Behold the PCP Theorem, one of the crowning achievements of complexity theory:

Given a 3SAT formula φ, it’s NP-hard to decide whether (1) φ is satisfiable or (2) at most a 1-ε fraction of the clauses are satisfiable, promised that one of these is the case. Here ε is a constant independent of n.

In recent weeks, I’ve become increasingly convinced that a Quantum PCP Theorem like the following will one day be a crowning achievement of quantum complexity theory:

Given a set of local measurements on an n-qubit register, it’s QMA-hard to decide whether (1) there exists a state such that all of the measurements accept with probability 1, or (2) for every state, at most a 1-ε fraction of the measurements accept with probability more than 1-δ, promised that one of these is the case. Here a “local” measurement is one that acts on at most (say) 3 qubits, and ε and δ are constants independent of n.

I’m 99% sure that this theorem (alright, conjecture) or something close to it is true. I’m 95% sure that the proof will require a difficult adaptation of classical PCP machinery (whether Iritean or pre-Iritean), in much the same way that the Quantum Fault-Tolerance Theorem required a difficult adaptation of classical fault-tolerance machinery. I’m 85% sure that the proof is achievable in a year or so, should enough people make it a priority. I’m 75% sure that the proof, once achieved, will open up heretofore undreamt-of vistas of understanding and insight. I’m 0.01% sure that I can prove it. And that is why I hereby bequeath the actual proving part to you, my readers.

Notes:

- By analogy to the classical case, one expects that a full-blown Quantum PCP Theorem would be preceded by weaker results (“quantum assignment testers”, quantum PCP’s with weaker parameters, etc). So these are obviously the place to start.
- Why hasn’t anyone tackled this question yet? Well, one reason is that it’s hard. But a second reason is that people keep getting hung up on exactly how to formulate the question. To forestall further nitpicking, I hereby declare it obvious that a “Quantum PCP Theorem” means nothing more or less than a robust version of Kitaev’s QMA-completeness theorem, in exactly the same sense that the classical PCP Theorem was a robust version of the Cook-Levin Theorem. Any formulation that captures this spirit is fine; mine was only one possibility.