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ABSTRACT
Forty years ago, Wiesner pointed out that quantum mechan-
ics raises the striking possibility of money that cannot be
counterfeited according to the laws of physics. We propose
the first quantum money scheme that is

(1) public-key—meaning that anyone can verify a ban-
knote as genuine, not only the bank that printed it, and

(2) cryptographically secure, under a “classical” hardness
assumption that has nothing to do with quantum money.

Our scheme is based on hidden subspaces, encoded as the
zero-sets of random multivariate polynomials. A main tech-
nical advance is to show that the “black-box” version of our
scheme, where the polynomials are replaced by classical or-
acles, is unconditionally secure. Previously, such a result
had only been known relative to a quantum oracle (and even
there, the proof was never published).

Even in Wiesner’s original setting—quantum money that
can only be verified by the bank—we are able to use our tech-
niques to patch a major security hole in Wiesner’s scheme.
We give the first private-key quantum money scheme that
allows unlimited verifications and that remains uncondition-
ally secure, even if the counterfeiter can interact adaptively
with the bank.

Our money scheme is simpler than previous public-key
quantum money schemes, including a knot-based scheme of
Farhi et al. The verifier needs to perform only two tests,
one in the standard basis and one in the Hadamard basis—
matching the original intuition for quantum money, based
on the existence of complementary observables.

Our security proofs use a new variant of Ambainis’s quan-
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tum adversary method, and several other tools that might
be of independent interest.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Computation by Ab-
stract Devices—Modes of Computation; E.3 [Data]: Data
Encryption

General Terms
Theory, Security

1. INTRODUCTION
“Information wants to be free”—this slogan expresses the

idea that classical bits, unlike traditional economic goods,
can be copied an unlimited number of times. The copyabil-
ity of classical information is one of the foundations of the
digital economy, but it is also a nuisance to governments,
publishers, software companies, and others who wish to pre-
vent copying. Today, essentially all electronic commerce in-
volves a trusted third party, such as a credit card company,
to mediate transactions. Without such a third party enter-
ing at some stage, it is impossible to prevent electronic cash
from being counterfeited, regardless of what cryptographic
assumptions one makes.1

Famously, though, quantum bits do not “want to be free”
in the same sense that classical bits do: in many respects,
they behave more like gold, oil, or other traditional economic
goods. Indeed, the No-Cloning Theorem, which is an im-
mediate consequence of the linearity of quantum mechanics,
says that there is no physical procedure that takes as input
an unknown2 quantum pure state |ψ〉, and that produces as
output two unentangled copies of |ψ〉, or even a close ap-
proximation thereof. The No-Cloning Theorem is closely
related to the uncertainty principle, which says that there
exist “complementary” properties of a quantum state (for
example, its position and momentum) that cannot both be
measured to unlimited accuracy.3

1The recent Bitcoin system is an interesting illustration of
this principle: it gets rid of the centralized third party, but
still uses a “third party” distributed over the community of
Bitcoin users.
2The adjective “unknown” is needed because, if we knew a
classical description of a procedure to prepare |ψ〉, then of
course we could run that procedure multiple times to prepare
multiple copies.
3Indeed, if we could copy |ψ〉, then we could violate the
uncertainty principle by measuring one observable (such as



1.1 The History of Quantum Money
But can one actually exploit the No-Cloning Theorem to

achieve classically-impossible cryptographic tasks? This
question was first asked by Wiesner [39], in a remarkable
paper written around 1970 (but only published in 1983)
that arguably founded quantum information science. In
that paper, Wiesner proposed a scheme for quantum money
that would be physically impossible to clone. In Wiesner’s
scheme, each “banknote” would consist of a classical serial
number s, together with a quantum state |ψs〉 consisting of n

unentangled qubits, each one |0〉, |1〉, |0〉+|1〉√
2

, or |0〉−|1〉√
2

with

equal probability. The issuing bank would maintain a giant
database, which stored a classical description of |ψs〉 for each
serial number s. Whenever someone wanted to verify a ban-
knote, he or she would take it back to the bank—whereupon
the bank would use its knowledge of how |ψs〉 was prepared
to measure each qubit in the appropriate basis, and check
that it got the correct outcomes. On the other hand, it can
be proved [31] that someone who did not know the appropri-
ate bases could copy the banknote with success probability
at most (3/4)n.

Though historically revolutionary, Wiesner’s money scheme
suffered at least three drawbacks:

(1) The “Verifiability Problem”: The only entity that
can verify a banknote is the bank that printed it.

(2) The “Online Attack Problem”: A counterfeiter
able to submit banknotes for verification, and get them
back afterward, can easily breakWiesner’s scheme ([28,
3]; see also Section 7).

(3) The “Giant Database Problem”: The bank needs
to maintain a database with an entry for every ban-
knote in circulation.

In followup work in 1982, Bennett, Brassard, Breidbart,
and Wiesner [14] (henceforth BBBW) at least showed how to
eliminate the giant database problem: namely, by generat-
ing the state |ψs〉 =

∣∣ψfk(s)
〉
using a pseudorandom function

fk, with key k known only by the bank. Unlike Wiesner’s
original scheme, the BBBW scheme is no longer information-
theoretically secure: a counterfeiter can recover k given ex-
ponential computation time. On the other hand, a counter-
feiter cannot break the scheme in polynomial time, unless it
can also distinguish fk from a random function.

These early ideas about quantum money inspired the field
of quantum cryptography [13]. But strangely, the subject
of quantum money itself lay dormant for more than two
decades, even as interest in quantum computing exploded.
However, the past few years have witnessed a “quantum
money renaissance.” Some recent work has offered partial
solutions to the verifiability problem: for example, Mosca
and Stebila [32] suggested that the bank use a blind quantum
computing protocol to offload the verification of banknotes
to local merchants, while Gavinsky [23] proposed a variant
of Wiesner’s scheme that requires only classical communi-
cation between the merchant and bank.

position) on some copies, and a complementary observable
(such as momentum) on other copies. Conversely, if we
could measure all the properties of |ψ〉 to unlimited accu-
racy, then we could use the measurement results to create
additional copies of |ψ〉.

However, most of the focus today is on a more ambitious
goal: namely, creating what Aaronson [3] called public-key
quantum money, or quantum money that anyone could au-
thenticate, not just the bank that printed it. As with public-
key cryptography in the 1970s, it is far from obvious a priori
whether public-key quantum money is possible at all. Can
a bank publish a description of a quantum circuit that lets
people feasibly recognize a state |ψ〉, but does not let them
feasibly prepare or even copy |ψ〉?

Aaronson [3] gave the first formal treatment of public-key
quantum money, as well as related notions such as copy-
protected quantum software. He proved that there exists a
quantum oracle relative to which secure public-key quantum
money is possible. Unfortunately, that result, though al-
ready involved, did not lead in any obvious way to an explicit
(or “real-world”) quantum money scheme.4 He raised as an
open problem whether secure public-key quantum money is
possible relative to a classical oracle. In the same paper,
Aaronson also proposed an explicit scheme, based on ran-
dom stabilizer states, but could not offer any evidence for
its security. And indeed, the scheme was broken about a
year afterward by Lutomirski et al. [30], using an algorithm
for finding planted cliques in random graphs due to Alon,
Krivelevich, and Sudakov [7].

Recently, Farhi et al. [22] took a completely different ap-
proach to public-key quantum money. They proposed a
quantum money scheme based on knot theory, where each
banknote is a superposition over exponentially-many ori-
ented link diagrams. Within a given banknote, all the link
diagrams L have the same Alexander polynomial p (L) (a
certain knot invariant).5 This p (L), together with a digital
signature of p (L), serves as the banknote’s “classical serial
number.” Besides the unusual mathematics employed, the
work of Farhi et al. [22] (building on [30]) also developed an
idea that will play a major role in our work. That idea is to
construct public-key quantum money schemes by composing
two “simpler” ingredients: first, objects that we call mini-
schemes; and second, classical digital signature schemes.

The main disadvantage of the knot-based scheme, which
it shares with every previous scheme, is that no one can say
much about its security—other than that it has not yet been
broken, and that various known counterfeiting strategies fail.
Indeed, even characterizing which quantum states Farhi et
al.’s verification procedure accepts remains a difficult open
problem, on which progress seems likely to require major ad-
vances in knot theory! In other words, there might be states
that look completely different from “legitimate banknotes,”
but are still accepted with high probability.

In followup work, Lutomirski [29] proposed an “abstract”
version of the knot scheme, which gets rid of the link dia-
grams and Alexander polynomials, and simply uses a classi-
cal oracle to achieve the same purposes. Lutomirski raised
the challenge of proving that this oracle scheme is secure—
in which case, it would have yielded the first public-key

4Also, the proof of Aaronson’s result never appeared—an
inexcusable debt that this paper finally repays, with interest.
5Instead of knots, Farhi et al. [22] could also have used, say,
superpositions over n-vertex graphs having the same eigen-
value spectrum. But in that case, their scheme would have
been breakable, the reason being that the graph isomorphism
problem is easy for random graphs. By contrast, it is not
known how to solve knot isomorphism efficiently, even with
a quantum computer and even for random knots.



quantum money scheme that was proven secure relative to
a classical oracle. Unfortunately, proving the security of
Lutomirski’s scheme remains open, and seems hard.6

As alluded to earlier, there is already some research on
ways to break quantum money schemes. Besides the papers
by Lutomirski [28] and Lutomirski et al. [30] mentioned be-
fore, let us mention the beautiful work of Farhi et al. on
quantum state restoration [21]. As we discuss in Section
7, quantum state restoration can be used to break many
public-key quantum money schemes: roughly speaking, any
scheme where the banknotes contain only limited entangle-
ment, and where verification consists of a rank-1 projective
measurement. This fact explains why our scheme, like the
knot-based scheme of Farhi et al. [22], will require highly-
entangled banknotes.

1.2 The Challenge
Work over the past few years has revealed a surprising

richness in the quantum money problem—both in the ideas
that have been used to construct public-key quantummoney
schemes, and in the ideas that have been used to break them.
Of course, this record also underscores the need for cau-
tion! To whatever extent we can, we ought to hold quantum
money schemes to modern cryptographic standards, and not
be satisfied with “we tried to break it and failed.”

It is easy to see that, if public-key quantum money is pos-
sible, then it must rely on some computational assumption,
in addition to the No-Cloning Theorem.7 The best case
would be to show that secure, public-key quantum money is
possible, if (for example) there exist one-way functions re-
sistant to quantum attack. Unfortunately, we seem a long
way from showing anything of the kind. The basic problem
is that uncloneability is a novel cryptographic requirement:
something that would not even make sense in a classical con-
text. Indeed, work by Farhi et al. [21] and Aaronson [3] has
shown that it is sometimes possible to copy quantum ban-
knotes, via attacks that do not even measure the banknotes
in an attempt to learn a classical secret! Rather, these
attacks simply perform some unitary transformation on a
legitimate banknote |$〉 together with an ancilla |0〉, the end
result of which is to produce |$〉⊗2. Given such a strange
attack, how can one deduce the failure of any “standard”
cryptographic assumption?

Yet despite the novelty of the quantum money problem—
or perhaps because of it—it seems reasonable to want some
non-tautological evidence that a public-key quantum money
scheme is secure. A minimal wish-list might include:

(1) Security under some plausible assumption, of a sort
cryptographers know how to evaluate. Such an as-
sumption should talk only about computing a classical

6One way to understand the difficulty is that any security
proof for Lutomirski’s scheme would need to contain Aaron-
son’s quantum lower bound for the collision problem [1] as a
(tiny) special case. The lower bound for the collision prob-
lem is proved using the polynomial method of Beals et al.
[11]. In this work, by contrast, we will only manage to prove
the security of our oracle scheme using a specially-designed
variant of Ambainis’s quantum adversary method [8]. De-
spite great progress in quantum lower bounds over the past
decade, it is still not known (except implicitly) how to prove
the collision lower bound using an adversary argument.
7This is because a counterfeiter with unlimited time could
simply search for a state |ψ〉 that the (publicly-known) ver-
ification procedure accepted.

output from a classical input; it should have nothing
to do with cloning of quantum states.

(2) A proof that the money scheme is secure against black-
box counterfeiters: those that do not exploit the struc-
ture of some cryptographic function f used in verifying
the banknotes.

(3) A “simple” verification process, which accepts all valid
banknotes |$〉 with probability 1, and rejects all ban-
knotes that are far from |$〉.

1.3 Our Results
Our main contribution is a new public-key quantummoney

scheme, which achieves all three items in the wish-list above,
and which is the first to achieve (1) or (2). Regardless of
whether our particular scheme stands or falls, we introduce
at least four techniques that should be useful for the de-
sign and analysis of any public-key quantum money scheme.
These are:

• The “inner-product adversary method,” a new variant
of Ambainis’s quantum adversary method [8] that can
be used to rule out black-box counterfeiting strategies.

• A notion of mini-schemes, and a proof that (together
with standard cryptographic assumptions) these ob-
jects imply full-fledged quantum money schemes.

• A method to amplify weak counterfeiters into strong
ones, so that one only needs to rule out the latter to
show security.

• A new connection between the security of quantum
money schemes and direct-product assumptions in cryp-
tography.

A second contribution is to construct the first private-
key quantum money schemes that remain unconditionally
secure, even if the counterfeiter can interact adaptively with
the bank. This gives the first solution to the “online at-
tack problem,” a major security hole in the Wiesner [39]
and BBBW [14] schemes pointed out by Lutomirski [28] and
Aaronson [3]. These private-key schemes are direct adap-
tations of our public-key scheme.

In more detail, our quantum money scheme is based on
hidden subspaces of the vector space Fn2 . Each of our money
states is a uniform superposition of the vectors in a random
n/2-dimensional subspace A ≤ F

n
2 . We denote this super-

position by |A〉. Crucially, we can recognize the state |A〉
using only membership oracles for A and for its dual sub-
space A⊥. To do so, we apply the membership oracle for
A, then a Fourier transform, then the membership oracle
for A⊥, and then a second Fourier transform to restore the
original state. We prove that this operation computes a
rank-1 projection onto |A〉.

Underlying the security of our money schemes is the as-
sertion that the states |A〉 are difficult to clone, even given
membership oracles for A and A⊥. Or more concretely:
any quantum algorithm that maps |A〉 to |A〉⊗2 must make

2Ω(n) queries to the A,A⊥ oracles.
In order to prove this statement, we introduce a new

method for proving lower bounds on quantum query com-
plexity, which we call the inner-product adversary method.
This technique considers a single counterfeiting algorithm



being run in parallel to clone two distinct states |A〉 and
|A′〉, with each having access to the membership oracles for
A,A⊥ or A′, A′⊥, as appropriate. To measure how much
progress the algorithm has made, we consider the inner prod-
uct between the states produced by the parallel executions:
because 〈A|⊗2 |A′〉⊗2

< 〈A|A′〉 for many pairs of subspaces
A,A′, in order to succeed a counterfeiter will have to reduce
this inner product substantially. We prove that when aver-
aged over a suitable distribution of pairs A,A′, the expected
inner product between the two states produced by the coun-
terfeiter cannot decrease too much with a single query to
the membership oracles. We conclude that in order to pro-
duce |A〉⊗2 given |A〉 and membership oracles for A,A⊥, a
counterfeiter must use exponentially many queries.

Having ruled out the possibility of nearly perfect cloning,
we introduce a new amplification protocol, which allows us
to transform a counterfeiter who succeeds with Ω (1/ poly (n))
success probability into a counterfeiter who succeeds with
probability arbitrarily close to 1. This technique is based on
combining standard Grover search with a monotonic state
amplification protocol of Tulsi, Grover, and Patel [38], to
obtain monotonic convergence with the quadratic speedup
of Grover search.8 Combining this amplification with the
inner-product adversary method, and applying a random
linear transformation to convert the counterfeiter’s worst
case to its average case, we conclude that no counterfeiting
algorithm can succeed with any non-negligible probability
on a non-negligible fraction of states |A〉.

Using these results, how do we produce a secure quantum
money scheme? We now need to step back, and discuss some
general constructions of this paper that have nothing to do
with hidden subspaces in particular. Before constructing a
quantum money scheme, we first introduce the notion of a
quantum money mini-scheme, a formalization of the setting
in which the bank issues only a single money state and main-
tains no secret information. Formally, a mini-scheme is a
protocol Bank for outputting pairs (s, ρs) and a verification
procedure Vers for identifying ρs. We say a mini-scheme is
complete if the state ρs passes the verification Vers with high
probability, and we say the scheme is secure if furthermore
no counterfeiter can take a single state ρs, and produce two
(possibly-entangled) states ρ1 and ρ2 which simultaneously
pass the verification procedure with non-negligible probabil-
ity.

In the case of hidden subspace money, for example, we
can use our uncloneability result to produce a secure mini-
scheme relative to a classical oracle. The algorithm Bank

queries the classical oracle to obtain a serial number s and
the description of a subspace A. Using this description
it prepares |A〉, and publishes (s, |A〉). The verification
procedure uses the serial number s as an index into another
classical oracle, which allows it to test membership in A and
A⊥. We prove that the uncloneability of the states |A〉
implies that this mini-scheme is secure.

Crucially, we also give a general reduction from quantum
money schemes to mini-schemes, based on combining a mini-
scheme with a secure signature scheme. The bank maintains
a secret key for the signature scheme, and to issue a ban-
knote, it runs Bank to produce a pair (s, ρs), then digitally

8Although the “quadratic speedup” part is not strictly nec-
essary for us, it improves our lower bound on the number of
queries the counterfeiter needs to make—to the tight one, in
fact—and might be of independent interest.

signs the serial number s. Special cases of this reduction ap-
peared in [22, 30], but we provide the first rigorous security
proof.

By combining this reduction with our mini-scheme, we
are able to obtain a “black-box” public key quantum money
scheme relative to a classical oracle, which is unconditionally
secure:

Theorem (Security of Hidden Subspace Money). Relative
to some (classical) oracle A, there exists a secure public-key
quantum money scheme.

More precisely, there is an algorithm KeyGenA which out-
puts pairs (kprivate, kpublic), an algorithm BankA (kprivate) which
generates a “quantum banknote” |$〉, and a verification al-
gorithm VerA (kpublic, |$〉) which tests the authenticity of a
purported banknote. These algorithms have the following
properties:

Completeness: If (kprivate, kpublic) is produced by KeyGenA,
then VerA

(
kpublic,Bank

A (kprivate)
)
accepts with certainty.

Soundness: Suppose a would-be counterfeiter with access
to A and kpublic is given q valid banknotes. If this counter-
feiter outputs any number of (possibly-entangled) quantum
states, there is at most an exponentially-small probability
that VerA will accept more than q of them.

By adapting these ideas to the private-key setting, we are
also able to provide the first private-key quantum money
scheme that is unconditionally secure, even if the counter-
feiter is able to interact adaptively with the bank. This
patches a security hole in Wiesner’s original scheme which
was observed in [28, 3], but which has not previously been
addressed in a provably-secure way.

Finally, we provide a candidate cryptographic protocol for
obfuscating the indicator functions of subspaces A ≤ F

n
2 . In

order to obfuscate a membership oracle for A, we provide a
random system of polynomials p1, . . . , pm that vanish on A.
Membership in A can be tested by evaluating the pi’s, but
given only the pi’s, we conjecture that it is difficult to re-
cover A. Combining this protocol with the black-box money
scheme, we obtain an explicit quantummoney scheme. This
scheme is also the first public-key quantum money scheme
whose security can be based on a plausible “classical” cryp-
tographic assumption. Here is the assumption:

Conjecture (*). Suppose A is a uniformly-random n/2-
dimensional subspace of Fn2 , and that {pi}1≤i≤2n , {qi}1≤i≤2n

are systems of degree-d polynomials from F
n
2 to F2, which

vanish on A and A⊥ respectively but are otherwise uniformly-
random. Then for large enough constant d, there is no
polynomial-time quantum algorithm that takes as input de-
scriptions of the pi’s and qi’s, and that outputs a basis for

A with success probability Ω
(
2−n/2

)
.

Note that we can trivially guess a single nonzero A ele-
ment with success probability 2−n/2, but guessing a whole

basis for A would succeed with probability only 2−Ω(n2).
Conjecture (*) asserts that it is harder to find many ele-
ments of A than to find just one element.

The following theorem says that, if a counterfeiter could
break our quantum money scheme, then with nontrivial suc-
cess probability, it could also recover a description of A from
the pi’s and qi’s alone—even without having access to a bank
that provides a valid money state |A〉.
Theorem. Assuming Conjecture (*), there exists a public-
key quantum money scheme with perfect completeness and



exponentially-small soundness error. That is, the verifier
always accepts valid banknotes, and a would-be counterfeiter
succeeds only with exponentially-small probability.9

The problem of recovering a subspace A, given a system
of equations that vanish on A, is closely related to algebraic
cryptanalysis, and in particular to the so-called polynomial
isomorphism problem. In the latter problem, we are given as
input two polynomials p, q : Fn → F related by an unknown
linear change of basis L; the challenge is to find L. When
deg (p) = deg (q) = 3, the best known algorithms for the
polynomial isomorphism problem require exponential time
[35, 24, 17]. An attacker might be able to use known tech-
niques to effectively reduce the degree of the polynomials in
our scheme by 1, at the expense of an exponentially reduced
success probability [17]. Provided the degree is at least
4, however, recovering A seems to be well beyond existing
techniques.

1.4 Motivation
Unlike the closely-related task of quantum key distribution

[13] (which is already practical), quantum money currently
seems to be a long way off. The basic difficulty is how to
maintain the coherence of a quantum money state for an
appreciable length of time. All money eventually loses its
value unless it is spent, but money that decohered on a scale
of microseconds would be an extreme example!

So one might wonder: why develop rigorous foundations
for a cryptographic functionality that seems so far from be-
ing practical? One answer is that, just as quantum key dis-
tribution uses many of the same ideas as private-key quan-
tum money, but without requiring long-lasting coherence,
so it is not hard to imagine protocols that would use many
of the same ideas as public-key quantum money without re-
quiring long-lasting coherence. Indeed, depending on the
problem, rapid decoherence might be a feature rather than
a bug!

As one example, public-key quantum money that deco-
hered quickly could be used to create non-interactive un-

cloneable signatures. These are n-qubit quantum states
|ψ〉 that an agent can efficiently prepare using a private key,
then freely hand out to passersby. By feeding |ψ〉, together
with the agent’s public key, into suitable measuring equip-
ment, anyone can verify on the spot that the agent is who
she says she is and not an impostor. Compared with classi-
cal identification protocols, the novel feature here is that the
agent does not need to respond to a challenge—for example,
digitally signing a random string—but can instead just hand
out a fixed |ψ〉 non-interactively. Furthermore, because |ψ〉
decoheres in a matter of seconds, and recovering a classical
description of |ψ〉 from measurements on it is computation-
ally intractable, someone who is given |ψ〉 cannot use it later
to impersonate the agent.

Of course, if an attacker managed to solve the technologi-
cal problem of keeping |ψ〉 coherent for very long times, then
he could break this system, by collecting one or more copies
of |ψ〉 that an agent had handed out, and using them to

9This theorem remains true even if the statement of Conjec-
ture (*) is weakened by adding random noise to the pi’s and
qi’s, so that only a constant fraction of them vanish on A
or A⊥. The presence of noise interferes substantially with
known techniques for solving systems of equations, though
an attacker who was able to recover A from a single poly-
nomial would of course not be hindered by such noise.

impersonate the agent. But in that case, whatever method
the attacker was using to keep the states coherent could
also—once discovered—be used to create a secure public-
key quantum money scheme!

However, we believe the “real” reason to study quantum
money is basically the same as the “real” reason to study
quantum computing as a whole—or for that matter, to study
the many interesting aspects of classical cryptography that
are equally far from application. As theoretical computer
scientists, we are in the business of mapping out the inherent
capabilities and limits of information processing.

In our case, what quantum money provides is a near-ideal
playground for understanding the implications of the uncer-
tainty principle and the No-Cloning Theorem. In the early
days of quantum mechanics, Bohr [15] and others argued
that the uncertainty principle requires us to change our con-
ception of science itself—their basic argument being that, in
physics, predictions are only ever as good as our knowledge
of a system’s initial state |ψ〉, but the uncertainty principle
might mean that the initial state is unknowable even with
arbitrarily-precise measurements.

But does this argument have any“teeth”? In other words:
among the properties of a quantum state |ψ〉 that make the
state impossible to learn precisely or to duplicate, can any of
those properties ever matter empirically? To us, quantum
money is interesting precisely because it gives one of the
clearest examples where the answer to that question is yes.

2. PRELIMINARIES
To begin, we fix some notation. Let [N ] = {1, . . . , N}.

Given a subspace S of a vector space V , let S⊥ be the or-
thogonal complement of S (that is, the set of y ∈ V such
that x · y = 0 for all x ∈ S). We call a function δ (n)
negligible if δ (n) = o (1/p (n)) for every polynomial p.

By a classical oracle, we will mean a unitary transfor-

mation of the form |x〉 → (−1)f(x) |x〉, for some Boolean
function f : {0, 1}∗ → {0, 1}. Note that, unless specified
otherwise, even a classical oracle can be queried in quantum
superposition. A quantum oracle, by contrast, is an arbi-
trary n-qubit unitary transformation U (or rather, a collec-
tion of such U ’s, one for each n) that a quantum algorithm
can apply in a black-box fashion. Quantum oracles were
defined and studied by Aaronson and Kuperberg [5].

2.1 Cryptography
Before we construct quantum money schemes, it will be

helpful to have some“conventional”cryptographic primitives
in our toolbox. Foremost among these is a digital signa-
ture scheme secure against quantum chosen-message attacks.
We now define digital signature schemes—both for complete-
ness, and to fix the quantum attack model that is relevant
for us.

Definition 1 (Digital Signature Schemes). A (classical,
public-key) digital signature scheme D consists of three
probabilistic polynomial-time classical algorithms:

• KeyGen, which takes as input a security parameter 0n,
and generates a key pair (kprivate, kpublic).

• Sign, which takes as input kprivate and a message x,
and generates a signature Sign (kprivate, x).

10

10We indulge in slight abuse of notation, since if Sign is ran-



• Ver, which takes as input kpublic, a message x, and a
claimed signature w, and either accepts or rejects.

We say D has completeness error ε if

Ver (kpublic, x,Sign (x, kprivate))

accepts with probability at least 1− ε for all messages x and
key pairs (kprivate, kpublic). Here the probability is over the
behavior of Ver and Sign.

Let C (the counterfeiter) be a quantum circuit of size
poly (n) that takes kpublic as input and does the following:

(1) Probabilistically generates a classical list of messages
x1, . . . , xm, and submits them to a signing oracle O.

(2) Gets back independently-generated signatures w1, . . . , wm,
where wi := Sign (kprivate, xi).

(3) Outputs a pair (x,w).

We say C succeeds if x /∈ {x1, . . . , xm} and Ver (kpublic, x, w)
accepts. We say D has soundness error δ if every coun-
terfeiter C succeeds with probability at most δ. Here the
probability is over the key pair (kprivate, kpublic) and the be-
havior of C, Sign, and Ver.

We call D secure against nonadaptive quantum chosen-

message attacks if it has completeness error ≤ 1/3 and
negligible soundness error.

Intuitively, we call a signature scheme “secure” if no quan-
tum counterfeiter with nonadaptive, classical access to a
signing oracle O can forge a signature for any message that
it did not submit to O. Depending on the application, one
might want to change Definition 1 in various ways: for exam-
ple, by giving the counterfeiter adaptive or quantum access
to O, or by letting KeyGen, Sign, and Ver be quantum al-
gorithms themselves. For this paper, however, Definition 1
provides all we need.

Do signature schemes secure against quantum attack ex-
ist? Naturally, signature schemes based on RSA or other
number-theoretic problems can all be broken by a quantum
computer. However, building on earlier work by Naor and
Yung [33] (among many others), Rompel [37] showed that a
secure public-key signature scheme can be constructed from
any one-way function—not necessarily a trapdoor function.
Furthermore, Rompel’s security reduction, from breaking
the signature scheme to inverting the one-way function, is
black-box : in particular, nothing in it depends on the as-
sumption that the adversary is classical rather than quan-
tum. We therefore get the following consequence:

Theorem 2 (Quantum-Secure Signature Schemes [37]). If
there exists a (classical) one-way function f secure against
quantum attack, then there also exists a digital signature
scheme secure against quantum chosen-message attacks.

Recently, Boneh et al. [16] proved several results similar
to Theorem 2, and they needed nontrivial work to do so.
However, a crucial difference is that Boneh et al. were (jus-
tifiably) concerned with quantum adversaries who can make
quantum queries to the signing oracle O. By contrast, as
mentioned earlier, for our application it suffices to consider
adversaries who query O classically—and in that case, the

domized then the signature need not be a function of kprivate
and x.

standard security reductions go through essentially without
change.

Let us state another consequence of Theorem 2, which will
be useful for our oracle construction in Section 5.

Theorem 3 (Relativized Quantum-Secure Signatures). Rel-
ative to a suitable oracle A, there exists a digital signature
scheme secure against quantum chosen-message attacks.

Proof Sketch. It is easy to give an oracle A : {0, 1}∗ →
{0, 1} relative to which there exists a one-way function fn :

{0, 1}n → {0, 1}p(n) secure against quantum adversaries.
Now, the security reduction of Rompel [37] is not only black-
box but relativizing : that is, it goes through if all legitimate
and malicious parties have access to the same oracle A. So
by Theorem 2, starting from {fn} one can construct a dig-
ital signature scheme relative to the same oracle A, which
is secure against quantum chosen-message attacks. Further
details are given in the full version.

2.2 Quantum Information
Let us collect a few facts about quantum pure and mixed

states that are used in the paper. We assume basic familiar-
ity with the formalism of bras, kets, density matrices, etc.;
see Nielsen and Chuang [34] for a good overview.

Given two mixed states ρ and σ, their trace distance is
defined as D (ρ, σ) := 1

2

∑N
i=1 |λi|, where λ1, . . . , λN are the

eigenvalues of ρ−σ. Trace distance is a metric and satisfies
0 ≤ D (ρ, σ) ≤ 1. Also, the fidelity 0 ≤ F (ρ, σ) ≤ 1 is
defined, in this paper, as the maximum of |〈ψ|ϕ〉| over all
purifications |ψ〉 of ρ and |ϕ〉 of σ.11 By extension, given
a subspace S, we let F (ρ, S) be the maximum of |〈ψ|ϕ〉|
over all purifications |ψ〉 of ρ and all unit vectors |ϕ〉 ∈ S.
While fidelity is not a metric, it does satisfy the following
inequality, which will be helpful in Section 5.

Lemma 4 (“Triangle Inequality” for Fidelity). Suppose

min {〈ψ| ρ |ψ〉 , 〈ϕ| σ |ϕ〉} ≥ 1− ε.

Then F (ρ, σ) ≤ |〈ψ|ϕ〉|+ 2ε1/4.

Proof. Deferred to the full version.
Finally, the following lemma of Aaronson [2] will imply

that, as long as a quantum money scheme has small com-
pleteness error (i.e., small probability of rejecting a valid
banknote), the banknotes can be reused many times.

Lemma 5 (“Almost As Good As New Lemma” [2]). Sup-
pose a measurement on a mixed state ρ yields a particular
outcome with probability 1−ε. Then after the measurement,
one can recover a state ρ̃ such that ‖ρ̃− ρ‖tr ≤

√
ε.

2.3 Quantum Search
In our security proof for quantum money, a crucial step

will be to amplify a counterfeiter who copies a banknote $
with any non-negligible fidelity to a counterfeiter who copies
$ almost perfectly. Taking the contrapositive, this will im-
ply that to rule out the former sort of counterfeiter, it suffices
to rule out the latter.

In this section, we first review two variants of Grover’s
search algorithm [25] that are useful for amplifying the fi-
delity of quantum states. We then introduce a new variant
that combines the advantages of both.

11Some authors instead define “fidelity” as the maximum of
|〈ψ|ϕ〉|2.



Throughout, assume we are given a pure initial state |Init〉,
in some Hilbert space H. Our goal is to map |Init〉 to a final
state |Ψ〉 that lies in (or close to) a “good subspace”G ≤ H.
We have oracle access to two unitary transformations:

• UInit, which maps |Init〉 to − |Init〉, and acts as the
identity on all |v〉 orthogonal to |Init〉.

• UG, which maps |v〉 to − |v〉 for all |v〉 ∈ G, and acts
as the identity on all |v〉 orthogonal to G.

We are promised that F (|Init〉 , G) = max|ψ〉∈G 〈Init |ψ〉, the
fidelity of the initial state with G, is at least some ε > 0.
In this scenario, provided F (|Init〉 , G) is known, the am-
plitude amplification framework of Brassard, Høyer, Mosca,
and Tapp [18] lets us prepare a state close to G using Θ (1/ε)
iterations:

Lemma 6 (Amplitude Amplification [18]). Write |Init〉 as
sin θ |Good〉+cos θ |Bad〉, where |Good〉 is the unit vector in
G closest to |Init〉 and |Bad〉 is orthogonal to |Good〉. Then
by using O (T ) oracle calls to UInit and UG, we can prepare
the state

|ΦT 〉 := sin [(2T + 1) θ] |Good〉+ cos [(2T + 1) θ] |Bad〉

Note that Grover’s algorithm is simply a special case of
Lemma 6, where |Init〉 is the uniform superposition over N
basis states |1〉 , . . . , |N〉, and G is the subspace spanned by
“marked” states.

However, Lemma 6 has an annoying drawback, which it
shares with ordinary Grover search. Namely, the algorithm
does not converge monotonically toward the target subspace
G, but could instead “wildly overshoot it,” cycling around
the 2-dimensional subspace spanned by |Bad〉 and |Good〉.
If we know the fidelity F (|Init〉 , G) in advance (rather than
just a lower bound on the fidelity), or if we can prepare new
copies of |Init〉 “free of charge” in case of failure, then this
overshooting is not a serious problem. Alas, neither of those
conditions will hold in our application.

Fortunately, for independent reasons, in 2005 Tulsi, Grover,
and Patel [38] introduced a new quantum search algorithm
that does guarantee monotonic convergence toward G, by al-
ternating unitary transformations with measurements. (Their
algorithm was later simplified and improved by Chakraborty,
Radhakrishnan, and Raghunathan [19].)

Lemma 7 (Fixed-Point Quantum Search [38, 19]). By using
T oracle calls to UInit and UG, we can prepare a state |Ψ〉
such that F (|Ψ〉 , G) ≥ 1− exp

(
−Tε2

)
.

Rearranging, Lemma 7 lets us prepare a state |Ψ〉 such
that F (|Ψ〉 , G) ≥ 1 − δ using T = O

(
1
ε2

ln 1
δ

)
iterations.

On the positive side, the dependence on 1/δ in this bound is
logarithmic: we get not only monotonic convergence toward
G, but exponentially-fast convergence. On the negative
side, notice that the dependence on ε has worsened from
1/ε to 1/ε2—negating the quadratic speedup that was the
original point of quantum search!

Thus, in the full version, we give a “hybrid” quantum
search algorithm that combines the advantages of Lemmas
6 and 7—i.e., it converges monotonically toward the tar-
get subspace G (rather than “overshooting” G), but also
achieves a quadratic speedup. In the context of our secu-
rity proof for quantum money, the hybrid algorithm leads
to a quadratically-better lower bound on the number of

queries that a counterfeiter needs to make, compared to
what we would get from using Lemma 7 by itself. While this
quadratic improvement is perhaps only of moderate interest,
we hope it might find other applications.

Theorem 8 (Faster Fixed-Point Search). Let δ ≥ 2ε. Then

by using O
(

log 1/δ

εδ2

)
oracle calls to UInit and UG, we can

prepare a state ρ such that F (ρ,G) ≥ 1− δ.

Proof. Deferred to the full version.
Note that Theorem 8 loses the exponentially-fast con-

vergence toward the target subspace G, but that property
will not be important for us anyway. We leave as an
open problem whether there exists a hybrid algorithm with
exponentially-fast convergence.

3. FORMALIZING QUANTUM MONEY
In this section, we first give a formal cryptographic defini-

tion of public-key quantum money schemes. Our definition
is similar to that of Aaronson [3]. However, departing from
[3], we next define the new notion of a quantum money mini-
scheme, which is easier to construct and analyze than a full-
blown quantum money scheme. A mini-scheme is basically
a quantum money scheme where only one banknote ever
needs to printed, not many banknotes; and where the pro-
cedure for verifying that banknote is treated as given (rather
than something that itself needs to be authenticated using
the bank’s public key). We then prove two basic results: the
amplification of weak counterfeiters into strong ones (Theo-
rem 13), and the construction of full-blown quantum money
schemes from mini-schemes together with quantumly-secure
digital signature schemes (Theorem 14).

3.1 Quantum Money Schemes
Intuitively, a public-key quantum money scheme is a scheme

by which

(1) a trusted “bank” can feasibly generate an unlimited
number of quantum banknotes,

(2) anyone can feasibly verify a valid banknote as having
come from the bank, but

(3) no one besides the bank can feasibly map q = poly (n)
banknotes to r > q banknotes with any non-negligible
success probability.12

We now make the notion more formal.

Definition 9 (Quantum Money Schemes). A public-key

quantum money scheme S consists of three polynomial-
time quantum algorithms:

• KeyGen, which takes as input a security parameter 0n,
and probabilistically generates a key pair (kprivate, kpublic).

• Bank, which takes as input kprivate, and probabilisti-
cally generates a quantum state $ called a banknote.
(Usually $ will be an ordered pair (s, ρs), consisting of
a classical serial number s and a quantum money

state ρs, but this is not strictly necessary.)
12Previously, Aaronson [3] required only that no polynomial-
time counterfeiter could increase its expected number of valid
banknotes. However, the stronger condition required here
is both achievable, and seemingly more natural from the
standpoint of security proofs.



• Ver, which takes as input kpublic and an alleged ban-
knote /c, and either accepts or rejects.

We say S has completeness error ε if Ver (kpublic, $) ac-
cepts with probability at least 1− ε for all public keys kpublic
and valid banknotes $. If ε = 0 then S has perfect com-

pleteness.
Let Count (the money counter) take as input kpublic as

well as a collection of (possibly-entangled) alleged banknotes
/c1, . . . , /cr, and output the number of indices i ∈ [r] such that
Ver

(
kpublic, /ci

)
accepts. Then we say S has soundness

error δ if, given any quantum circuit C (kpublic, $1, . . . , $q)
of size poly (n) (called the counterfeiter), which maps q =
poly (n) valid banknotes $1, . . . , $q to r = poly (n) (possibly-
entangled) alleged banknotes /c1, . . . , /cr,

Pr [Count (kpublic, C (kpublic, $1, . . . , $q)) > q] ≤ δ.

Here the probability is over the key pair (kprivate, kpublic),
valid banknotes $1, . . . , $q generated by Bank (kprivate), and
the behavior of Count and C.

We call S secure if it has completeness error ≤ 1/3 and
negligible soundness error.

In the full version, we show that the completeness error in
any quantum money scheme can be amplified to 1/2poly(n),
at the cost of only a small increase in the soundness er-
ror. Note that, by Lemma 5 (the “Almost As Good As
New Lemma”), once we make the completeness error ex-
ponentially small, we can also give our scheme the prop-
erty that any banknote $ can be verified exponentially many
times, before $ gets “worn out” by repeated measurements.
This observation is part of what justifies our use of the term
“money.”13

In this paper, we will often consider relativized quantum
money schemes, which simply means that the three proce-
dures KeyGen, Bank, Ver—as well as the counterfeiter C—all
get access to exactly the same oracle A : {0, 1}∗ → {0, 1}.
We will also consider relativized digital signature schemes,
etc., which are defined analogously.

A private-key quantum money scheme is the same
as a public-key scheme, except that the counterfeiter C no
longer gets access to kpublic. (Thus, we might as well set
k := kpublic = kprivate, since the public and private keys no
longer play separate roles.) We call a private-key scheme
query-secure—a notion“intermediate”between private-key
and public-key—if the counterfeiter C is allowed to interact
repeatedly with the bank. Given any alleged banknote σ,
the bank runs the verification procedure Ver (k, σ), then re-
turns to C both the classical result (i.e., accept or reject)
and the post-measurement quantum state σ̃.

3.2 Mini-Schemes
While Definition 9 captures our intuitive requirements for

a public-key quantum money scheme, experience has shown
that it is cumbersome to work with in practice. So in
this section, we introduce a simpler primitive called mini-
schemes, which require only one uncopyable banknote. We
also prove an amplification theorem for a large class of mini-
schemes. Then, in Section 3.3, we will show how mini-
schemes can be generically combined with conventional dig-

13By contrast, BBBW [14] introduced the term “subway to-
kens” for quantum money states that get destroyed immedi-
ately upon verification.

ital signature schemes to create full public-key quantum
money schemes.

Definition 10 (Mini-Schemes). A (public-key) mini-scheme

M consists of two polynomial-time quantum algorithms:

• Bank, which takes as input a security parameter 0n,
and probabilistically generates a banknote $ = (s, ρs),
where s is a classical serial number, and ρs is a quan-
tum money state.

• Ver, which takes as input an alleged banknote /c, and
either accepts or rejects.

We say M has completeness error ε if Ver ($) accepts
with probability at least 1−ε for all valid banknotes $. If ε =
0 then M has perfect completeness. If, furthermore, ρs =
|ψs〉 〈ψs| is always a pure state, and Ver simply consists of
a projective measurement onto the rank-1 subspace spanned
by |ψs〉, then we say M is projective.14

Let Ver2 (the double verifier) take as input a single se-
rial number s as well as two (possibly-entangled) states σ1

and σ2, and accept if and only Ver (s, σ1) and Ver (s, σ2)
both accept. We say M has soundness error δ if, given
any quantum circuit C of size poly (n) (the counterfeiter),
Ver2 (s, C ($)) accepts with probability at most δ. Here the
probability is over the banknote $ output by Bank (0n), as
well as the behavior of Ver2 and C.

We call M secure if it has completeness error ≤ 1/3 and
negligible soundness error.

We observe a simple relationship between Definitions 9
and 10:

Proposition 11. If there exists a secure public-key money
scheme S = (KeyGenS ,BankS ,VerS), then there also exists
a secure mini-scheme M = (BankM,VerM).

Proof. Each banknote output by BankM (0n) will have
the form (kpublic,BankS (kprivate)), where (kprivate, kpublic) is
a key pair output by KeyGenS (0n). Then VerM (s, ρs) will
accept if and only if VerS (s, ρs) does. Any counterfeiter CM
against M can be converted directly into a counterfeiter CS
against S .

Call a mini-scheme M = (Bank,Ver) secret-based if
Bank works by first generating a uniformly-random classi-
cal string r, and then generating a banknote $r := (sr, ρr).
Intuitively, in a secret-based scheme, the bank can generate
many identical banknotes by simply reusing r, while in a
non-secret-based scheme, not even the bank might be able
to generate two identical banknotes. Here is an interesting
observation:

Proposition 12. If there exists a secure, secret-based mini-
scheme, then there also exists a one-way function secure
against quantum attack.

Proof. The desired OWF is SerialNum (r) := sr. If
there existed a polynomial-time quantum algorithm to re-
cover r given sr, then we could use that algorithm to pro-
duce an unlimited number of additional banknotes $r.

All of the mini-schemes developed in this paper will be
secret-based. By contrast, the earlier schemes of Lutomirski

14We similarly call a full quantum money scheme projective,
if Ver ($) consists of a measurement on one part of $ in the
computational basis, followed by a rank-1 projective mea-
surement on the remaining part.



et al. [30] and Farhi et al. [22] are non-secret-based, since
the serial number s is only obtained as the outcome of a
quantum measurement.

The following result is one of the most useful in the pa-
per. Intuitively, it says that in projective mini-schemes, a
counterfeiter that copies a banknote with any non-negligible
fidelity can be “amplified” to a counterfeiter that copies the
banknote almost perfectly—or conversely, that to rule out
the former sort of counterfeiter, it suffices to rule out the
latter. The proof makes essential use of the amplitude am-
plification results from Section 2.3.

Theorem 13 (Amplification of Counterfeiters). Let M =
(Bank,Ver) be a projective mini-scheme, and let $ = (s, ρ) be
a valid banknote in M. Suppose there exists a counterfeiter
C that copies $ with probability ε > 0: that is,

Pr [Ver2 (s, C ($)) accepts] ≥ ε.

Then for all δ > 0, there is also a modified counterfeiter C′

(depending only on ε and δ, not $), which makes

O

(
log 1/δ√
ε (

√
ε+ δ2)

)

queries to C, C−1, and Ver and which satisfies

Pr
[
Ver2

(
s, C′ ($)

)
accepts

]
≥ 1− δ.

Proof. Write $ as a mixture of pure states:

$ =
∑

pi |ψi〉 〈ψi| .

By linearity, clearly it suffices to show that

Pr
[
Ver2

(
s, C′ (|ψi〉)

)
accepts

]
≥ 1− δ

for all i such that pi > 0. We focus on |ψ〉 := |ψ1〉 without
loss of generality.

By assumption, there exists a subspace S such that

Pr [Ver (ρ) accepts] = F (ρ, S)

for all ρ. Then F ($, S) = F (|ψ〉 , S) = 1.
Now, just as Ver is simply a projector onto S, so Ver2 is

a projector onto S⊗2. Thus

F
(
C (|ψ〉) , S⊗2) ≥

√
ε.

So consider performing a fixed-point Grover search, with
C (|ψ〉) as the initial state and S⊗2 as the target subspace.
By Lemma 7, this will produce a state ρ such that F

(
ρ, S⊗2

)
≥

1− δ using O
(
1
ε
log 1

δ

)
Grover iterations. Each iteration re-

quires a reflection about C (|ψ〉) and a reflection about S⊗2,
which can be implemented using O (1) queries to C,C−1 and
Ver respectively. Therefore the number of queries to C,C−1

and Ver is O
(
1
ε
log 1

δ

)
as well.

If δ is large compared to ε, then we can instead use Theo-
rem 8, which produces a state ρ such that F

(
ρ, S⊗2

)
≥ 1−δ

using O
(

1√
εδ2

log 1
δ

)
iterations. Taking the minimum of the

two bounds gives us the claimed bound on query complexity.

Theorem 13 is unlikely to hold for arbitrary (non-projective)
mini-schemes, for the simple reason that we can always cre-
ate a mini-scheme where Ver accepts any state with some
small nonzero probability ε. We leave it as an open problem
to find the largest class of mini-schemes for which Theorem
13 holds.

3.3 The Standard Construction
We are now ready to define the“standard construction” of

public-key quantum money schemes from mini-schemes and
digital signature schemes, and to prove this construction’s
security.

Theorem 14 (Standard Construction of Public-Key Quan-
tum Money). Let M be any secure mini-scheme, and let
D be any digital signature scheme secure against quantum
chosen-message attacks. By combining M and D, we can
create a secure public-key quantum money scheme S.

Proof. Given

M = (BankM,VerM) ,

D = (KeyGenD,SignD,VerD) ,

our quantum money scheme S = (KeyGenS ,BankS ,VerS) is
defined as follows:

KeyGenS is simply KeyGenD from the digital signature
scheme.

BankS first calls BankM from the mini-scheme to obtain
a banknote (s, ρ). It then outputs (s, ρ) together with a
digital signature of the serial number s:

BankS (kprivate) := (s,SignD (kprivate, s) , ρ) .

VerS accepts an alleged banknote (s, w, σ), if and only if
VerM (s, σ) and VerD (kpublic, s, w) both accept.

Now, suppose there exists a counterfeiter CS against S :
that is, a polynomial-time quantum algorithm such that

Pr [Count (kpublic, CS (kpublic, $1, . . . , $q)) > q] ≥ 1

p (n)
.

Here $i := (si, wi, ρi) is a valid banknote, Count is the
money counter from Definition 9, and p is some polynomial.
Also, the probability is over the key pair (kprivate, kpublic),
the valid banknotes $1, . . . , $q, and the behavior of Count

and CS . Suppose further that D is secure. Then it suf-
fices to show that, by using CS , we can construct a coun-
terfeiter CM against the underlying mini-scheme M. Let
New (kpublic, $1, . . . , $q) be an algorithm that does the fol-
lowing:

(1) Records the serial numbers s1, . . . , sq of $1, . . . , $q , and
lets U := {s1, . . . , sq}.

(2) Runs CS (kpublic, $1, . . . , $q), and examines the output
states /c1, . . . , /cr.

(3) Returns the number of i ∈ [r] such that VerS
(
/ci
)
ac-

cepts, and /ci’s serial number s′i does not belong to U .

Then we claim that Pr [New (kpublic, $1, . . . , $q) > 0] is neg-
ligibly small, where the probability is over the same variables
as before. The proof is simply that, if this were not so, then
we could easily create a counterfeiter CD against the digi-
tal signature scheme D. With non-negligible probability,
CD would generate a valid signature SignD (kprivate, s

′
i), for

a message s′i for which CD had never before seen a valid sig-
nature, by running CS (kpublic, $1, . . . , $q), then measuring
/ci = (s′i, w

′
i, ρ

′
i) for a uniformly random i ∈ [r]. (Note that

CD can generate q money states $1, . . . , $q , without knowl-
edge of kprivate, by generating the si’s and ρi’s on its own,
then calling the signing oracle O to get the wi’s.)

But now we can define a counterfeiter CM against the
mini-scheme M, which works as follows. First, CM runs



KeyGenD (0n) to generate a new key pair
(
k′private, k

′
public

)
.

Next, it labels the banknote to copied (sℓ, ρℓ), for some
ℓ ∈ [q] chosen uniformly at random. It repeatedly calls
BankM (0n) to generate q − 1 serial numbers and quantum
money states, labeled (si, ρi) for all i ∈ [q] \ {ℓ}. Let U :=
{s1, . . . , sq}. Then CM generates a digital signature wi :=
SignD

(
k′private, si

)
for each i ∈ [q]. Let $i := (si, wi, ρi).

Next, CM runs the counterfeiter CS (kpublic, $1, . . . , $q), to
obtain r > q alleged banknotes /c1, . . . , /cr where /cj =

(
s′j , w

′
j , ρ

′
j

)
.

Finally, CM chooses j, k ∈ [r] uniformly at random with-
out replacement, and output

(
ρ′j , ρ

′
k

)
as a candidate for two

copies of ρℓ.
Suppose that Count > q, as happens with probability at

least 1
p(n)

. Also suppose that New = 0, as happens all but

a negligible fraction of the time. Then by the pigeonhole
principle, there must exist indices j 6= k such that s′j = s′k.
With probability at least 1/

(
r
2

)
, the counterfeiter CM will

find such a (j, k) pair. Therefore it succeeds with overall
probability Ω (1/poly (n)).

Theorem 14 reduces the construction of a public-key quan-
tum money scheme to two “smaller” problems: constructing
a mini-scheme, and constructing a signature scheme secure
against quantum attacks.

In practice, however, the situation is even better, since
in this paper, all of our constructions of mini-schemes will
also yield signature schemes “free of charge”! The following
proposition explains why:

Proposition 15. If there exists a secure, secret-based mini-
scheme M, then there also exists a secure public-key quan-
tum money scheme S.

Proof. Starting from M, we can get a one-way func-
tion secure against quantum attack from Proposition 12, and
hence a digital signature scheme D secure against quantum
chosen-message attack from Theorem 2. Combining M and
D now yields S by Theorem 14.

Finally, let us make explicit what Theorem 14 means for
oracle construction.

Corollary 16. Suppose there exists a mini-scheme M that
is provably secure relative to some oracle AM (i.e., any
counterfeiter CM against M must make superpolynomially
many queries to AM). Then there exists a public-key quan-
tum money scheme S that is provably secure relative to some
other oracle AS .

Proof. By Theorem 3, relative to a suitable oracle AD
(in fact, a random oracle suffices), there exists a signature
scheme D, such that any quantum chosen-message attack
against D must make superpolynomially many queries to
AD.

The oracle AS will simply be a concatenation of AM with
AD. Relative to AS , we claim that the mini-scheme M
and signature scheme D are both secure—and therefore, by
Theorem 14, we can construct a secure public-key quantum
money scheme S .

The only worry is that a counterfeiter CM against M
might gain some advantage by querying AD; or conversely,
a counterfeiter CD against D might gain some advantage
by querying AM. However, this worry is illusory, for the
simple reason that the oracles AD and AM are generated
independently. Thus, if CM can break M by querying AD,
then it can also break M by querying a randomly-generated
“mock-up” A′

D of AD; and conversely, if CD can break D

by querying AM, then it can also break D by querying a
randomly-generated mock-up A′

M of AM. Regardless of
the computational cost of generating these mock-ups, they
give us a break against D or M that makes only poly (n)
oracle queries, thereby giving the desired contradiction.

4. INNER-PRODUCT ADVERSARY METHOD
At least in the black-box setting, our goal is to create

quantummoney (mini-)schemes that we can prove are secure—
by showing that any counterfeiter would need to make ex-
ponentially many queries to some oracle. Proving security
results of this kind turns out to require interesting quantum
lower bound machinery. In this section, we introduce the
inner-product adversary method, a new variant of Ambai-
nis’s quantum adversary method [8] that is well-adapted to
proving the security of quantum money schemes, and that
seems likely to find other applications.

Let us explain the difficulty we need to overcome. In a
public-key quantum money scheme, a counterfeiter C has
two powerful resources available:

(1) One or more copies of a “legitimate” quantum money
state |ψ〉.

(2) Access to a verification procedure V , which accepts |ψ〉
and rejects every state orthogonal to |ψ〉.

Indeed, for us, the situation is even better for C (i.e.,
worse for us!), since C can query not only the verification
procedure V itself, but also an underlying classical oracle U
that the legitimate buyers and sellers use to implement V .
But let us ignore that issue for now.

As a first step, of course, we should understand how to rule
out counterfeiting given (1) or (2) separately. If C has a
copy of |ψ〉, but no oracle access to V , then the impossibility
of preparing |ψ〉 |ψ〉 essentially amounts to the No-Cloning
Theorem. Conversely, if C has oracle access to V , but no
copy of |ψ〉, then given unlimited time, C can prepare as
many copies of |ψ〉 as it wants, by using Grover’s algorithm
to search for a quantum state that V accepts. The problem
is “merely” that, if |ψ〉 has n qubits, then Grover’s algo-

rithm requires Θ
(
2n/2

)
iterations, and the BBBV hybrid

argument [12] shows that Grover’s algorithm is optimal.
What we need, then, is a theorem showing that any coun-

terfeiter needs exponentially many queries to V to prepare
|ψ〉 |ψ〉, even if the counterfeiter has a copy of |ψ〉 to start
with. Such a theorem would contain both the No-Cloning
Theorem and the BBBV hybrid argument as special cases.
Aaronson [3] called the desired generalization the Complexity-
Theoretic No-Cloning Theorem, and sketched a proof of it
using Ambainis’s adversary method. Based on that result,
Aaronson also argued that there exists a quantum oracle
(i.e., a black-box unitary transformation V ) relative to which
secure public-key quantum money is possible. However, the
details were never published.

In this section, we prove a result—Theorem 18—that is
much more general than Aaronson’s previous Complexity-
Theoretic No-Cloning Theorem [3]. Then, in Section 5,
we apply Theorem 18 to prove the security of public-key
quantum money relative to a classical oracle. In the full
version, we also apply Theorem 18 to prove the “original”
Complexity-Theoretic No-Cloning Theorem [3], which in-



volves Haar-random n-qubit states |ψ〉, rather than super-
positions |A〉 over subspaces A ≤ F

n
2 .
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4.1 Idea of Method
So, what is the inner-product adversary method? In

Ambainis’s adversary method [8]—like in the BBBV hybrid
argument [12] from which it evolved—the basic idea is to
upper-bound how much “progress” a quantum algorithm Q
can make at distinguishing pairs of oracles, as the result
of a single query. Let

∣∣ΨUt
〉
be Q’s state after t queries,

assuming that the oracle is U . Then normally, before any
queries have been made, we can assume that

∣∣ΨU0
〉
=

∣∣ΨV0
〉

for all oracles U and V . By contrast, after the final query
T , for all oracle pairs (U, V ) that Q is trying to distinguish,
we must have (say)

∣∣〈ΨUT |ΨVT
〉∣∣ ≤ 1/2. Thus, if we can

show that the inner product
∣∣〈ΨUt |ΨVt

〉∣∣ can decrease by at
most ε as the result of a single query, then it follows that Q
must make Ω (1/ε) queries.

But when we try to apply the above framework to quan-
tum money, we run into serious difficulties. Most obviously,
it is no longer true that

∣∣ΨU0
〉
=

∣∣ΨV0
〉
for all oracles U, V .

Indeed, before Q makes even a single query to its oracle V ,
it already has a great deal of information about V , in the
form of a legitimate money state |ψ〉 that V accepts. The
task is “merely” to prepare a second copy of a state that Q
already has! Worse yet, once we fix two oracles U and V , we
find that Q generally can exploit the “head start” provided
by its initial state to decrease the inner product

∣∣〈ΨUt |ΨVt
〉∣∣

by a constant amount, by making just a single query to U
or V respectively.

Our solution is as follows. We first carefully choose a
distribution D over oracle pairs (U,V ). We then analyze
how much the expected inner product

E
(U,V )∼D

[∣∣∣
〈
ΨUt |ΨVt

〉∣∣∣
]

can decrease as the result of a single query to U or V . We
will find that, even if Q can substantially increase the angle
between

∣∣ΨUt
〉
and

∣∣ΨVt
〉
for some (U, V ) pairs by making a

single query, it cannot do so for most pairs.
To illustrate, let |ψ〉 and |ϕ〉 be two possible quantum

money states, which satisfy (say) 〈ψ|ϕ〉 = 1/2. Then if a
counterfeiting algorithm succeeds perfectly, it must map |ψ〉
to |ψ〉⊗2, and |ϕ〉 to |ϕ〉⊗2. Since

〈ψ|⊗2 |ϕ〉⊗2 = (〈ψ|ϕ〉)2 =
1

4
,

this means that the counterfeiter must decrease the corre-
sponding inner product by at least 1/4. However, we will
show that the average inner product can decrease by at most
1/ exp (n) as the result of a single query. From this it will

follow that the counterfeiter needs to make 2Ω(n) queries.
Let us mention that today, there are several “sophisti-

cated” versions of the quantum adversary method [9, 27],
which can yield lower bounds for quantum state generation
tasks not unlike the ones we consider. However, a drawback
of these methods is that they are extremely hard to apply

15For whatever it is worth, we get a lower bound of Ω
(
2n/2

)

on the number of queries needed to copy a Haar-random

state, which is quadratically better than the Ω
(
2n/4

)
that

we get for subspace states.

to concrete problems: doing so typically requires eigenvalue
bounds, and often the use of representation theory. For this
reason, even if one of the “sophisticated” adversary meth-
ods (or a variant thereof) could be applied to the quantum
money problem, our approach might still be preferable.

4.2 The Method
We now introduce the inner-product adversary method.

Let O be a set of quantum oracles acting on n qubits each.
For each U ∈ O, assume there exists a subspace SU ≤ C

2n

such that

(i) U |ψ〉 = − |ψ〉 for all |ψ〉 ∈ SU , and

(ii) U |η〉 = |η〉 for all |η〉 ∈ S⊥
U .

Let R ⊂ O×O be a symmetric binary relation on O, with
the properties that

(i) (U,U) /∈ R for all U ∈ O, and

(ii) for every U ∈ O there exists a V ∈ O such that
(U, V ) ∈ R.

Suppose that for all U ∈ O and all |η〉 ∈ S⊥
U , we have

E
V : (U,V )∈R

[
F (|η〉 , SV )2

]
≤ ε,

where F (|η〉 , SV ) = max|ψ〉∈SV
|〈η|ψ〉| is the fidelity be-

tween |η〉 and SV . Let Q be a quantum oracle algorithm,
and let QU denote Q run with the oracle U ∈ O. Suppose
QU begins in the state

∣∣ΨU0
〉
(possibly already dependent on

U). Let
∣∣ΨUt

〉
denote the state of QU immediately after the

tth query. Also, define a progress measure pt by

pt := E
U,V : (U,V )∈R

[∣∣∣
〈
ΨUt |ΨVt

〉∣∣∣
]
.

The following lemma bounds how much pt can decrease as
the result of a single query.

Lemma 17 (Bound on Progress Rate).

pt ≥ pt−1 − 4
√
ε.

Proof. Let
∣∣ΦUt

〉
denote the state of QU immediately be-

fore the tth query. Then for all t, it is clear that
〈
ΦUt |ΦVt

〉
=〈

ΨUt−1|ΨVt−1

〉
: in other words, the unitary transformations

that Q performs in between query steps have no effect on
the inner products. So to prove the lemma, it suffices to
show the following inequality:

E
U,V : (U,V )∈R

[∣∣∣
〈
ΦUt |ΦVt

〉∣∣∣
]
− E
U,V : (U,V )∈R

[∣∣∣
〈
ΨUt |ΨVt

〉∣∣∣
]
≤ 4

√
ε.

(*)
Let {|i〉}i∈[B] be an arbitrary orthonormal basis forQ’s workspace
register. Then we can write

∣∣∣ΦUt
〉
=

∑

i∈[B]

αUt,i |i〉
∣∣∣ΦUt,i

〉

=
∑

i∈[B]

|i〉
(
βUt,i

∣∣∣ηUt,i
〉
+ γUt,i

∣∣∣ψUt,i
〉)

,

where
∣∣ηUt,i

〉
∈ S⊥

U and
∣∣ψUt,i

〉
∈ SU . (By normalization,∣∣βUt,i

∣∣2 +
∣∣γUt,i

∣∣2 =
∣∣αUt,i

∣∣2.) A query transforms the above
state to ∣∣∣ΨUt

〉
=

∑

i∈[B]

|i〉
(
βUt,i

∣∣∣ηUt,i
〉
− γUt,i

∣∣∣ψUt,i
〉)

.



So for all U, V ∈ O,
〈
ΦUt |ΦVt

〉
−

〈
ΨUt |ΨVt

〉

=
∑

i∈[B]

(
β
U

t,i

〈
ηUt,i

∣∣∣+ γUt,i

〈
ψUt,i

∣∣∣
) (

βVt,i

∣∣∣ηVt,i
〉
+ γVt,i

∣∣∣ψVt,i
〉)

−
∑

i∈[B]

(
β
U

t,i

〈
ηUt,i

∣∣∣− γUt,i

〈
ψUt,i

∣∣∣
) (

βVt,i

∣∣∣ηVt,i
〉
− γVt,i

∣∣∣ψVt,i
〉)

=2
∑

i∈[B]

(
β
U

t,iγ
V
t,i

〈
ηUt,i|ψVt,i

〉
+ γUt,iβ

V
t,i

〈
ψUt,i|ηVt,i

〉)
.

By Cauchy-Schwarz, the above implies that
∣∣∣
〈
ΦUt |ΦVt

〉∣∣∣−
∣∣∣
〈
ΨUt |ΨVt

〉∣∣∣ ≤ 2 max
i∈[B]

∣∣∣
〈
ηUt,i|ψVt,i

〉∣∣∣

+ 2max
i∈[B]

∣∣∣
〈
ψUt,i|ηVt,i

〉∣∣∣ .

Now fix U ∈ O and i ∈ [B]. Then again applying Cauchy-
Schwarz,

E
V : (U,V )∈R

[∣∣∣
〈
ηUt,i|ψVt,i

〉∣∣∣
]
≤

√
E

V : (U,V )∈R

[∣∣〈ηUt,i|ψVt,i
〉∣∣2

]

≤
√

E
V : (U,V )∈R

[
max

|ψ〉∈SV

∣∣〈ηUt,i|ψ
〉∣∣2

]

≤
√
ε.

Hence

E
U,V : (U,V )∈R

[∣∣∣
〈
ηUt,i|ψVt,i

〉∣∣∣
]
≤

√
ε

as well, and likewise

E
U,V : (U,V )∈R

[∣∣∣
〈
ψUt,i|ηVt,i

〉∣∣∣
]
≤

√
ε

by symmetry. Putting everything together,

pt−1 − pt = E
U,V : (U,V )∈R

[∣∣∣
〈
ΦUt |ΦVt

〉∣∣∣−
∣∣∣
〈
ΨUt |ΨVt

〉∣∣∣
]

≤ 2 E
U,V : (U,V )∈R

[
max
i∈[B]

∣∣∣
〈
ηUt,i|ψVt,i

〉∣∣∣
]

+ 2 E
U,V : (U,V )∈R

[
max
i∈[B]

∣∣∣
〈
ψUt,i|ηVt,i

〉∣∣∣
]

≤ 4
√
ε.

This proves inequality (*) and hence the lemma.
From Lemma 17 we immediately deduce the following.

Theorem 18 (Inner-Product Adversary Method). Suppose
that initially

∣∣〈ΨU0 |ΨV0
〉∣∣ ≥ c for all (U, V ) ∈ R, whereas by

the end we need
∣∣〈ΨUT |ΨVT

〉∣∣ ≤ d for all (U, V ) ∈ R. Then

Q must make T = Ω
(
c−d√
ε

)
oracle queries.

5. CLASSICAL ORACLE SCHEME
In this section, we construct a mini-scheme, called the

Hidden Subspace Mini-Scheme, that requires only a classical
oracle. We then use the inner-product adversary method
from Section 4 to show that our mini-scheme is secure—
indeed, that any counterfeiter must make Ω

(
2n/4

)
queries

to copy a banknote. By the results of Sections 3.3 and
2.1, our mini-scheme will automatically imply a full-blown
public-key quantum money scheme, which requires only a
classical oracle and is unconditionally secure.

5.1 The Hidden Subspace Mini-Scheme
We identify n-bit strings x ∈ {0, 1}n with elements of the

vector space F
n
2 in the standard way. Then in our mini-

scheme, each n-qubit money state will have the form

|A〉 := 1√
|A|

∑

x∈A
|x〉 ,

where A is some randomly-chosen subspace of Fn2 (i.e., a set
of codewords of a linear code), with dimA = n/2. Let A⊥

be the orthogonal complement of A, so that dimA⊥ = n/2
as well. Notice that we can transform |A〉 to

∣∣A⊥〉 and vice

versa by simply applying H⊗n
2 : a Hadamard gate on each of

the n qubits, or equivalently a quantum Fourier transform
over Fn2 .

The basic idea of the mini-scheme is as follows: the bank
can easily prepare the quantum money state |A〉, starting
from a classical description 〈A〉 of A (e.g., a list of n/2 gen-
erators). The bank distributes the state |A〉, but keeps the
classical description 〈A〉 secret. Along with |A〉 itself, the
bank also publishes details of how to verify |A〉 by querying
two classical oracles, UA and UA⊥ . The first oracle, UA,
decides membership in A: for all n-qubit basis states |x〉,

UA |x〉 =
{

− |x〉 if x ∈ A
|x〉 otherwise

The second oracle, UA⊥ , decides membership in A⊥ in the
same way.

Using UA, it is easy to implement a projector PA onto the
set of basis states in A. To do so, simply initialize a control

qubit to |+〉 = |0〉+|1〉√
2

, then apply UA conditioned on the

control qubit being in state |1〉, then measure the control
qubit in the {|+〉 , |−〉} basis, and postselect on getting the
outcome |−〉. Likewise, using UA⊥ , it is easy to implement a
projector PA⊥ onto the set of basis states in A⊥. Then VA,
the public verification algorithm for the money state |A〉,
will simply consist of PA, then a Fourier transform, then
PA⊥ , and finally a second Fourier transform to return the
legitimate money state back to |A〉:

VA := H⊗n
2 PA⊥H

⊗n
2 PA.

We show in Lemma 19 that VA = |A〉 〈A| is just a projector
onto |A〉. This means, in particular, that VA |A〉 = |A〉,
and that VA accepts an arbitrary state |ψ〉 with probabil-
ity |〈ψ|A〉|2. Thus, our mini-scheme is projective and has
perfect completeness.

But what about security? Intuitively, a counterfeiter
could query UA or UA⊥ to find a generating set for A or
A⊥—but that would require an exponentially-long Grover
search, since |A| =

∣∣A⊥∣∣ = 2n/2 ≪ 2n. Alternatively, the
counterfeiter could measure |A〉 in the standard or Hadamard
bases—but that would reveal just one random element of A
or A⊥. Neither ability seems useful for copying |A〉, let
alone recovering a full classical description of A.16

16Obviously, if the counterfeiter had Ω (n) copies of |A〉, then
it could recover a generating set for A, by simply measuring
each copy independently in the standard basis. That is why,
in our full quantum money scheme, the counterfeiter will not
have Ω (n) copies of |A〉. Instead, each banknote will involve
a completely different subspace As ≤ F

n
2 (parameterized by

its unique serial number s), so that measuring one banknote
reveals nothing about the others.



And indeed, using the inner-product adversary method
plus some other tools, we will prove the following tight lower
bound (Theorem 23): even if given a single copy of |A〉, as
well as oracle access to UA and UA⊥ , a counterfeiter still

needs Ω
(
ǫ2n/4

)
queries to prepare a state that has fidelity

ǫ with |A〉⊗2. This will imply that our mini-scheme has
exponentially-small soundness error.

5.2 Formal Specification
We are not quite done, since we never explained how the

bank provides access to UA and UA⊥ . Thus, in our “final”
mini-scheme M = (BankM,VerM), the bank, verifier, and
counterfeiter will all have access to a single classical oracle
U , which consists of four components:

A banknote generator G (r), which takes as input a
random string r ∈ {0, 1}n, and outputs a set of linearly
independent generators 〈Ar〉 =

{
x1, . . . , xn/2

}
for a sub-

space Ar ≤ F
n
2 , as well as a unique 3n-bit serial number

sr ∈ {0, 1}3n. The function G is chosen uniformly at ran-
dom, subject to the constraint that the serial numbers are
all distinct.17

A serial number checker H (s), which outputs 1 if s =
sr is a valid serial number for some 〈Ar〉, and 0 otherwise.

A primal subspace tester Tprimal, which takes an input
of the form |s〉 |x〉, applies UAr to |x〉 if s = sr is a valid
serial number for some 〈Ar〉, and does nothing otherwise.

A dual subspace tester Tdual, identical to Tprimal except
that it applies UA⊥

r
instead of UAr .

Then M = (BankM,VerM) is defined as follows:

• BankM (0n) chooses r ∈ {0, 1}n uniformly at random.
It then looks up G (r) = (sr, 〈Ar〉), and outputs the
banknote |$r〉 = |sr〉 |Ar〉.

• VerM (/c) first usesH to check that /c has the form (s, ρ),
where s = sr is a valid serial number. If so, then it uses
Tprimal and Tdual to apply VAr = H⊗n

2 PA⊥
r
H⊗n

2 PAr ,

and accepts if and only if VAr (ρ) accepts.

5.3 Analysis
We now analyze the mini-scheme defined in Sections 5.1

and 5.2. For convenience, we assume for most of the proof
that the subspace A ≤ F

n
2 is fixed, and that the counterfeiter

(who does not know A) only has access to the oracles UA and
UA⊥ . Then, at the end, we will explain how to generalize
the conclusions to the “final” mini-scheme M.

It will be convenient to consider the subsetA∗ ⊂ {0, 1}n+1,
defined by A∗ := (0, A)∪ (1, A⊥). Let SA∗ be the subspace

of C2n+1

that is spanned by basis states |x〉 such that x ∈ A∗.
Then we can think of the pair of oracles (UA, UA⊥) as being
a single oracle UA∗ , which satisfies UA∗ |ψ〉 = − |ψ〉 for all
|ψ〉 ∈ SA∗ , and UA∗ |η〉 = |η〉 for all |η〉 ∈ S⊥

A∗ .
Recall the definition of the verifier VA:

VA := H⊗n
2 PA⊥H

⊗n
2 PA,

where PA and PA⊥ denote projective measurements that
accept a basis state |x〉 if and only if x belongs to A or A⊥

respectively. The following lemma shows that VA “works,”
and indeed that it gives us a projective mini-scheme.

17Note that one can implement G using an ordinary random
oracle. In that case, the requirement that the serial numbers
are distinct will be satisfied with probability 1−O

(
2−n

)
.

Lemma 19. VA = |A〉 〈A| is simply a projector onto |A〉.
So in particular, Pr [VA (|ψ〉) accepts] = |〈ψ|A〉|2.

Proof. It suffices to show that VA |A〉 = |A〉 and that
VA |ψ〉 = 0 for all |ψ〉 orthogonal to |A〉. First,

VA |A〉 = H⊗n
2 PA⊥H

⊗n
2 PA |A〉

= H⊗n
2 PA⊥H

⊗n
2 |A〉

= H⊗n
2 PA⊥ |A⊥〉

= H⊗n
2 |A⊥〉

= |A〉 .
Second, if 〈ψ|A〉 = 0 then we can write

|ψ〉 =
∑

x∈2n

cx |x〉

where
∑
x∈A cx = 0. Then

VA |ψ〉 = H⊗n
2 PA⊥H

⊗n
2 PA

∑

x∈2n

cx |x〉

= H⊗n
2 PA⊥H

⊗n
2

∑

x∈A
cx |x〉

=
1√
2n
H⊗n

2 PA⊥

∑

x∈A
cx

∑

y⊥x
|y〉

=
1√
2n
H⊗n

2

∑

y∈A⊥

|y〉
∑

x∈A
cx

= 0.

We now show that perfect counterfeiting requires expo-
nentially many queries to UA∗ .

Theorem 20 (Lower Bound for Perfect Counterfeiting).
Given one copy of |A〉, as well as oracle access to UA∗ , a

counterfeiter needs Ω
(
2n/4

)
queries to prepare |A〉⊗2 with

certainty (for a worst-case |A〉).
Proof. We will apply Theorem 18. Let the setO contain

UA∗ for every possible subspace A ≤ F
n
2 with dimA = n/2.

Also, put (UA∗ , UB∗ ) ∈ R if and only if dim (A ∩B) = n/2−
1. Then given UA∗ ∈ O and |η〉 ∈ S⊥

A∗ , let

|η〉 =
∑

x∈{0,1}n+1\A∗

αx |x〉 .

We have

E
UB∗ : (UA∗ ,UB∗ )∈R

[
F (|η〉 , SB∗)2

]

= E
B : dim(B)=n/2,dim(A∩B)=n/2−1




∑

x∈B∗\A∗

|αx|2



≤ max
x∈{0,1}n+1\A∗

(
Pr

B : dim(B)=n/2,dim(A∩B)=n/2−1
[x ∈ B∗]

)

= max
x∈{0,1}n\A

(
Pr

B : dim(B)=n/2,dim(A∩B)=n/2−1
[x ∈ B]

)

=
|B \A|

|{0, 1}n \ A| (for dim (B) = n/2, dim (A ∩B) = n/2− 1)

=
2n/2−1

2n − 2n/2

≤ 1

2n/2
.



Here the first line uses the definition of fidelity, the second
line uses the easy direction of the minimax theorem, the
third line uses the symmetry between A and A⊥, and the
fourth line uses the symmetry among all 2n − 2n/2 strings
x ∈ {0, 1}n\A. The conclusion is that we can set ε := 2−n/2.

Fix (UA∗ , UB∗ ) ∈ R. Then |〈A|B〉| = 1/2. On the
other hand, if the counterfeiter succeeds, it must map |A〉 to
some state |fA〉 := |A〉 |A〉 |garbageA〉, and |B〉 to some state
|fB〉 := |B〉 |B〉 |garbageB〉. Therefore |〈fA|fB〉| ≤ 1/4. So
setting c = 1/2 and d = 1/4, Theorem 18 tells us that the
counterfeiter must make

Ω

(
c− d√
ε

)
= Ω

(
2n/4

)

queries to UA∗ .
A simple modification to the proof of Theorem 20 shows

that even to counterfeit money almost perfectly, one still
needs exponentially many queries to UA∗ .

Corollary 21 (Lower Bound for Small-Error Counterfeit-
ing). Given one copy of |A〉, as well as oracle access to UA∗ ,

a counterfeiter needs Ω
(
2n/4

)
queries to prepare a state ρ

such that 〈A|⊗2 ρ |A〉⊗2 ≥ 0.9999 (for a worst-case |A〉).
Proof. Let |〈A|B〉| = c, and let ǫ = 0.00001. If the

counterfeiter succeeds, it must map |A〉 to some state ρA,
and |B〉 to some state ρB, such that 〈A|⊗2 ρA |A〉⊗2 and
〈B|⊗2 ρB |B〉⊗2 are both at least 1− ǫ. So letting |fA〉 and
|fB〉 be purifications of ρA and ρB respectively, we have

|〈fA|fB〉| ≤ F (ρA, ρB)

≤
∣∣〈A|⊗2 |B〉⊗2

∣∣+ 2ǫ1/4

= c2 + 2ǫ1/4

where the second line follows from Lemma 4. So setting
d := c2 + 2ǫ1/4, Theorem 18 tells us that the counterfeiter
must make

Ω

(
c− c2 − 2ǫ1/4√

2−n/2

)

queries to UA∗ . Fixing c := 1/2, the above is Ω
(
2n/4

)
.

Since the verifier VA is projective, we can now combine
Corollary 21 with Theorem 13 to obtain the following “am-
plified” lower bound.

Corollary 22 (Lower Bound for High-Error Counterfeit-

ing). Let 1/ε = o
(
2n/2

)
. Given one copy of |A〉, as well

as oracle access to UA∗ , a counterfeiter needs Ω
(√

ε2n/4
)

queries to prepare a state ρ such that 〈A|⊗2 ρ |A〉⊗2 ≥ ε (for
a worst-case |A〉).

Proof. Suppose we have a counterfeiter C that makes

o
(√

ε2n/4
)
queries to UA∗ , and prepares a state σ such that

〈A|⊗2 σ |A〉⊗2 ≥ ε. Let δ := 0.00001. Then by Theorem
13, there exists an amplified counterfeiter C′ that makes

O

(
log 1/δ√
ε (

√
ε+ δ2)

)
= O

(
1√
ε

)

calls to C and VA, and that prepares a state ρ such that

〈A|⊗2 ρ |A〉⊗2 ≥ 1 − δ. Now, counting the o
(√

ε2n/4
)

queries from each C invocation and O (1) queries from each

VA invocation, the total number of queries that C′ makes to
UA∗ is

[
o
(√

ε2n/4
)
+O (1)

]
· O

(
1√
ε

)
= o

(
2n/4

)
.

But this contradicts Corollary 21.
So far, we have only made statements about the worst

case for a would-be counterfeiter. But such guarantees are
clearly not enough: it could be that most money states |A〉
are easy to duplicate, without contradicting any of the re-
sults we have seen so far.

We will show that the problem faced by a counterfeiter
is random self-reducible: if a counterfeiter could duplicate a
uniformly-random money state |A〉, then it could duplicate
any |A〉. Thus the bank can ensure security by creating
uniformly-random money states.

In what follows, let S be the set of all subspaces A ≤ F
n
2

such that dimA = n/2. Also, let V ⊗2
A = (|A〉 〈A|)⊗2 be the

projector onto |A〉⊗2.

Theorem 23 (Lower Bound for Average-Case Counterfeit-
ing). Let A ≤ F

n
2 be a uniformly-random element of S.

Then given one copy of |A〉, as well as oracle access to UA∗ ,

a counterfeiter C needs Ω
(√

ε2n/4
)
queries to prepare a 2n-

qubit state ρ that V ⊗2
A accepts with probability at least ε, for

all 1/ε = o
(
2n/2

)
. Here the probability is taken over the

choice of A ∈ S, as well as the behavior of C and V ⊗2
A .

Proof. Suppose we had a counterfeiter C that violated
the above. Using C as a black box, we will show how to
construct a new counterfeiter C′ that violates Corollary 22.

Given a (deterministically-chosen) money state |A〉 and
oracle access to UA∗ , first choose an invertible linear map
f : Fn2 → F

n
2 uniformly at random. Then f (A), the image

of A under f , is a uniformly-random element of S . Further-
more, the state |A〉 can be transformed into |f (A)〉 straight-
forwardly, and the oracle Uf(A)∗ can be simulated by com-
posing f with UA∗ . So by using the counterfeiter C for
uniformly-random states, we can produce a state ρf that
V ⊗2
f(A) accepts with probability at least ε. By applying f−1

to both registers of ρf , we can then obtain a state ρ that
V ⊗2
A accepts with probability at least ε, thereby contradict-

ing Corollary 22.
We are now ready to prove security for the “final” mini-

scheme M defined in Section 5.2.

Theorem 24 (Security of Mini-Scheme). The mini-scheme
M = (BankM,VerM), which is defined relative to the clas-
sical oracle U , has perfect completeness and exponentially-
small soundness error.

Proof Sketch. That M has perfect completeness fol-
lows from its definition and from Lemma 19. That M has
exponentially-small soundness error essentially follows from
Theorem 23. We only need to show that, given a banknote
of the form |$r〉 = |sr〉 |Ar〉, a polynomial-time counterfeiter
C can gain no additional advantage by querying the“full”or-
acles G,H, Tprimal, Tdual, beyond what it gains from querying

UA∗
r
=

(
UAr , UA⊥

r

)
. This follows from some simple obser-

vations: first, let r ∈ {0, 1}n be the random string chosen
by the bank, so that G (r) = (sr, 〈Ar〉). Then assuming
C does not know r, the BBBV hybrid argument [12] tells
us that C can gain nothing by querying G: indeed, if we



randomly change the value of G (r), it will affect C’s out-
put by at most an exponentially small amount. However,
once we make that change, an adversary trying to counter-
feit |A〉 given UA and UA⊥ can easily “mock up” a serial
number s, as well as the oracles G,H, Tprimal and Tdual, for
itself. Just like in Corollary 16, since our security guaran-
tees are query complexity bounds, we do not care about the
computational complexity of creating the mock-ups. By us-
ing the mock-ups, one can convert any successful attack on
M into successful counterfeiting of |A〉, given oracle access
to UA and UA⊥ only. But the latter contradicts Theorem
23. Further details of the argument are deferred to the full
version.

Finally, using Theorem 24 together with Corollary 16, we
can obtain a secure public-key quantum money scheme, rel-
ative to a classical oracle.

Theorem 25 (Security of Hidden Subspace Money). By
combining the mini-scheme M with a digital signature scheme,
it is possible to construct a public-key quantum money scheme
S = (KeyGenS ,BankS ,VerS), defined relative to some classi-
cal oracle U ′, which has perfect completeness and exponentially-
small soundness error.

6. EXPLICIT QUANTUM MONEY SCHEME
We have shown how to construct a provably-secure public-

key quantum money scheme, when an appropriate classical
oracle is available. In this section, we propose a way to
obtain the same functionality without an oracle. The key
challenge is this:

Given a subspace A ≤ F
n
2 , how can a bank dis-

tribute an “obfuscated program” PA, which legit-
imate buyers and sellers can use to decide mem-
bership in both A and A⊥, but which does not
reveal anything else about A that might facilitate
counterfeiting?

Note that, aside from the detail that we need security
against quantum adversaries, the above challenge is purely
“classical”; it and its variants seem interesting even apart
from our quantum money application.

We will suggest a candidate protocol to achieve the chal-
lenge, based onmultivariate polynomial cryptography. Given
a collection p1, . . . , pm : Fn2 → F2 of multivariate polynomi-
als over F2, it is generally hard to find a point v ∈ F

n
2 on

which all of the pi’s vanish. On the other hand, it is easy
to check whether a particular point v has that property. To
“hide” a subspace A, we will provide uniformly-random low-
degree polynomials p1, . . . , pm that vanish on each point of
A. This information is sufficient to decide membership in A.
On the other hand, there is no known efficient algorithm to
find A given the polynomials, and current techniques seem
unlikely to yield even a quantum algorithm.

We can also introduce a constant fraction of noise into our
scheme without interfering with its completeness. In other
words, if only (1− ǫ)m of the polynomials p1, . . . , pm are
chosen to vanish on A, and the remaining ǫm are random,
then counting the number of pi’s that vanish at a point v still
suffices to determine whether v ∈ A. Although we know of
no attack even against our noise-free scheme, adding noise
in this way might improve security.

Crucially, we will state a “classical” conjecture about the
security of multivariate polynomial cryptography, and show

that the conjecture implies the security of our explicit money
scheme. For the benefit of cryptographers, let us now state
an “abstract” version of our conjecture, which implies what
we need, and which might hold even if our concrete conjec-
ture about multivariate polynomials fails.

Conjecture 26 (Subspace-Hiding Conjecture, Sufficient for
QuantumMoney). There exists a polynomial-time algorithm
that takes as input a description of a uniformly-random sub-
space A ≤ F

n
2 with dim (A) = n/2, and that outputs circuits

CA and CA⊥ , such that the following holds.

(i) CA (v) decides whether v ∈ A, and CA⊥ (v) decides
whether v ∈ A⊥, for all v ∈ F

n
2 .

(ii) Given descriptions of CA and CA⊥ , no polynomial-
time quantum algorithm can find a generating set for

A with success probability Ω
(
2−n/2

)
.

Later, Conjecture 32 will specialize Conjecture 26 to the
setting of multivariate polynomials.

6.1 Useful Facts About Polynomials
By viewing elements of Fn2 as n-tuples (x1, . . . , xn), we can

evaluate a polynomial p (x1, . . . , xn) on points of Fn2 .
Given a subspace A ≤ F

n
2 and a positive integer d, let

Id,A be the set of degree-d polynomials (not necessarily ho-
mogeneous) that vanish on A. Since we are working over
F2, note that x2

i = xi, so it suffices to consider multilinear
polynomials (in which no xi is ever raised to a higher power
than 1).

Before presenting our scheme, we need to establish some
basic properties of polynomials over F

n
2 . First, we observe

that the set of polynomials does not depend on the choice
of basis.

Proposition 27. Let L be any invertible linear transfor-
mation on F

n
2 . Then the map p (v) 7→ p (Lv) defines a

permutation on the set of degree-d polynomials, which maps
Id,A to Id,L−1A.

Implementing our scheme will require sampling uniformly
from Id,A, which the next lemma shows is possible.

Lemma 28. It is possible to sample a uniformly-random
element of Id,A in time O(nd).

Proof. By Proposition 27, we can instead sample from
the space of polynomials which vanish on span

(
x1, . . . , xn/2

)
,

and then apply an appropriate change of basis to obtain a
sample from Id,A. So assume without loss of generality that
A = span

(
x1, . . . , xn/2

)
.

We claim that a polynomial p vanishes on A if and only
if every monomial of p intersects

{
xn/2+1, . . . , xn

}
. This

will immediately give an O
(
nd

)
-time sampling algorithm,

because we can consider each of the O
(
nd

)
degree-d mono-

mials in turn, and include each one independently with prob-
ability 1/2 if it intersects

{
xn/2+1, . . . , xn

}
.

To prove the claim: first, if every monomial intersects{
xn/2+1, . . . , xn

}
, then clearly p vanishes on A. Other-

wise, let m be a minimal monomial that does not intersect{
xn/2+1, . . . , xn

}
. Consider the vector v = (v1, . . . , vn) with

vi = 1 if and only if xi ∈ m. Since m does not intersect{
xn/2+1, . . . , xn

}
, clearly v ∈ A. Also, since m is mini-

mal, every other monomial must evaluate to 0 on v. Thus
p (v) = m (v) = 1, so p is not identically zero on A.



In addition to sampling polynomials that vanish on A, we
would like to guarantee that a sufficiently large system of
such polynomials uniquely determines the space A, so that
such a system can be effectively used as a membership oracle.

Lemma 29. Fix A ≤ F
n
2 and β > 1, and choose βn poly-

nomials p1, . . . , pβn uniformly and independently from Id,A.
Let Z be the set of v ∈ F

n
2 such that pi (v) = 0 for all

i ∈ [βn]. Then A ⊆ Z, and Pr [A = Z] = 1− 2−Ω(n).

Proof. A ⊆ Z is clear. For the second part, for each
v /∈ A, there must be some w ∈ A⊥ such that w·v = 1. Then
the map p (v) 7→ p (v) + w · v defines an involution of Id,A,
such that exactly one of p (v) and p (v) +w · v is zero. This
means that exactly half of the polynomials in Id,A vanish
at v. Hence Pr [p1 (v) = · · · = pβn (v) = 0] = 2−βn. By
the union bound, the probability that there are any shared
zeroes v /∈ A is therefore at most 2n2−βn = 2−Θ(n).

As mentioned earlier, we would also like to allow sam-
pling from noisy systems of equations, defined as follows:
let Rd,A,m,ǫ be the probability distribution over m-tuples
(p1, . . . , pm) that sets exactly (1− ǫ)m of the polynomials
pi (chosen uniformly at random) to be uniformly-random
samples from Id,A, and that sets the remaining ǫm of the
polynomials pi to be uniformly-random samples from Id,A′ ,
for a uniformly-random subspace A′ ≤ F

n
2 of dimension

dim (A). (Note that a different A′ is chosen for every such
pi.) Then using a Chernoff bound, it is not hard to show
that, provided m is large enough compared to n, a sam-
ple from Rd,A,m,ǫ also uniquely defines the subspace A with
overwhelming probability.

Lemma 30. Fix A ≤ F
n
2 and ǫ < 1/2, let β ≥ 3

(1−2ǫ)2
, and

choose polynomials p1, . . . , pβn from Rd,A,βn,ǫ. Let w (v) :=∑βn
i=1 pi (v), and let Z be the set of v ∈ F

n
2 such that w (v) ≤

ǫβn. Then A ⊆ Z, and Pr [A = Z] = 1− 2−Ω(n).

Proof. Deferred to the full version.

6.2 Explicit Hidden-Subspace Mini-Scheme
In our explicit mini-scheme, the bank chooses a subspace

A randomly and publishes sets of polynomials drawn from
Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ, along with the quantum money
state |A〉. By Lemma 30, a user can use these polynomials to
test membership in A and A⊥, and can therefore implement
the oracle mini-scheme in Section 5.1.

Formally, the mini-scheme E is defined as follows. Pa-
rameters ǫ ∈ [0, 1/2), β ≥ 3

(1−2ǫ)2
, and d ≥ 4 are fixed.

The complexity of the verification procedure will grow like
O
(
βnd+1

)
, but security might also improve for larger ǫ and

d. Then:

• Bank (0n) selects an n/2-dimensional subspace A ≤ F
n
2

uniformly at random, say by selecting n/2 random
linearly-independent generators. It then sets s :=
(sA, sA⊥), where sA and sA⊥ are lists of polynomials
drawn from Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ respectively. It
prepares the money state |A〉 and outputs the ban-
knote |$s〉 := |s〉 |A〉.

• Ver (/c) first checks that /c has the form (sA, sA⊥ , ρ)
where sA = (p1, . . . , pβn) and sA⊥ = (q1, . . . , qβn) are
lists of βn polynomials over F

n
2 . If not, it rejects. If

so, then it lets Z and Z⊥ be the sets of points v ∈ F
n
2

such that
∑βn
i=1 pi (v) ≤ ǫβn and

∑βn
i=1 qi (v) ≤ ǫβn

respectively. (Recall that with overwhelming proba-
bility, Z = A and Z⊥ = A⊥.) It then applies the
operation VZ := H⊗n

2 PZ⊥H⊗n
2 PZ to ρ, and accepts /c

if and only if VZ (ρ) accepts.

6.3 Analysis
We first observe that the mini-scheme E has perfect com-

pleteness.

Theorem 31. E has perfect completeness.

Proof. This follows from Lemmas 29 and 30, and par-
ticularly from the fact that A ⊆ Z and A⊥ ⊆ Z⊥ with
certainty. From this it follows that VZ := H⊗n

2 PZ⊥H⊗n
2 PZ

accepts the state |A〉 with probability 1.
Let us remark that, if the fraction ǫ of bad polynomials

is in [1/2, 1), one can still define a variant of our scheme—

for example, where Ver guesses that v ∈ A if
∑βn
i=1 pi (v) ≤

1
4
(1 + ǫ) βn, and that v /∈ A otherwise. The only disadvan-

tage is that we now lose the property of perfect complete-
ness, and can only guarantee a completeness error that is
exponentially small.

We now wish to argue about E ’s soundness. Naturally,
we can only hope to prove soundness assuming some com-
putational hardness conjecture. What is nice, though, is
that we can base E ’s soundness on a conjecture that talks
only about the hardness of a “classical” cryptographic prob-
lem (i.e., a problem with classical inputs and outputs). Let
us now state that conjecture, which is simply the abstract
Conjecture 26 specialized to the setting of multivariate poly-
nomials.

Conjecture 32 (Direct Product for Finding Subspace Ele-
ments). Let ǫ < 1/2 and β := 3

(1−2ǫ)2
. Given samples from

Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ, no polynomial-time quantum al-
gorithm can find a complete list of generators for A with

success probability Ω
(
2−n/2

)
.

Note that it is easy to find one nonzero element of A with
success probability 2−n/2, by choosing x ∈ F

n
2 randomly.

Conjecture 32 asserts both that it is impossible to do too
much better using Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ, and that find-
ing multiple elements of A is significantly harder than finding
one element.

The security of mini-scheme E follows easily from Conjec-
ture 32, despite the fact that a would-be counterfeiter has
access to a valid quantum banknote, whereas Conjecture 32
involves no such assumption.

Theorem 33 (Security Reduction for Explicit Mini-Scheme).
If Conjecture 32 holds, then E is secure.

Proof. Let CE be a counterfeiter against E . Then we
need to show that, using CE , we can find a complete list of

generators for A with Ω
(
2−n/2

)
success probability.

Given A ≤ F
n
2 with dim (A) = n/2, let s := (sA, sA⊥)

where sA and sA⊥ are samples fromRd,A,βn,ǫ andRd,A⊥,βn,ǫ

respectively. Recall from Lemma 30 that Pr [A = Z] =

1− 2−Ω(n) and Pr
[
A⊥ = Z⊥]

= 1− 2−Ω(n). Provided both
of these events occur, we can use s to decide membership
in A, and can therefore apply the projective measurement
PA. So let us prepare the uniform superposition over all 2n

elements of Fn2 , and then apply PA to it. With probability
2−n/2, this produces the state |A〉.



Once we have s and |A〉, we can then form the banknote
|$〉 := |s〉 |A〉, and provide this banknote to the counterfeiter
CE . By hypothesis, CE outputs a (possibly-entangled) state
ρ on two registers, such that 〈A|⊗2 ρ |A〉⊗2 ≥ ∆ for some
∆ = Ω (1/poly (n)). But now, because the mini-scheme E
is projective, Theorem 13 applies, and we can amplify ρ to
increase its fidelity with |A〉⊗2. After O

(
1

∆2 log n
)
calls to

CE , this gives us a state σ such that

〈A|⊗2 σ |A〉⊗2 ≥ 1− 1

n2
.

More generally, by alternating counterfeiting steps and am-
plification steps, we can produce as many registers as we like
that each have large overlap with |A〉. In particular, we can
produce a state ξ such that

〈A|⊗n ξ |A〉⊗n ≥ 1− o (1) .

If we now run Ver on each of the registers of ξ, the probabil-
ity that every invocation accepts is 1− o (1). Furthermore,
supposing that happens, the state we are left with is simply
|A〉⊗n. Finally, we measure each register of |A〉⊗n in the
standard basis. This gives us n elements x1, . . . , xn ∈ A,
which are independent and uniformly random. So by stan-
dard estimates, the probability that x1, . . . , xn do not con-
tain a complete generating set for A is 1/ exp (n).

Overall, the procedure above succeeded with probability
2−n/2 (1− o (1)), thereby giving us the desired contradiction
with Conjecture 32.

Using the standard construction of quantummoney schemes,
we can now produce a complete explicit money scheme,
whose security follows from Conjecture 32.

Theorem 34 (Security Reduction for Explicit Scheme).
Assuming Conjecture 32, there exists a public-key quantum
money scheme with perfect completeness and soundness er-
ror 2−Ω(n).

Proof. We apply the standard construction of Theo-
rem 14 with the mini-scheme E , whose completeness and
soundness follow from Theorems 31 and 33 respectively, as-
suming Conjecture 32.

6.4 Justifying Our Hardness Assumption
Though our hardness assumption is new, it is closely re-

lated to standard assumptions in multivariate polynomial
cryptography. Given a system of multivariate quadratics
over F2, finding a common zero is known to be NP-hard;
moreover, it is strongly believed that the problem remains
hard even for random systems of multivariate polynomials,
and cryptosystems based on this hardness assumption are
considered promising candidates for post-quantum cryptog-
raphy [20]. Therefore, if Conjecture 32 fails, it will almost
certainly be because some additional structure in this prob-
lem facilitates a new attack.

There are several ways in which Conjecture 32 is stronger
than the assumption that solving random systems of multi-
variate polynomials is hard. First, our systems have large,
well-structured solution spaces A and A⊥. Systems with
many solutions are not normally considered in the literature,
and while there seem to be no known attacks that exploit
this structure, the possibility is not ruled out. Second, we
provide two related systems, one with zeroes in A and one
with zeroes in A⊥. Again, this is a very specific structural
property which has not been considered, and there might be

unexpected attacks exploiting it. Third, Conjecture 32 as-
serts that no adversary can succeed with probability 2−n/2,
which seems significantly easier than succeeding with non-
negligible probability.

On the other hand, Conjecture 32 is weaker than typical
assumptions in multivariate polynomial cryptography in at
least one respect: a would-be counterfeiter needs to solve a
system of polynomial equations with a constant fraction of
noise. Solving noisy systems of linear equations over F2 is
called the learning parity with noise problem, and is gener-
ally believed to be hard even for quantum computers [36].
If true, this suggests that Gaussian elimination is fundamen-
tally hard to adapt to the presence of noise. But comput-
ing a Gröbner basis is a strict generalization of Gaussian
elimination to higher degree, and involves a nearly identi-
cal process of elimination. It therefore seems unlikely that
these approaches can be efficiently adapted to the setting
with noise. The problem of solving polynomials with noise
has been studied recently, and the best-known approaches
involve performing an exponential time search to determine
which equations are noisy [6].

But if solving linear systems with noise is already hard,
why do we even use higher-degree polynomials in our scheme?
The reason is that, alas, the “dual” structure of our money
scheme facilitates a simple attack in the case d = 1.

Claim 35. For all ǫ < 1, there exists a β such that one
can recover A efficiently given samples from Rd,A,βn,ǫ and
Rd,A⊥,βn,ǫ.

Proof. Let p1, . . . , pm and q1, . . . , qm be homogeneous
linear polynomials, of which a 1 − ǫ fraction vanish on A
and A⊥ respectively. Then the key observation is that each
pi vanishes on A if and only if it has the form pi (v) = ui·v for
some ui ∈ A⊥, while each qi vanishes on A

⊥ if and only if it
has the form qi (v) = wi ·v for some wi ∈ A. But by Lemma
30, if β > 3

(1−2ǫ)2
, then for each i ∈ [m], we can efficiently

decide whether ui ∈ A⊥ by counting the number of j’s for
which qj (ui) = 0, and can likewise decide whether wi ∈ A
by counting the number of j’s for which pj (wi) = 0.18 Thus
we can learn Θ (n) random elements of A or A⊥, and thereby
recover a basis for A.

There might be a more sophisticated attack for higher
degrees, but this is suggested only weakly by the existence
of an attack in the linear case. Indeed, the relation between
the complementary linear subspaces A and A⊥ is precisely
the sort of structure that should be preserved by linear maps,
but not by higher-degree polynomials!

For degree-2 polynomials, it is possible to obtain a similar
attack which recovers A from only a single sample. This at-
tack relies on the observation that quadratics have an easily-
computed canonical form [17], from which a basis for A can
be extracted in polynomial time. The essential problem is
that quadratic polynomials are very closely related to bilin-
ear forms, and that powerful methods from linear algebra
can therefore be applied to them.

Fortunately, the linear structure seems to be computation-
ally obscured when d ≥ 3. This phenomenon is related to
the sharp discontinuity in the difficulty of tensor problems

18If ǫ ≥ 1/2, then we can use a variant of Lemma 30 (not
stated in this extended abstract), for which it suffices to take
β ≥ 12

(1−ǫ)2 . We lose perfect completeness, but that is not

important here.



with order 3 and higher. More concretely, the coefficients
of a degree-d polynomial can be viewed as the entries of an
order-d tensor, and the existence of an attack in the degree
d = 2 case corresponds to the possibility of efficient opera-
tions on order-2 tensors. Basic operations on order-3 tensors
are NP-hard [26], however, and this suggests that analogous
attacks might not exist against degree-3 polynomials.

This state of affairs is reflected in existing attacks on a
standard cryptographic assumption called polynomial iso-
morphism with one secret. Here we are given two polyno-
mials p, q which are related by an unknown linear change
of coordinates L, and the task is to find such an L. For
degree-2 polynomials, this problem can be easily solved in
polynomial time [17], but already for degree-3 polynomials
the best known attacks take exponential time [35, 24, 17].
However, if an attacker is given n bits of partial information
about the linear transformation, then even in the d = 3 case,
it becomes possible to find the linear transformation that re-
lates the polynomials [17]. This does not directly facilitate
an attack on our assumption, but it suggests that a simi-
lar attack might be possible when d = 3, since an attacker
is only required to succeed with 2−n/2 probability. Fortu-
nately, this attack seems to rely on the particular structure
of degree 2 and 3 polynomials. Of course it is possible
that similar algorithms may be discovered for higher-degree
polynomials, but this would represent an advance in alge-
braic cryptanalysis.

7. PRIVATE-KEY QUANTUM MONEY
Recall that a private-key quantum money scheme is one

where only the bank itself is able to verify banknotes, us-
ing an n-bit key k = kprivate = kpublic that it keeps a
closely-guarded secret. Compensating for this disadvantage,
private-key schemes are known with much stronger security
guarantees than seem possible for public-key schemes.

In particular, as mentioned in Section 1.1, already forty
years ago Wiesner [39] described how to create private-key
quantum money that is information-theoretically secure. In
Wiesner’s scheme, each banknote consists of n unentangled
qubits together with a classical serial number s. Wies-
ner’s scheme also requires a giant database of serial num-
bers maintained by the bank, or in our setting, access to
a random oracle R. But in followup work, BBBW [14]
pointed out that we can simply replace R by any pseudo-
random function family {fk}k, to obtain a private-key quan-
tum money scheme that is computationally secure, unless a
polynomial-time counterfeiter can distinguish the fk’s from
random functions.

Strangely, we are unaware of any rigorous proof of the
security of Wiesner’s scheme until recently. However, an-
swering a question by one of us,19 Molina, Vidick and Wa-
trous [31] have now supplied the key ingredient for a security
proof. Specifically they show that, if a counterfeiter tries to
copy an n-qubit banknote |$〉 in Wiesner’s scheme, then the
output can have squared fidelity at most (3/4)n with |$〉⊗2.
(They also show that this is tight: there exists a non-obvious
counterfeiting strategy that succeeds with (3/4)n probabil-
ity.)

To complete the security proof, one needs to show that,
even given q banknotes |$1〉 , . . . , |$q〉, a counterfeiter cannot

19See http://theoreticalphysics.stackexchange.com/questions
/370/rigorous-security-proof-for-wiesners-quantum-money

prepare an additional banknote with non-negligible proba-
bility (even with a new serial number). In a forthcoming
paper [4], we will show how to adapt the methods of Sec-
tion 3 to prove that claim. Briefly, one can first define
a notion of private-key mini-schemes, in close analogy to
public-key mini-schemes. The work of Molina et al. [31]
then directly implies the security of what we call the “Wies-
ner mini-scheme.” Next, one can give a general reduction,
showing how to construct a full-blown private-key quantum
money scheme S starting from

(1) any private-key mini-scheme M, and

(2) any random or pseudorandom function family R.

Though the details turn out to be more complicated in the
private-key case, the proof of correctness for this reduction
is conceptually similar to the proof of Theorem 14. Namely,
one shows that any counterfeiter would yield either a break
of the underlying mini-scheme M, or else a way to distin-
guish R from a random function. Notice that the analysis is
completely unified: if R is a “true” random oracle, then we
get information-theoretic security (as in Wiesner’s scheme),
while if R is pseudorandom, then we get computational se-
curity (as in the BBBW scheme).

Unfortunately, as pointed out by Lutomirski [28] and Aaron-
son [3], the Wiesner and BBBW schemes both have a seri-
ous security hole. Namely, suppose a counterfeiter C can
repeatedly submit alleged banknotes to a “näıve and trust-
ing bank” for verification. Given a quantum state σ, such
a bank not only tells C whether the verification procedure
accepted or rejected, but also, in either case, gives the post-
measurement state σ̃ back to C. Then starting from a single
valid banknote |$〉, we claim that C can recover a complete
classical description of |$〉, using O (n log n) queries to the
bank. Once it has such a description, C can of course pre-
pare as many copies of |$〉 as it likes.

The attack is simple: let |$〉 = |θ1〉 · · · |θn〉 (we omit the
classical serial number s, since it plays no role here). Then
for each i ∈ [n], the counterfeiter tries “swapping out” the
ith qubit |θi〉 and replacing it with |b〉, for each of the four
possibilities |b〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉}. It then uses O (log n)
queries to the bank, to estimate the probability that the
state |θ1〉 · · · |θi−1〉 |b〉 |θi+1〉 · · · |θn〉 passes the verification test.
By doing so, C can learn a correct value of |θi〉 with success
probability 1 − o (1/n). The crucial point is that none of
these queries damage the qubits not being investigated (|θj〉
for j 6= i), since the bank measures those qubits in the cor-
rect bases. Therefore C can reuse the same banknote for
each query.

More generally, recall from Section 3.1 that we call a
private-key quantum money scheme query-secure, if it re-
mains secure even assuming the counterfeiter C can make
adaptive queries to Ver (k, ·). Then we saw that the Wiesner
and BBBW schemes are not query-secure. Recently, Farhi
et al. [21] proved a much more general “no-go” theorem—
which says intuitively that, if we want query-secure quan-
tum money, then the banknotes must hide information in
the “global correlations” between large numbers of qubits.

On the positive side, any public-key quantummoney scheme—
for example, our multivariate polynomial scheme from Sec-
tion 6—immediately yields a query-secure scheme with the
same security guarantee. This is because a counterfeiter
who knows the code of Ver can easily simulate oracle access



to Ver. But can we do any better than that, and construct a
query-secure money scheme whose security is unconditional
(as in Wiesner’s scheme), or else based on a pseudorandom
function (as in the BBBW scheme)?

In the forthcoming paper [4], we will answer this question
in the affirmative, by directly adapting the hidden subspace
scheme from Section 5 (i.e., the scheme based on a classical
oracle). Since the idea is an extremely simple one, let us
sketch it here.

Theorem 36 (Query-Secure Variant of Wiesner’s Scheme).
Relative to a random oracle R,20 there exists a private-key
quantum money scheme, with perfect completeness and 2−Ω(n)

soundness error, that is information-theoretically query-secure.
One can also replace the random oracle R by a pseudoran-
dom function family {fk}k, to obtain a private-key quantum
money scheme, with no oracle, that is query-secure assum-
ing that the fk’s cannot be distinguished from random in
quantum polynomial time.

Proof Sketch. For each key k and a serial number s,
we will think of the random oracle R as encoding a classi-
cal description R (k, s) of a subspace Ak,s ≤ F

n
2 , which is

uniformly random subject to dim (Ak,s) = n/2. Let |Ak,s〉
be a uniform superposition over Ak,s. Then the private-key
money scheme S = (KeyGen,Bank,Ver) is defined as follows:

• KeyGen (0n) generates an n-bit key k uniformly at ran-
dom.

• Bank (k) outputs a banknote |$s〉 := |s〉 |Ak,s〉, for a
random serial number s ∈ {0, 1}n.

• Ver (k, (s, ρ)) applies a projective measurement that
accepts ρ with probability 〈Ak,s|ρ|Ak,s〉.

Now, suppose it were possible to break S (i.e., to coun-
terfeit |Ak,s〉), using poly (n) adaptive queries to Ver (k, ·).
Then we claim that it would also be possible to break our
public-key scheme from Section 5, and thereby contradict
the unconditional security proof for the latter! The reason
is simply that any query to Ver, of the form Ver (k, (s, ρ)),
can easily be simulated using queries to UAk,s

and UA⊥

k,s
, the

membership oracles for Ak,s and A⊥
k,s respectively that are

available to a counterfeiter against the public-key scheme.
Finally, suppose we replace R (k, s) by a pseudorandom

function fk (s). Then just like with the original BBBW
scheme [14], we can argue as follows. Since we already
showed that S is information-theoretically secure when in-
stantiated with a “true” random function, any break of S in
the pseudorandom case would thereby distinguish the func-
tion fk from random.

8. OPEN PROBLEMS
The “obvious” problem is to better understand the se-

curity of our explicit scheme based on polynomials. Are
there nontrivial attacks, for example using Gröbner-basis
algorithms? Can we base the security of our scheme—or
a related scheme—on some cryptographic assumption that
does not involve exponentially-small success probabilities?
What happens as we change the field size or polynomial de-
gree? Does “hiding” a subspace A ≤ F

n
2 in the way we

20Or alternatively, assuming the bank has access to a giant
random number table, as in Wiesner’s original setup [39].

suggest, as the set of common zeroes of multivariate poly-
nomials p1, . . . , pm : F

n
2 → F2, have other cryptographic

applications, for example to program obfuscation [10]?
Of course, there is also tremendous scope for inventing

new schemes, which might be based on different assumptions
and have different strengths and weaknesses.

Let us move on to some general questions about public-key
quantum money. First, is there an unconditionally-secure
public-key quantum money scheme relative to a random or-
acle R? (Recall that Wiesner’s original scheme [39] was
unconditionally-secure and used only a random oracle, but
was private-key. Meanwhile, our scheme from Section 5 is
unconditionally-secure and public-key, but requires a non-
random oracle.) Second, is there a public-key quantum
money scheme where the banknotes consist of single, unen-
tangled qubits, as in Wiesner’s scheme? Note that the results
of Farhi et al. [21] imply that, if such a scheme exists, then it
cannot be projective. Third, is there a general way to am-
plify soundness error in quantum money schemes?21 (We
show how to amplify completeness error in the full version.)

8.1 Quantum Copy-Protection and More
Quantum money is just one novel cryptographic use for

the No-Cloning Theorem. Given essentially any object of
cryptographic interest, one can ask whether quantum me-
chanics lets us make the object uncloneable. Section 1.4 al-
ready discussed one example—uncloneable signatures—but
there are many others, such as commitments and proofs.22

Along those lines, Aaronson [3] proposed a task that, if
achievable, would arguably be an even more dramatic appli-
cation of the No-Cloning Theorem than quantum money:
namely, quantum software copy-protection. He gave ex-
plicit schemes—which have not yet been broken—for copy-
protecting a restricted class of functions, namely the point
functions. In these schemes, given a “password” s ∈ {0, 1}n,
a software vendor can prepare a quantum state |ψs〉, which
allows its holder to recognize s: in other words, to decide
whether x = s given x ∈ {0, 1}n as input. On the other
hand, given |ψs〉, it seems intractable not only to find s for
oneself, but even to prepare a second quantum state with
which s can be recognized.

Admittedly, recognizing passwords is an extremely restricted
functionality. However, relative to a quantum oracle, Aaron-
son [3] also described a scheme to quantumly copy-protect
arbitrary programs, just as well as if the software vendor
were able to hand out uncloneable black boxes.23 In the
spirit of this paper, we can now ask: is there likewise a
way to quantumly copy-protect arbitrary programs relative
to a classical oracle? We conjecture that the answer is yes,
and in fact we have plausible candidate constructions, which
are directly related to the hidden-subspace money scheme
of Section 5. However, the security of those constructions
seems to hinge on the following conjecture.

Conjecture 37 (Direct Product for Finding Black-Box Sub-
space Elements). Let A be a uniformly-random subspace of

21Theorem 13 gives some soundness amplification for projec-
tive schemes: namely, from constant to 1/poly (n). Here
we are asking whether one can do anything better.

22Even within complexity theory, it would be interesting to
study the class QMA (Quantum Merlin-Arthur) subject to
the constraint that witnesses must be hard to clone—or al-
ternatively, that witnesses must be easy to clone!

23As usual, full details have not yet appeared yet.



F
n
2 satisfying dim (A) = n/2. Then given membership ora-

cles for both A and A⊥, any quantum algorithm needs 2Ω(n)

queries to find two distinct nonzero elements x, y ∈ A, with

success probability Ω
(
2−n/2

)
.

Besides its applications for copy-protection, a proof of
Conjecture 37 would be an important piece of formal evi-
dence for Conjecture 32, on which we based the security of
our explicit money scheme.
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