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Abstract

If we are given an adversarially chosen n-qubit state, to which we
are allowed to apply any number of single-qubit Hadamard gates, can
we always produce a state with all 2n computational basis states having
non-zero amplitudes? In this short note we show that the answer
is “yes”.

1 Introduction

With respect to some (orthonormal) computational basis, write
H for the single-qubit Hadamard map(

1 1
1 −1

)
/
√

2,

and write |ψ 〉n =
∑

x αx|x 〉 for some given n-qubit state, in
terms of the computational basis { |x 〉 : x ∈ Fn2 }. We have
that

∑
x |αx|2 = 1 by normalisation. Our goal shall be to analyse

the quantity

µ(|ψ 〉n) := max
p∈Fn

2

min
x∈Fn

2

∣∣∣ 〈x | (Hp1⊗ . . .⊗Hpn) |ψ 〉n
∣∣∣. (1)

For the purpose of playing some adversarial games, define also

µn := min
|ψ 〉n

µ(|ψ 〉n). (2)
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We will show that µn is never zero. This solves Scott Aaronson’s
10th most annoying question in quantum computation [1], which
is stated as : Given an n-qubit pure state, is there always a
way to apply Hadamard gates to some subset of the qubits, so
as to make all 2n computational basis components have nonzero
amplitudes?

2 µn is never zero

We start this section with a simple lemma, then go on to discuss
how this implies a lower bound for µn.

For any n-dimensional hypercube whose vertices are deco-
rated each with a single bit (element of F2), call by the name re-
duction the following process : identifying one of the n directions
associated to the hypercube, merging each vertex of the hyper-
cube with the one that neighbours it in the identified direction,
decorating the merger with the sum (in F2,) of the decorations
of the original two contributing vertices, thereby obtaining an
n− 1-dimensional hypercube with vertices again decorated each
with a single bit.

Lemma 1 For any hypercube decorated as above, if at least one
vertex is decorated with a 1, then there exists a (possibly empty)
sequence of reductions resulting in a hypercube all of whose ver-
tices are decorated with a 1.

For a contradiction, consider a smallest hypercube not hav-
ing this property. Because no sequence of reductions on such a
hypercube may result in an “all 1” hypercube, no reduction of
the hypercube can have a reduction sequence that results in an
“all 1” hypercube either. Therefore each of its reductions must
be either a smaller counterexample to the lemma or else be an
“all 0” hypercube. The first of these possibilities we must reject
by hypothesis (since our original counterexample was claimed
smallest,) and so every reduction of the original hypercube must
be “all 0”. This means that every pair of neighbouring vertices
in it must have decorations summing to 0, which means that the
decorations must all be the same. But by hypothesis, they can
neither be all 0 (since at least one is promised to be 1 in the
lemma,) nor can they be all 1 (in this case, we could perform the
empty sequence of reductions, resulting in an “all 1” hypercube).
Thus there is no smallest hypercube not having the property of
the lemma, and so the lemma stands by induction.
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This sets the scene for a proof that µn 6= 0. Suppose to the
contrary that µn = 0 for some n. Then there exists some |ψ 〉n =∑

y αy| y 〉 for which, for all p ∈ Fn2 , there exists an x ∈ Fn2

such that the xth component (in the computational basis) of the
vector T (p)|ψ 〉n is zero, where T (p) = 2|p|/2·Hp1⊗. . .⊗Hpn . Now
let M be a subgroup of C (complex field under addition) which is
the lowest-rank Z-module that happens to contain all of the αy
values, (i.e. M is the additive closure of the set {αy : y ∈ Fn2},)
and let π be any non-trivial homomorphism from M to Z. Since
the entries of T (p) are all integers, it follows that

∀p ∃x 0 = π(0) = π
(
〈x | T (p)

∑
y

αy| y 〉
)

= π
( ∑

y

{T (p)}xy αy
)

=
∑
y

{T (p)}xy π(αy)

= 〈x | T (p)
∑
y

π(αy)| y 〉, (3)

and hence there must exist some (unnormalised) non-zero vector∑
y π(αy)| y 〉, whose coefficients are integers, that equally well

provides a counterexample. Consider such a counterexample af-
ter first factoring out any powers of 2 common to all the integer
coefficients, so that at least one of the coefficients is odd. Regard
the coefficients as being in one-to-one correspondence with the
vertices of an n-dimensional hypercube graph. Let the vertices
of such a hypercube (∼= Fn2 ) be decorated each with a single bit
according to the mod 2 value of the corresponding (integer) coef-
ficient. (Since at least one of the coefficients is odd, at least one
of the decorations will be a 1.) Then by reading equation (3)
“modulo 2”, it may be seen that our counterexample directly
contradicts lemma 1. (This is because the matrix T (p) (mod 2)
emulates the ‘reduction sequence’ employed in the lemma, and
equation (3) says that all reduction sequences terminate with a
hypercube that has at least one 0 decoration.) Hence we must
conclude that µn > 0 after all.

3 Upper bounds

Consider the state

|ψ 〉n =
(

cos(π/8)| 0 〉 + sin(π/8)| 1 〉
)⊗n

. (4)
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It is easy to see that Hadamard gates on this state do not affect
the magnitudes of the amplitudes, and so µ(|ψ 〉n) = sinn(π/8).
This is an upper bound for µn, and is quite probably tight. (The
reader may easily check that it is tight in the case n = 1.)

4 Further work

It would be nice to have a polynomial-time construction for
µ(|ψ 〉n) whenever only polynomially many coefficients of |ψ 〉n
are non-zero. We would also like to have a proof of the tightness
of the upper bound quoted above, or else some lower bounds for
µn.
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