
O1 be an ordering of the edges in T1, in which every edge
originating at i is preceded by an edge terminating at i, un-
less i = 1. Likewise let O2 be an ordering of the edges in T2,
in which every edge originating at i is preceded by an edge
terminating at i, unless i is a leaf of T2. Then the protocol

3If we want every pair of agents to agree within ε with global

probability 1−δ, then we want every pair to
�
ε, δ/N2

�
-agree.

is simply for agents to send their current expectations along
edges of G, in the following order: first all edges in O1, then
all edges in O2, then all edges in O1, and so on alternately.

Theorem 6. The spanning-tree protocol causes every pair

of agents to (ε, δ)-agree after O
�

Nd2

δε2

�
messages, where d is

the diameter of G.

Proof. Like all subsequent proofs in this paper, the proof
of Theorem 6 is deferred to the full version.

Let us make three remarks about Theorem 6. First, nat-
urally one can combine Theorems 6 and 4, to obtain an N-
agent protocol in which the messages are discrete. Second,
all we really need about the order of messages is that infor-
mation gets propagated from any agent in G to any other in
a reasonable number of steps. The spanning-tree construc-
tion is designed to guarantee this, but sending messages in
a random order (for example) would also work. Third, it
seems fair to assume that many agents send messages in par-
allel; if so, the complexity bound can certainly be improved.

3.2 Limitations of the Standard Protocol
We have seen that two agents, using the standard proto-

col, will always (ε, δ)-agree after exchanging only O
�
1/
�
δε2
��

messages. This result immediately raises three questions.
First, is there a scenario where the standard protocol needs

Ω
�
1/ε2

�
messages to produce (ε, δ)-agreement? Second, is

the standard protocol always optimal, or do other protocols
sometimes outperform it? And third, is there a scenario
where any agreement protocol needs a number of communi-
cation bits polynomial in 1/ε? Although we leave the third
question open, we were able to resolve the first and second
questions, as follows.

Theorem 7. For all ε, δ, there exists a scenario such that

using the continuous or discretized standard protocols, Al-

ice and Bob must exchange Ω
�

1/ε2

log(2/(1−δ))

�
messages before

they (ε, δ)-agree. On the other hand, there exists a different

protocol for this particular scenario that requires only 2 mes-

sages, both consisting of Θ(log 2/δ) bits. In particular, if

δ = 1/2, then the standard protocol uses Θ
�
1/ε2

�
bits while

the new protocol uses only Θ(1) bits.

The key to Theorem 7 is to construct a scenario that forces
the agents’ expectations to follow a random walk. Thus,
there is an initial disagreement by ∼ 2ε, which can only be
resolved by Alice sending a message to Bob. But then that
message causes a new disagreement by ∼ 2ε that can only be
resolved by Bob sending a message to Alice, and so on. As-
suming the agents use the standard protocol, each of these
messages moves its recipient’s expectation either up by ∼ 4ε
or down by ∼ 4ε, with equal probability from the recipient’s
point of view (see Figure 2). The magnitude of disagree-
ment only falls below ε after Et

A and Et
B get close to one of

the “absorbing barriers” 0 or 1, and we can lower-bound the
expected number of steps until that happens using standard
results about random walks on the line.

In our new protocol, Alice and Bob exchange the same
sequence of messages as in the standard protocol, but they
gradually “attenuate” their messages by adding more and
more random noise to them.4 Surprisingly, such noise would
4Also, since the messages turn out to be nonadaptive, they
can all be concatenated into one message from Alice and one
message from Bob.
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Figure 2: Alice’s expectation Et
A (solid line) and

Bob’s expectation Et
B (dashed line) follow coupled

random walks, in such a way that they continually
differ by ∼ 2ε.

actually help! For intuitively, the noise replaces a single
large disagreement by many smaller disagreements that are
likely to cancel each other out. Note that this strategy takes
advantage of special properties of our random walk scenario,
and we do not know how general it is.

The main defect of Theorem 7 is that the scenario had to
be tailored to a particular choice of ε. We can give another
theorem that fixes this defect, although the advantage of the
attenuated protocol becomes smaller.

Theorem 8. For all n and all constants γ ∈ (0, 2), there

exists a scenario with |Ω| = 22n such that for all ε greater

than 1/n1/(2−γ), Alice and Bob must exchange Ω
�
1/ε2−γ

�
messages using the continuous or discretized standard pro-

tocols before they (ε, 1/2)-agree.5 On the other hand, there

exists a different protocol for this scenario that requires only

2 messages, both consisting of Θ(1/ε) bits.

Further details about Theorems 7 and 8 are deferred to
the full version.

4. COMPUTATIONAL COMPLEXITY
The previous sections have weakened the idea that com-

munication cost is a fundamental barrier to agreement. How-
ever, we have glossed over the issue of computational cost en-
tirely. A protocol that requires only O

�
1/
�
δε2
��

messages
has little relevance if it would take Alice and Bob billions of
years to calculate the messages! Moreover, all protocols we
have discussed seem to have that problem, since the number
of possible states |Ω| could be exponential in the length n of
the agents’ inputs.

Recognizing this issue, Hanson [10] introduced the notion
of a “Bayesian wannabe”: a computationally bounded agent
that can still make sense of what its expectations would be
if it had enough computational power to be a Bayesian. He
then showed that under certain assumptions, if two Bayesian
wannabes agree to disagree about the expectation of a func-
tion f , then they must also disagree about some variable
that is independent of the state of the world ω ∈ Ω. How-
ever, this result does not suggest a protocol by which two
Bayesian wannabes who agree about all state-independent
variables could come to agree about f as well.

5Any constant δ ∈ (0, 1) would work equally well here. For
simplicity, we omit the asymptotic dependence on 1/δ and
1/ (1 − δ).

Admittedly, if the two wannabes have very limited abili-
ties, it might be trivial to get them to agree. For example,
if Alice and Bob both ignore all their evidence and estimate
f = 1/3, then they agree before exchanging even a single
message. But this example seems contrived: after all, if one
of the agents (with equal justification) estimated f = 2/3,
then no sequence of messages would ever cause them to agree
within ε < 1/3. So informally, what we really want to know
is whether two wannabes will always agree, having put in a
“good-faith effort” to emulate Bayesian rationality.

We are thus led to the following question: is there an
agreement protocol that

(i) would cause two computationally-unbounded Bayesians
to (ε, δ)-agree after exchanging a small number of bits,
and

(ii) can be simulated using a small amount of computa-
tion?

We will say shortly what we mean by a “small amount of
computation.” By “simulate,” we mean that a computation-
ally-unbounded referee, given the state ω ∈ Ω together with
a transcript M = (m1, . . . , mR) of all messages exchanged
during the protocol, should be unable to decide (with non-
negligible bias) whether Alice and Bob were Bayesians fol-
lowing the protocol exactly, or Bayesian wannabes merely
simulating it. More formally, let B (ω) be the probability
distribution over message transcripts, assuming Alice and
Bob are Bayesians and the state of the world is ω. Like-
wise, let W (ω) be the distribution assuming Alice and Bob
are wannabes. Then we require that for all Boolean func-
tions Φ (ω, M),���� Prω∈D,M∈B(ω) [Φ (ω, M) = 1]−

Prω∈D,M∈W(ω) [Φ (ω, M) = 1]

���� ≤ ζ (*)

where ζ is a parameter that can be made as small as we like.
A consequence of the requirement (*) is that even if Alice

is computationally unbounded, she cannot decide with bias
greater than ζ whether Bob is also unbounded, judging only
from the messages he sends to her. For if Alice could decide,
then so could our hypothetical referee, who learns at least
as much about Bob as Alice does. Though a little harder to
see, another consequence is that if Alice is unbounded, but
knows Bob to be bounded and takes his algorithm into ac-

count when computing her expectations, her messages will
still be statistically indistinguishable from what they would
have been had she believed that Bob was unbounded. In-
deed, no beliefs, beliefs about beliefs, etc., about whether
either agent is bounded or not can significantly affect the
sequence of messages, since the truth or falsehood of those
beliefs is almost irrelevant to predicting the agents’ future
messages.

Because of these considerations, we claim that, while sim-
ulating a Bayesian agreement protocol might not be the only

way for two Bayesian wannabes to reach an “honest” agree-
ment, it is certainly a sufficient way. Therefore, if we can
show how to meet even the stringent requirement (*), this
will provide strong evidence that computation time is not a
fundamental barrier to agreement.

But what do we mean by computation time? We assume
the state space Ω is a subset of {0, 1}n × {0, 1}n, so that
Alice’s initial knowledge is an n-bit string x, and Bob’s is
an n-bit string y. Given the prior distribution D over (x, y)



pairs, let Dx
A be Alice’s posterior distribution over y con-

ditioned on x, and let Dy
B be Bob’s posterior distribution

over x conditioned on y. The following two computational
assumptions are the only ones that we make:

(1) Alice and Bob can both evaluate f (ω) for any ω ∈ Ω.

(2) Alice and Bob can both sample from Dx
A for any x ∈

{0, 1}n, and from Dy
B for any y ∈ {0, 1}n.

Our simulation procedure will not have access to descrip-
tions of f or D; it can learn about them only by calling
subroutines for (1) and (2) respectively. The complexity of
the procedure will then be expressed in terms of the num-
ber of subroutine calls, other computations adding only a
negligible amount of time. Thus, we might stipulate that
both subroutines should run in time polynomial in n. On
the other hand, n could be extremely large—otherwise the
agents would simply exchange their entire inputs and be
done. So we might want to be even stricter, and stipu-
late that the subroutines should use time (say) logarithmic

in n, albeit with many parallel processors. In any case,
the simulation procedure will treat the subroutines purely
as black boxes, so decisions about their implementation will
not affect our results.

The justification for assumptions (1) and (2) is simply
that without them, it is hard to see how the agents could
estimate their expectations even before they started talk-
ing to each other. In other words, we have to assume the
agents enter the conversation with minimal tools for reason-
ing about their universe of discourse. We do not assume
that those tools extend to reasoning about each other’s ex-
pectations, expectations of expectations, etc., conditioned
on a sequence of messages exchanged. That the tools do
extend in this way is what we intend to prove.

It might seem unreasonable that Alice can sample from
Bob’s distribution Dy

B , and Bob can sample from Alice’s
distribution Dy

A. On reflection, however, this is just the
computational analogue of the standard assumption that the
partitions themselves are known to both agents, and can
justified using the same arguments (see Section 2).

Finally, let us note that assumptions (1) and (2) can both
be relaxed. In particular, it is enough to approximate f (ω)
to within an additive factor η with probability at least 1−η,
in time that increases polynomially in 1/η. It is also enough
to sample from a distribution whose variation distance from
Dx

A or Dy
B is at most η, in time polynomial in 1/η. Indeed,

since the probabilities and f -values are real numbers, we will
generally need to approximate in order to represent them
with finite precision. For ease of presentation, though, we
assume exact algorithms in what follows.

4.1 Smoothed Standard Protocol
Näıvely, requirement (*) seems impossible to satisfy. All

of the agreement protocols discussed earlier in this paper—
for example, that of Theorem 4—are easy to distinguish
from any efficient simulation of them. For consider Alice’s
first message to Bob. If Alice’s expectation E0

A is below
some threshold c, she sends one message, whereas if E0

A ≥ c,
she sends a different message. Even if we fix f , and limit
probabilities and f -values to (say) n bits of precision, we
can arrange things so that E0

A (ω) is exponentially close to c,
sometimes greater and sometimes less, with high probability
over ω. Then to decide which message to send, Alice needs
to evaluate f exponentially many times.

Ei,t 10 +ε-ε

P
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m
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]

Figure 3: Agent i “smoothes” its expectation Et
i

with triangular noise before sending it.

We resolve this issue by having the agents add random
noise to their messages (“smoothing” them), even if they
are unbounded Bayesians. This noise does not prevent the
agents from reaching (ε, δ)-agreement. On the other hand,
it makes their messages easier to simulate. For unlike real
numbers a 6= b, which are perfectly distinguishable no mat-
ter how close they are, two probability distributions with
close means may be hard to distinguish, like wavepackets in
quantum mechanics.

In the smoothed standard protocol, Alice generates her
messages to Bob as follows. Let b ≥ log2 (200/ε) be a
positive integer to be specified later. Then let ǫ be an inte-
ger multiple of 2−b between ε/50 and ε/40, and let L = 2bǫ.
First Alice rounds her current expectation Et

A of f to the
nearest multiple of 2−b. Denote the result by round

�
Et

A

�
.

She then draws an integer r ∈ {−L, . . . , L}, according to
a triangular distribution in which r = j with probability
(L − |j|) /L2 (see Figure 3). The message she sends Bob
is mt+1 = round

�
Et

A

�
+ 2−br. Observe that since mt+1 ∈

[−ǫ, 1 + ǫ], there are at most 2b (1 + 2ǫ) + 1 possible val-
ues of mt+1—meaning Alice’s message takes only b + 1 bits
to specify. After receiving the message, Bob updates his
expectation of f using Bayes’ rule, then draws an integer
r ∈ {−L, . . . , L} according to the same triangular distribu-
tion and sends Alice mt+2 = round

�
Et+1

B

�
+2−br. The two

agents continue to send messages in this way.
The reader might be wondering why we chose triangular

noise, and whether other types of noise would work equally
well. The answer is that we want the message distribution
to have three basic properties. First, it should be con-
centrated about a mean of Et

i with variance at most ∼ ǫ2.
Second, shifting the mean by η ≤ ǫ should shift the distribu-
tion by at most ∼ η/ǫ in variation distance. And third, the
derivative of the probably density function should never ex-
ceed ∼ η/ǫ2 in absolute value. Thus, Gaussian noise would
also work, though it is somewhat harder to analyze than
triangular noise. However, noise that is uniform over [−ǫ, ǫ]
would not work (so far as we could tell), since it violates the
third property.

Let Mt = (m1, . . . , mt) consist of the first t messages that
Alice and Bob exchange. Since messages are now probabilis-
tic, the agents’ expectations of f at step t depend not only
on the initial state of the world ω, but also on Mt. When we
want to emphasize this, we denote the agents’ expectations
by Et

A (ω, Mt) and Et
B (ω, Mt) respectively. Another im-

portant consequence of messages being probabilistic is that
after an agent has received a message, its posterior distrib-
ution over Ω is no longer obtainable by restricting the prior
distribution D to a subset of possible states. Thus, we let
Πi (ω) = Π0

i (ω), since we will never refer to Πt
i (ω) for t > 0.



Say the agents (ε, δ)-agree after the tth message if

Pr
ω∈D,Mt

���Et
A (ω, Mt) − Et

B (ω, Mt)
�� > ε

�
≤ δ.

Theorem 9. The smoothed standard protocol causes Al-

ice and Bob to (ε, δ)-agree after at most 2/
�
δε2
�

messages.

4.2 Simulating the Smoothed Protocol
Having asserted that the smoothed standard protocol works,

in this section we explain how Alice and Bob can simulate
the protocol. In the ideal case—where the agents have
unlimited computational power—they use the following re-
cursive formulas. Let

∆
�
mt, E

t−1
i

�
=

8<: 1 −
��mt − round

�
Et−1

i

��� /ǫ
if
��mt − round

�
Et−1

i

��� ≤ ǫ,
or 0 otherwise

be proportional to the probability that agent i sends mes-
sage mt, given that its expectation is Et−1

i . Also, let
qt (ω, Mt) be proportional to the joint probability of mes-
sages m1, . . . , mt assuming the true state of the world is ω.
Then assuming t is even and suppressing dependencies on
Mt, for all X, Y we have

qt (Y ) = qt−2 (Y )∆
�
mt, E

t−1
B (Y )

�
,

qt−1 (X) = qt−3 (X) ∆
�
mt−1, E

t−2
A (X)

�
,

Et
A (X) =

EXY ∈ΠA(X) [qt (Y ) f (Y )]

EXY ∈ΠA(X) [qt (Y )]
,

Et−1
B (Y ) =

EXX∈ΠB(Y ) [qt−1 (X) f (X)]

EXX∈ΠB(Y ) [qt−1 (X)]

with the base cases q0 (Y ) = q−1 (X) = 1 for all X, Y . The
correctness of these formulas follows from simple Bayesian
manipulations. Having computed Et

i (ω) by the formulas
above (note that this does not require knowledge of ω), all
agent i needs to do is draw r ∈ {−L, . . . , L} from the trian-
gular distribution, then send the message

mt+1 = round
�
Et

i (ω)
�

+ 2−br.

In the real case, the agents are computationally bounded,
and can no longer afford the luxury of taking expectations
over the exponentially large sets Πi. A natural idea is to
compensate by somehow sampling those sets. But since we
never assumed the ability to sample Πi conditioned on mes-
sages m1, . . . , mt, it is not obvious how that make that idea
work. Our solution will consist of two phases: the construc-
tion of “sampling-trees,” which involves no communication,
followed by a message-by-message simulation of the ideal
protocol. Let us describe these phases in turn.

(I) Sampling-Tree Construction. Alice creates a
tree TA with height R and branching factor K. Here R <
2/
�
δε2
�

is the number of messages, and K is a parame-
ter to be specified later. Let rootA be the root node of
TA, and let S (v) be the set of children of node v. Then
Alice labels each of the K nodes w ∈ S (rootA) by a sam-
ple Yw ∈ ΩA (ω), drawn independently from her posterior
distribution Dx

A (recall that by assumption, she can sam-
ple efficiently from ΠA (ω) for any ω ∈ Ω). Next, for each
w ∈ S (rootA), she labels each of the K nodes v ∈ S (w) by
a sample Xv ∈ ΠB (Yw), drawn independently from Bob’s
distribution Dy

B where Yw = (x, y). She continues recur-
sively in this manner, labeling each v an even distance from

the root with a sample Xv ∈ ΠB (Yw) where w is the par-
ent of v, and each w an odd distance from the root with a
sample Yw ∈ ΠA (Xv) where v is the parent of w. Thus
her total number of samples is K + K2 + · · · + KR. Sim-
ilarly, Bob creates a tree TB with height R and branching
factor K. Let rootB be the root of TB ; then Bob labels
each v ∈ S (rootB) by a sample Xv ∈ ΠB (ω), each child
w ∈ S (v) of each v ∈ S (rootB) by a sample Yw ∈ ΠA (Xv),
and so on, alternating between ΠB and ΠA at successive lev-
els. As a side remark, if the agents share a random string,
then there is no reason for them not to use the same set of
samples. However, we cannot assume that such a string is
available.

(II) Simulation. We now explain how the agents can
use the samples from (I) to simulate the smoothed standard
protocol. Let i be the agent that sends the tth message
(Alice if t is odd, or Bob if t is even). Then i’s main task at
step t is to compute an estimator



Et−1

i (rooti)
�

i
for its cur-

rent expectation Et−1
i (ω) = Et

i (ω). To do so, it recursively
computes estimators for all nodes in its sample tree and all
earlier time steps: 〈Eu

A (v)〉i ≈ Eu
A (Xv) and 〈qu−1 (v)〉i ≈

qu−1 (Xv) for all “Alice” nodes v ∈ Ti and even u ≤ t, and
〈Eu

B (w)〉i ≈ Eu
B (Yw) and 〈qu−1 (w)〉i ≈ qu−1 (Yw) for all

“Bob” nodes w ∈ Ti and odd u ≤ t. Assuming t is even,
the requisite formulas are as follows:

〈qt (w)〉i = 〈qt−2 (w)〉i ∆
�
mt,



Et−1

B (w)
�

i

�
,

〈qt−1 (v)〉i = 〈qt−3 (v)〉i ∆
�
mt−1,



Et−2

A (v)
�

i

�
,


Et
A (v)

�
i
=

P
w∈S(v) 〈qt (w)〉i f (Yw)P

w∈S(v) 〈qt (w)〉i
,


Et−1
B (w)

�
i
=

P
v∈S(w) 〈qt−1 (v)〉i f (Xv)P

v∈S(w) 〈qt−1 (v)〉i
.

Here the base cases are 〈q−1 (v)〉i = 1 for all Alice nodes
v ∈ Ti, and 〈q0 (w)〉i = 1 for all Bob nodes w ∈ Ti. So for
example, Alice’s initial estimate



E0

A (rootA)
�

A
≈ E0

A (ω) is
simply the average of f (Yw) over all w ∈ S (rootA):

E0

A (rootA)
�

A
=

P
w∈S(rootA) 1 · f (Yw)P

w∈S(rootA) 1
= EX

w∈S(rootA)
[f (Yw)] .

Given its estimate


Et−1

i (rooti)
�

i
at the root of Ti, agent i

generates its message in the obvious way: it first chooses an
r ∈ {−L, . . . , L} uniformly at random, and then sends the
message

mt = round
�


Et−1
i (rooti)

�
i

�
+ 2−br.

That completes the description of the simulation proce-
dure. Its complexity is easily determined: summing over
all R communication rounds, both agents need O

�
KR
�

calls

to the subroutine that samples from Dx
A or Dy

B , and O
�
KR
�

calls to the subroutine that evaluates f .

4.3 Analysis
The key result proved in the full version of the paper is

that the simulation procedure works. In other words, for
some “reasonable” precision b and sample size K, the dis-
tribution over message sequences in the simulated protocol
is statistically indistinguishable from the distribution in the
ideal protocol:



Theorem 10. By setting b = ⌈log2 (5R/ζǫ)⌉ and K =

O
�
(11/ǫ)R2

/ζ2
�
, we can achieve���� Prω∈D,M∈B(ω) [Φ (ω, M) = 1]−

Prω∈D,M∈W(ω) [Φ (ω, M) = 1]

���� ≤ ζ

for all Boolean functions Φ.

More concretely, if we substitute R ≤ 2/
�
δε2
�

and ǫ ≥
ε/50, then the total number of bits communicated is

Rb = O

�
1

δε2
log

1

ζδε3

�
,

while the total number of subroutine calls is of order 
(11/ǫ)R2

ζ2

!R

≤ exp

�
8 ln (550/ε)

δ3ε6
+

4 ln (1/ζ)

δε2

�
.

While no one would pretend that the second bound above
is practical, note that it has no dependence on n, and that
it grows “only” exponentially in poly (1/ε) and poly (1/δ).

The proof of Theorem 10 is extremely involved; here we
can only sketch the main ideas. One’s first thought is that
the proof should be a straightforward (if tedious) applica-
tion of Chernoff bounds. The problem is that a priori, it
is possible that a single large error anywhere in the sample
tree Ti could propagate all the way up to the root, destroy-
ing the simulation. Of course, if the probability of such
an error were small enough, then we would simply use the
union bound to argue that almost certainly, no such error
happens anywhere in the tree. Unfortunately, the probabil-
ity is not small enough, for in the formulas for



Et

A (v)
�

i
and


Et−1
B (w)

�
i
, whenever the denominators are zero or close to

zero, the resulting estimates of Et
A (Xv) and Et−1

B (Yw) are
worthless. Intuitively, this means that if a message has low
probability from its recipient’s point of view, then the re-
cipient needs many samples to find even a single input that
would have caused the sender to produce that message. But
as we increase the number of samples K to deal with this
problem, the number of nodes ∼ KR where something could
go wrong increases at an even faster rate, so we need to in-
crease K again, and so on ad infinitum! Our proof cuts
off this infinite regress by showing that with high probabil-
ity, the errors introduced by “bad nodes” are washed out by
“good nodes” before they can propagate to the root. Ulti-
mately, the problem reduces to one of evaluating some nasty
integrals.

5. DISCUSSION

“We publish this observation with some diffidence,
since once one has the appropriate framework, it
is mathematically trivial. Intuitively, though,
it is not quite obvious. . . ” —Aumann [1], on his
original agreement theorem

This paper has studied agreement protocols from the quan-
titative perspective of theoretical computer science. If noth-
ing else, we hope to have shown that adopting that perspec-
tive leads to rich mathematical questions. Here are a few
of the more interesting open problems raised by our results.

(1) How tight is our O
�
1/
�
δε2
��

upper bound on agree-
ment complexity? Recall that the best lower bound
we currently know is Ω (log 1/ε), from Proposition 1.

(2) Do our conclusions break down if the “true” distribu-
tion over Ω differs from the common prior D? In par-
ticular, is there a scenario where Alice and Bob must
exchange Ω (n) bits to (ε, 0)-agree for some ε > 0? (It
is easy to construct a scenario where the discretized
standard protocol needs Ω (n) bits to produce (ε, 0)-
agreement.)

(3) Can the simulation procedure of Section 4.2 be made
more efficient? In particular, can we reduce the num-

ber of subroutine calls to (say) c1/(δε2), or even to a
polynomial in 1/δ and 1/ε? Alternatively, can we
prove a lower bound showing that such reductions are
impossible?
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