there are a plenty of subtle topics covered in Li-Vitányi exceptionally well, but I’m still pretty sure your style and insights would prove useful for anyone trying to get a first grasp on stuff like Levin search, inductive reasoning, Chaitin type perspective of Gödel’s theorems (his omega and philosophical remarks probably included), the incompressiblity method, time bounded kolmogorov complexity (I especially wonder whether you’ve ever used some of this material in your work, some theorem of Fortnow or Sipser for instance), just to name a few. ]]>

My memory is bad on this, I forget the exact context for which Professor Lagarias uses the word “paradox”, but he shows three mathematical objects, (1) a secure psuedorandom generator, (2) a one way function, (3) a perfectly secure cryptosystem. If one of these objects exist, they all exist. I’m going to guess that he uses the word paradox akin to “a difficult puzzle to solve” ]]>

I can’t believe you answer all of these questions. But I love it. I bought your because of it (Kindle – still a little pricey for digital but worth it).

So if the universe can be reduced or represented as bits. would it be a random number at any point in time?

]]>*That’s true, but presents a false dichotomy. One strategy for writing secure code is to formalize the requirements. Ideally in a DSL that generates the actual code. That doesn’t address most side channel attacks (timing, compression,…) but it does address many other attacks, such as Heartbleed and the recent validation problems. cf langsec. (All of which is completely orthogonal to your point.)*