Archive for the ‘Nerd Interest’ Category

Me interviewed by John Horgan (the author of “The End of Science”)

Thursday, April 21st, 2016

You can read it here.

It’s long (~12,000 words).  Rather than listing what this interview covers, it would be easier to list what it doesn’t cover.  (My favorite soda flavors?)

If you read this blog, much of what I say there will be old hat, but some of it will be new.  I predict that you’ll enjoy the interview iff you enjoy the blog.  Comments welcome.

Grading Trudeau on quantum computing

Sunday, April 17th, 2016

Update (4/19): Inspired by Trudeau’s performance (which they clocked at 35 seconds), Maclean’s magazine asked seven quantum computing researchers—me, Krysta Svore, Aephraim Steinberg, Barry Sanders, Davide Venturelli, Martin Laforest, and Murray Thom—to also explain quantum computing in 35 seconds or fewer.  You can see all the results here (here’s the audio from my entry).

The emails starting hitting me like … a hail of maple syrup from the icy north.  Had I seen the news?  Justin Trudeau, the dreamy young Prime Minister of Canada, visited the Perimeter Institute for Theoretical Physics in Waterloo, one of my favorite old haunts.  At a news conference at PI, as Trudeau stood in front of a math-filled blackboard, a reporter said to him: “I was going to ask you to explain quantum computing, but — when do you expect Canada’s ISIL mission to begin again, and are we not doing anything in the interim?”

Rather than answering immediately about ISIL, Trudeau took the opportunity to explain quantum computing:

“Okay, very simply, normal computers work, uh, by [laughter, applause] … no no no, don’t interrupt me.  When you walk out of here, you will know more … no, some of you will know far less about quantum computing, but most of you … normal computers work, either there’s power going through a wire, or not.  It’s 1, or a 0, they’re binary systems.  Uh, what quantum states allow for is much more complex information to be encoded into a single bit.  Regular computer bit is either a 1 or a 0, on or off.  A quantum state can be much more complex than that, because as we know [speeding up dramatically] things can be both particle and wave at the same times and the uncertainty around quantum states [laughter] allows us to encode more information into a much smaller computer.  So, that’s what exciting about quantum computing and that’s… [huge applause] don’t get me going on this or we’ll be here all day, trust me.”

What marks does Trudeau get for this?  On the one hand, the widespread praise for this reply surely says more about how low the usual standards for politicians are, and about Trudeau’s fine comic delivery, than about anything intrinsic to what he said.  Trudeau doesn’t really assert much here: basically, he just says that normal computers work using 1’s and 0’s, and that quantum computers are more complicated than that in some hard-to-explain way.  He gestures toward the uncertainty principle and wave/particle duality, but he doesn’t say anything about the aspects of QM most directly relevant to quantum computing—superposition or interference or the exponential size of Hilbert space—nor does he mention what quantum computers would or wouldn’t be used for.

On the other hand, I’d grade Trudeau’s explanation as substantially more accurate than what you’d get from a typical popular article.  For pay close attention to what the Prime Minister never says: he never says that a qubit would be “both 0 and 1 at the same time,” or any equivalent formulation.  (He does say that quantum states would let us “encode more information into a much smaller computer,” but while Holevo’s Theorem says that’s false for a common interpretation of “information,” it’s true for other reasonable interpretations.)  The humorous speeding up as he mentions particle/wave duality and the uncertainty principle clearly suggests that he knows it’s more subtle than just “0 and 1 at the same time,” and he also knows that he doesn’t really get it and that the journalists in the audience don’t either.  When I’m grading exams, I always give generous partial credit for honest admissions of ignorance.  B+.

Anyway, I’d be curious to know who at PI prepped Trudeau for this, and what they said.  Those with inside info, feel free to share in the comments (anonymously if you want!).

(One could also compare against Obama’s 2008 answer about bubblesort, which was just a mention of a keyword by comparison.)

Update: See also a Motherboard article where Romain Alléaume, Amr Helmy, Michele Mosca, and Aephraim Steinberg rate Trudeau’s answer, giving it 7/10, no score, 9/10, and 7/10 respectively.

Here’s some video of me spouting about Deep Questions

Thursday, February 4th, 2016

In January 2014, I attended an FQXi conference on Vieques island in Puerto Rico.  While there, Robert Lawrence Kuhn interviewed me for his TV program Closer to Truth, which deals with science and religion and philosophy and you get the idea.  Alas, my interview was at the very end of the conference, and we lost track of the time—so unbeknownst to me, a plane full of theorists was literally sitting on the runway waiting for me to finish philosophizing!  This was the second time Kuhn interviewed me for his show; the first time was on a cruise ship near Norway in 2011.  (Thankless hero that I am, there’s nowhere I won’t travel for the sake of truth.)

Anyway, after a two-year wait, the videos from Puerto Rico are finally available online.  While my vignettes cover what, for most readers of this blog, will be very basic stuff, I’m sort of happy with how they turned out: I still stutter and rock back and forth, but not as much as usual.  For your viewing convenience, here are the new videos:

I had one other vignette, about why the universe exists, but they seem to have cut that one.  Alas, if I knew why the universe existed in January 2014, I can’t remember any more.

One embarrassing goof: I referred to the inventor of Newcomb’s Paradox as “Simon Newcomb.”  Actually it was William Newcomb: a distant relative of Simon Newcomb, the 19th-century astronomer who measured the speed of light.

At their website, you can also see my older 2011 videos, and videos from others who might be known to readers of this blog, like Marvin Minsky, Roger Penrose, Rebecca Newberger Goldstein, David ChalmersSean Carroll, Max Tegmark, David Deutsch, Raphael Bousso, Freeman DysonNick BostromRay Kurzweil, Rodney Brooks, Stephen Wolfram, Greg Chaitin, Garrett Lisi, Seth Lloyd, Lenny Susskind, Lee Smolin, Steven Weinberg, Wojciech Zurek, Fotini Markopoulou, Juan Maldacena, Don Page, and David Albert.  (No, I haven’t yet watched most of these, but now that I linked to them, maybe I will!)

Thanks very much to Robert Lawrence Kuhn and Closer to Truth (and my previous self, I guess?) for providing Shtetl-Optimized content so I don’t have to.

Update: Andrew Critch of CFAR asked me to post the following announcement.

We’re seeking a full time salesperson for the Center for Applied Rationality in Berkeley, California. We’ve streamlined operations to handle large volume in workshop admissions, and now we need that volume to pour in. Your role would be to fill our workshops, events, and alumni community with people. Last year we had 167 total new alumni. This year we want 120 per month. Click here to find out more.

Marvin Minsky

Tuesday, January 26th, 2016

Yesterday brought the sad news that Marvin Minsky passed away at age 88.  I never met Minsky (I wish I had); I just had one email exchange with him back in 2002, about Stephen Wolfram’s book.  But Minsky was my academic great-grandfather (through Manuel Blum and Umesh Vazirani), and he influenced me in many other ways.  For example, in his and Papert’s 1968 book Perceptrons—notorious for “killing neural net research for a decade,” because of its mis- or over-interpreted theorems about the representational limitations of single-layer neural nets—the way Minsky and Papert proved those theorems was by translating questions about computation into questions about the existence or nonexistence of low-degree polynomials with various properties, and then answering the latter questions using MATH.  Their “polynomial method” is now a mainstay of quantum algorithms research (having been brought to the subject by Beals et al.), and in particular, has been a mainstay of my own career.  Hardly Minsky’s best-known contribution to human knowledge, but that even such a relatively minor part of his oeuvre could have legs half a century later is a testament to his impact.

I’m sure readers will have other thoughts to share about Minsky, so please do so in the comments section.  Personal reminiscences are especially welcome.

Edging in: the biggest science news of 2015

Sunday, January 3rd, 2016

For years, I was forced to endure life with my nose up against the glass of the Annual Edge Question.  What are you optimistic about?  Ooh! ooh! Call on me!  I’m optimistic about someday being able to prove my pessimistic beliefs (like P≠NP).  How is the Internet changing the way you think?  Ooh, ooh! I know! Google and MathOverflow are saving me from having to think at all!  So then why are they only asking Steven Pinker, Freeman Dyson, Richard Dawkins, David Deutsch, some random other people like that?

But all that has changed.  This year, I was invited to participate in Edge for the first time.  So, OK, here’s the question:

What do you consider the most interesting recent [scientific] news?  What makes it important?

My response is here.  I wasn’t in love with the question, because of what I saw as an inherent ambiguity in it: the news that’s most interesting to me, that I have a comparative advantage in talking about, and that people probably want to hear me talk about (e.g., progress in quantum computing), is not necessarily what I’d regard as the most important in any objective sense (e.g., climate change).  So, I decided to write my answer precisely about my internal tension in what I should consider most interesting: should it be the recent progress by John Martinis and others toward building a quantum computer?  Or should it be the melting glaciers, or something else that I’m confident will affect the future of the world?  Or possibly the mainstream attention now being paid to the AI-risk movement?  But if I really want to nerd out, then why not Babai’s graph isomorphism algorithm?  Or if I actually want to be honest about what excited me, then why not the superquadratic separations between classical and quantum query complexities for a total Boolean function, by Ambainis et al. and my student Shalev Ben-David?  On the other hand, how can I justify even caring about such things while the glaciers are melting?

So, yeah, my response tries to meditate on all those things.  My original title was “How nerdy do you want it?,” but John Brockman of Edge had me change it to something blander (“How widely should we draw the circle?”), and made a bunch of other changes from my usual style.  Initially I chafed at having an editor for what basically amounted to a blog post; on the other hand, I’m sure I would’ve gotten in trouble much less often on this blog had I had someone to filter my words for me.

Anyway, of course I wasn’t the only person to write about the climate crisis.  Robert Trivers, Laurence Smith, and Milford Wolpoff all wrote about it as well (Trivers most chillingly and concisely), while Max Tegmark wrote about the mainstreaming of AI risk.  John Naughton even wrote about Babai’s graph isomorphism breakthrough (though he seems unaware that the existing GI algorithms were already extremely fast in practice, and therefore makes misleading claims about the new algorithm’s practical applications).  Unsurprisingly, no one else wrote about breakthroughs in quantum query complexity: you’ll need to go to my essay for that!  A bit more surprisingly, no one besides me wrote about progress in quantum computing at all (if we don’t count the loophole-free Bell test).

Anyway, on reflection, 2015 actually was a pretty awesome year for science, no matter how nerdy you want it or how widely you draw the circle.  Here are other advances that I easily could’ve written about but didn’t:

I’ve now read all (more or less) of this year’s Edge responses.  Even though some of the respondents pushed personal hobbyhorses like I’d feared, I was impressed by how easy it was to discern themes: advances that kept cropping up in one answer after another and that one might therefore guess are actually important (or at least, are currently perceived to be important).

Probably at the top of the list was a new gene-editing technique called CRISPR: Randolph Neese, Paul Dolan, Eric Topol, Mark Pagel, and Stuart Firestein among others all wrote about this, and about its implications for creating designer humans.

Also widely-discussed was the discovery that most psychology studies fail to replicate (I’d long assumed as much, but apparently this was big news in psychology!): Nicholas Humphrey, Stephen Kosslyn, Jonathan Schooler, Ellen Winner, Judith Rich Harris, and Philip Tetlock all wrote about that.

Then there was the Pluto flyby, which Juan Enriquez, Roger Highfield, and Nicholas Christakis all wrote about.  (As Christakis, Master of Silliman College at Yale, was so recently a victim of a social-justice mob, I found it moving how he simply ignored those baying for his head and turned his attention heavenward in his Edge answer.)

Then there was progress in deep learning, including Google’s Deep Dream (those images of dogs in nebulae that filled your Facebook wall) and DeepMind (the program that taught itself how to play dozens of classic video games).  Steve Omohundro, Andy Clark, Jamshed Bharucha, Kevin Kelly, David Dalrymple, and Alexander Wissner-Gross all wrote about different aspects of this story.

And recent progress in SETI, which Yuri Milner (who’s given $100 million for it) and Mario Livio wrote about.

Unsurprisingly, a bunch of high-energy physicists wrote about high-energy physics at the LHC: how the Higgs boson was found (still news?), how nothing other than the Higgs boson was found (the biggest news?), but how there’s now the slightest hint of a new particle at 750 GeV.  See Lee Smolin, Garrett Lisi, Sean Carroll, and Sarah Demers.

Finally, way out on the Pareto frontier of importance and disgustingness was the recently-discovered therapeutic value of transplanting one person’s poop into another person’s intestines, which Joichi Ito, Pamela Rosenkranz, and Alan Alda all wrote about (it also, predictably, featured in a recent South Park episode).

Without further ado, here are 27 other answers that struck me in one way or another:

  • Steven Pinker on happy happy things are getting better (and we can measure it)
  • Freeman Dyson on the Dragonfly astronomical observatory
  • Jonathan Haidt on how prejudice against people of differing political opinions was discovered to have surpassed racial, gender, and religious prejudice
  • S. Abbas Raza on Piketty’s r>g
  • Rebecca Newberger Goldstein, thoughtful as usual, on the recent study that said it’s too simple to say female participation is lower in STEM fields—rather, female participation is lower in all and only those fields, STEM or non-STEM, whose participants believe (rightly or wrongly) that “genius” is required rather than just conscientious effort
  • Bill Joy on recent advances on reducing CO2 emissions
  • Paul Steinhardt on recent observations saying that, not only were the previous “B-modes from inflation” just galactic dust, but there are no real B-modes to within the current detection limits, and this poses a problem for inflation (I hadn’t heard about this last part)
  • Aubrey de Grey on new antibiotics that are grown in the soil rather than in lab cultures
  • John Tooby on the evolutionary rationale for germline engineering
  • W. Tecumseh Fitch on the coming reality of the “Jurassic Park program” (bringing back extinct species through DNA splicing—though probably not dinosaurs, whose DNA is too degraded)
  • Keith Devlin on the new prospect of using massive datasets (from MOOCs, for example) to actually figure out how students learn
  • Richard Muller on how air pollution in China has become one of the world’s worst problems (imagine every child in Beijing being force-fed two packs of cigarettes per day)
  • Ara Norenzayan on the demographic trends in religious belief
  • James Croak on amazing advances in battery technology (which were news to me)
  • Buddhini Samarasinghe on (among other things) the power of aspirin to possibly prevent cancer
  • Todd Sacktor on a new treatment for Parkinson’s
  • Charles Seife on the imminent availability of data about pretty much everything in our lives
  • Susan Blackmore on “that dress” and what it revealed about the human visual system
  • Brian Keating on experiments that should soon tell us the neutrinos’ masses (again, I hadn’t heard about these)
  • Michael McCullough on something called “reproductive religiosity theory,” which posits that the central purpose of religions is to enforce social norms around mating and reproduction (for what it’s worth, I’d always regarded that as obvious; it’s even expounded in the last chapter of Quantum Computing Since Democritus)
  • Greg Cochran on the origin of Europeans
  • David Buss on the “mating crisis among educated women”
  • Ed Regis on how high-fat diets are better (except, isn’t this the principle behind Atkins, and isn’t this pretty old news by now?)
  • Melanie Swan on blockchain-based cryptography, such as Bitcoin (though it wasn’t entirely clear to me what point Swan was making about it)
  • Paul Davies on LIGO getting ready to detect its first gravitational waves
  • Samuel Arbesman on how weather prediction has gotten steadily better (rendering our culture’s jokes about the perpetually-wrong weatherman outdated, with hardly anyone noticing)
  • Alison Gopnik on how the ubiquity of touchscreen devices like the iPad means that toddlers can now master computers, and this is something genuinely new under the sun (I can testify from personal experience that she’s onto something)

Then there were three answers for which the “progress” being celebrated, seemed to me to be progress racing faster into WrongVille:

  • Frank Tipler on how one can conclude a priori that there must be a Big Crunch to our future (and hence, the arena for Tiplerian theology) in order to prevent the black hole information paradox from arising, all recent cosmological evidence to the contrary be damned.
  • Ross Anderson on an exciting conference whose participants aim to replace quantum mechanics with local realistic theories.  (Anderson, in particular, is totally wrong that you can get Bell inequality violation from “a combination of local action and global correlation,” unless the global correlation goes as far as a ‘t-Hooft-like superdeterministic conspiracy.)
  • Gordon Kane on how the big news is that the LHC should soon see superparticles.  (This would actually be fine except that Kane omits the crucial context, that he’s been predicting superparticles just around the corner again and again for the past twenty years and they’ve never shown up)

Finally, two responses by old friends that amused me.  The science-fiction writer Rudy Rucker just became aware of the discovery of the dark energy back in 1998, and considers that to be exciting scientific news (yes, Rudy, so it was!).  And Michael Vassar —the Kevin Bacon or Paul Erdös of the rationalist world, the guy who everyone‘s connected to somehow—writes something about a global breakdown of economic rationality, $20 bills on the sidewalk getting ignored, that I had trouble understanding (though the fault is probably mine).

If I can’t do math, I don’t want to be part of your revolution

Thursday, December 3rd, 2015

1. Emma Goldman, the fiery early-20th-century anarchist, is credited for giving the world the immortal refrain “if I can’t dance, I don’t want to be part of your revolution” (actually it’s not clear that she ever said it so pithily, but she did express such a thought).  Admittedly, no one would mistake me for either a dancer or an anarchist, but I’ve always felt a kinship with Goldman over her terpsichorean line in the sand.  The other day, it occurred to me that there’s a parallel sentence that sums up my entire political philosophy—on the one hand, my default instinct to side with the downtrodden and with the progressive left, but on the other, my dissent from any even vaguely anti-STEM, anti-rationality, or anti-nerd undercurrents, and my refusal to join any popular uprising that seems liable (for example) to delay the discovery of a P≠NP proof, by inconveniencing the people working on one.

So, here’s my sentence, which you should feel free to reprint on t-shirts and coffee mugs as desired:

If I can’t do math, I don’t want to be part of your revolution.

2. Over at Scientific American‘s website, John Horgan posted an account of a workshop on Integrated Information Theory, which I attended a couple weeks ago at NYU (along with David Chalmers, Giulio Tononi, Christof Koch, Max Tegmark, and a dozen or so others).  I was the “official skeptic” of the workshop, and gave a talk based on my blog post The Unconscious Expander.  I don’t really agree with what Horgan says about physics and information in general, but I do (of course) join him in his skepticism of IIT, and he gives a pretty accurate summary of what people said at the workshop.  (Alas, my joke about my lunch not being poisoned completely bombed with the IIT crowd … as I should’ve predicted!)  The workshop itself was lots of fun; thanks so much to David, Giulio, and Hedda Hassel Morch for organizing it.

3. As you might have noticed, I’ve created a new category on this blog: “Obviously I’m Not Defending Aaronson.”  This category—reserved for posts that caused at least a hundred people to hate me—refers to a peculiar phrase I encountered over and over, in the social media threads denouncing me as a horrible person.  The phrase tends to occur in passages like: “look, obviously I’m not defending Aaronson, but it’s worth pointing out that, if you carefully reread everything he wrote, he never actually said that war orphans should be roasted alive and then eaten for fun.  That’s just something we all know that a clueless, arrogant nerd like him would think.”

4. Right now I’m at the “ThinkQ” conference at IBM in Yorktown Heights.  Here are the PowerPoint slides from my talk yesterday, entitled “The Largest Possible Quantum Speedups.”  Regular readers of this blog will find a lot that’s old and a little that’s new.

Talk, be merry, and be rational

Monday, November 23rd, 2015

Yesterday I wrote a statement on behalf of a Scott Alexander SlateStarCodex/rationalist meetup, which happened last night at MIT (in the same room where I teach my graduate class), and which I’d really wanted to attend but couldn’t.  I figured I’d share the statement here:

I had been looking forward to attending tonight’s MIT SlateStarCodex meetup as I hardly ever look forward to anything. Alas, I’m now stuck in Chicago, with my flight cancelled due to snow, and with all flights for the next day booked up. But instead of continuing to be depressed about it, I’ve decided to be happy that this meetup is even happening at all—that there’s a community of people who can read, let’s say, a hypothetical debate moderator questioning Ben Carson about what it’s like to be a severed half-brain, and simply be amused, instead of silently trying to figure out who benefits from the post and which tribe the writer belongs to. (And yes, I know: the answer is the gray tribe.) And you can find this community anywhere—even in Cambridge, Massachusetts! Look, I spend a lot of time online, just getting more and more upset reading social justice debates that are full of people calling each other douchebags without even being able to state anything in the same galactic supercluster as the other side’s case. And then what gives me hope for humanity is to click over to the slatestarcodex tab, and to see all the hundreds of comments (way more than my blog gets) by people who disagree with each other but who all basically get it, who all have minds that don’t make me despair. And to realize that, when Scott Alexander calls an SSC meetup, he can fill a room just about anywhere … well, at least anywhere I would visit. So talk, be merry, and be rational.

I’m now back in town, and told by people who attended the meetup that it was crowded, disorganized, and great.  And now I’m off to Harvard, to attend the other Scott A.’s talk “How To Ruin A Perfectly Good Randomized Controlled Trial.”

Update (Nov. 24) Scott Alexander’s talk at Harvard last night was one of the finest talks I’ve ever attended. He was introduced to rapturous applause as simply “the best blogger on the Internet,” and as finally an important speaker, in a talk series that had previously wasted everyone’s time with the likes of Steven Pinker and Peter Singer. (Scott demurred that his most notable accomplishment in life was giving the talk at Harvard that he was just now giving.) The actual content, as Scott warned from the outset, was “just” a small subset of a basic statistics course, but Scott brought each point alive with numerous recent examples, from psychiatry, pharmacology, and social sciences, where bad statistics or misinterpretations of statistics were accepted by nearly everyone and used to set policy. (E.g., Alcoholics Anonymous groups that claimed an “over 95%” success rate, because the people who relapsed were kicked out partway through and not counted toward the total.) Most impressively, Scott leapt immediately into the meat, ended after 20 minutes, and then spent the next two hours just taking questions. Scott is publicity-shy, but I hope for others’ sake that video of the talk will eventually make its way online.

Then, after the talk, I had the honor of meeting two fellow Boston-area rationalist bloggers, Kate Donovan and Jesse Galef. Yes, I said “fellow”: for almost a decade, I’ve considered myself on the fringes of the “rationalist movement.” I’d hang out a lot with skeptic/effective-altruist/transhumanist/LessWrong/OvercomingBias people (who are increasingly now SlateStarCodex people), read their blogs, listen and respond to their arguments, answer their CS theory questions. But I was always vaguely uncomfortable identifying myself with any group that even seemed to define itself by how rational it was compared to everyone else (even if the rationalists constantly qualified their self-designation with “aspiring”!). Also, my rationalist friends seemed overly interested in questions like how to prevent malevolent AIs from taking over the world, which I tend to think we lack the tools to make much progress on right now (though, like with many other remote possibilities, I’m happy for some people to work on them and see if they find anything interesting).

So, what changed? Well, in the debates about social justice, public shaming, etc. that have swept across the Internet these past few years, it seems to me that my rationalist friends have proven themselves able to weigh opposing arguments, examine their own shortcomings, resist groupthink and hysteria from both sides, and attack ideas rather than people, in a way that the wider society—and most depressingly to me, the “enlightened, liberal” part of society—has often failed. In a real-world test (“real-world,” in this context, meaning social media…), the rationalists have walked the walk and rationaled the rational, and thus they’ve given me no choice but to stand up and be counted as one of them.

Have a great Thanksgiving, those of you in the US!

Another Update: Dana, Lily, and I had the honor of having Scott Alexander over for dinner tonight. I found this genius of human nature, who took so much flak last year for defending me, to be completely uninterested in discussing anything related to social justice or online shaming. Instead, his gaze was fixed on the eternal: he just wanted to grill me all evening about physics and math and epistemology. Having recently read this Nature News article by Ron Cowen, he kept asking me things like: “you say that in quantum gravity, spacetime itself is supposed to dissolve into some sort of network of qubits. Well then, how does each qubit know which other qubits it’s supposed to be connected to? Are there additional qubits to specify the connectivity pattern? If so, then doesn’t that cause an infinite regress?” I handwaved something about AdS/CFT, where a dynamic spacetime is supposed to emerge from an ordinary quantum theory on a fixed background specified in advance. But I added that, in some sense, he had rediscovered the whole problem of quantum gravity that’s confused everyone for almost a century: if quantum mechanics presupposes a causal structure on the qubits or whatever other objects it talks about, then how do you write down a quantum theory of the causal structures themselves?

I’m sure there’s a lesson in here somewhere about what I should spend my time on.

Ordinary Words Will Do

Sunday, October 18th, 2015

Izabella Laba, a noted mathematician at the University of British Columbia, recently posted some tweets that used me as a bad, cautionary example for how “STEM faculty should be less contemptuous of social sciences.”  Here was the offending comment of mine, from the epic Walter Lewin thread last fall:

[W]hy not dispense with the empirically-empty notion of “privilege,” and just talk directly about the actual well-being of actual people, or groups of people?  If men are doing horrific things to women—for example, lashing them for driving cars, like in Saudi Arabia—then surely we can just say so in plain language.  Stipulating that the torturers are “exercising their male privilege” with every lash adds nothing to anyone’s understanding of the evil.  It’s bad writing.  More broadly, it seems to me that the entire apparatus of “privilege,” “delegitimation,” etc. etc. can simply be tossed overboard, to rust on the ocean floor alongside dialectical materialism and other theoretical superstructures that were once pompously insisted upon as preconditions of enlightened social discourse.  This isn’t quantum field theory.  Ordinary words will do.

Prof. Laba derisively commented:

Might as well ask you to explain calculus without using fancy words like “derivative” or “continuous.”  Simple number arithmetic will do.

Prof. Laba’s tweets were favorited by Jordan Ellenberg, a mathematician who wrote the excellent popular book How Not to Be Wrong.  (Ellenberg had also criticized me last year for my strange, naïve idea that human relations can be thought about using logic.)

Given my respect for the critics, I guess I’m honor-bound to respond.

For the record, I tend not to think about the social sciences—or for that matter, the natural sciences—as monolithic entities at all.  I admire any honest attempt to discover the truth about anything.  And not being a postmodern relativist, I believe there are deep truths worth discovering in history, psychology, economics, linguistics, possibly even sociology.  Reading the books of Steven Pinker underscored for me how much is actually understood nowadays about human nature—much of it only figured out within the last half-century.  Likewise, reading the voluminous profundities of Scott Alexander taught me that even in psychiatry, there are truths (and even a few definite cures) to be had for those who seek.

I also believe that the social sciences are harder—way harder—than math or physics or CS.  They’re harder because of the tenuousness of the correlations, because of the complexity of each individual human brain (let alone 7 billion of them on the same planet), but most of all, because politics and ideology and the scientist’s own biases place such powerful thumbs on the scale.  This makes it all the more impressive when a social scientist, like (say) Stanley Milgram or Judith Rich Harris or Napoleon Chagnon, teaches the world something important and new.

I will confess to contempt for anything that I regard as pompous obscurantism—for self-referential systems of jargon whose main purposes are to bar outsiders, to mask a lack of actual understanding, and to confer power on certain favored groups.  And I regard the need to be alert to such systems, to nip them in the bud before they grow into Lysenkoism, as in some sense the problem of intellectual life.  Which brings me to the most fundamental asymmetry between the hard and soft sciences.  Namely, the very fact that it’s so much harder to nurture new truths to maturity in the social sciences than it is in math or physics, means that in the former, the jargon-weeds have an easier time filling the void—and we know they’ve done it again and again, even in the post-Enlightenment West.

Time for a thought experiment.  Suppose you showed up at a university anytime between, let’s say, 1910 and 1970, and went from department to department asking (in so many words): what are you excited about this century?  Where are your new continents, what’s the future of your field?  Who should I read to learn about that future?

In physics, the consensus answer would’ve been something like: Planck, Einstein, Bohr, Schrödinger, Dirac.

In psychology, it would’ve been: Freud and Jung (with another faction for B. F. Skinner).

In politics and social sciences, over an enormous swath of academia (including in the West), it would’ve been: Marx, Engels, Trotsky, Lenin.

With hindsight, we now know that the physics advice would’ve been absolute perfection, the psychology and politics advice an unmitigated disaster.  Yes, physicists today know more than Einstein, can even correct him on some points, but the continents he revealed to us actually existed—indeed, have only become more important since Einstein’s time.

But Marx and Freud?  You would’ve done better to leave the campus, and ask a random person on the street what she or he thought about economics and psychology.  In high school, I remember cringing through a unit on the 1920s, when we learned about how “two European professors upset a war-weary civilization’s established certainties—with Einstein overturning received wisdom about space and time, and Freud doing just the same for the world of the mind.”  It was never thought important to add that Einstein’s theories turned out to be true while Freud’s turned out to be false.  Still, at least Freud’s ideas led “only” to decades of bad psychology and hundreds of innocent people sent to jail because of testimony procured through hypnosis, rather than to tens of millions of dead, as with the other social-scientific theory that reigned supreme among 20th-century academics.

Marx and Freud built impressive intellectual edifices—sufficiently impressive for a large fraction of intellectuals to have accepted those men as gurus on par with Darwin and Einstein for almost a century.  Yet on nearly every topic they wrote about, we now know that Marx and Freud couldn’t have been any more catastrophically wrong.  Moreover, their wrongness was knowable at the time—and was known to many, though the ones who knew were typically the ones who the intellectual leaders sneered at, as deluded reactionaries.

Which raises a question: suppose that, in the 1920s, I’d taken the social experts’ advice to study Marx and Freud, didn’t understand much of what they said (and found nonsensical much of what I did understand), and eventually rejected them as pretentious charlatans.  Then why wouldn’t I have been just like Prof. Laba’s ignorant rube, who dismisses calculus because he doesn’t understand technical terms like “continuous” and “derivative”?

On reflection, I don’t think that the two cases are comparable at all.

The hard sciences need technical vocabularies for a simple reason: because they’re about things that normal people don’t spend their hours obsessively worrying about.  Yes, I’d have a hard time understanding organic chemists or differential geometers, but largely for the same reasons I’d have a hard time understanding football fans or pirates.  It’s not just that I don’t understand the arguments; it’s that the arguments are about a world that’s alien to me (and that, to be honest, I don’t care about as much as I do my world).

Suppose, by contrast, that you’re writing about the topics everyone spends their time obsessively worrying about: politics, society, the human mind, the relations between the races and sexes.  In other words, suppose you’re writing about precisely the topics for which the ordinary English language has been honed over centuries—for which Shakespeare and Twain and Dr. King and so many others deployed the language to such spectacular effect.  In that case, what excuse could you possibly have to write in academese, to pepper your prose with undefined in-group neologisms?

Well, let’s be charitable; maybe you have a reason.  For example, maybe you’re doing a complicated meta-analysis of psychology papers, so you need to talk about r-values and kurtosis and heteroskedasticity.  Or maybe you’re putting people in an fMRI machine while you ask them questions, so you need to talk about the temporal resolution in the anterior cingulate cortex.  Or maybe you’re analyzing sibling rivalries using game theory, so you need Nash equilibria.  Or you’re picking apart sentences using Chomskyan formal grammar.  In all these cases, armchair language doesn’t suffice because you’re not just sitting in your armchair: you’re using a new tool to examine the everyday from a different perspective.  For present purposes, you might as well be doing algebraic geometry.

The Freudians and Marxists would, of course, claim that they’re doing the exact same thing.  Yes, they’d say, you thought you had the words to discuss your own mind or the power structure of society, but really you didn’t, because you lacked the revolutionary theoretical framework that we now possess.  (Trotsky’s writings  are suffused with this brand of arrogance in nearly every sentence: for example, when he ridicules the bourgeoisie liberals who whine about “human rights violations” in the early USSR, yet who are too dense to phrase their objections within the framework of dialectical materialism.)

I submit that, even without the hindsight of 2015, there would’ve been excellent reasons to be skeptical of these claims.  Has it ever happened, you might ask yourself, that someone sat in their study and mused about the same human questions that occupied Plato and Shakespeare and Hume, in the same human way they did, and then came up with a new, scientific conclusion that was as rigorous and secure as relativity or evolution?

Let me know if I missed something, but I can’t think of a single example.  Sure, it seems to me, there have been geniuses of human nature, who enlarged our vision without any recourse to the quantitative methods of science.  But even those geniuses “only” contributed melodies for other geniuses to answer in counterpoint, rather than stones for everyone who came later to build upon.  Also, the geniuses usually wrote well.

Am I claiming that progress is impossible in the social realm?  Not at all.  The emancipation of slaves, the end of dueling and blasphemy laws and the divine right of kings, women’s suffrage and participation in the workforce, gay marriage—all these strike me as crystal-clear examples of moral progress, as advances that will still be considered progress a thousand years from now, if there’s anyone around then to discuss such things.  Evolutionary psychology, heuristics and biases, reciprocal altruism, and countless other developments likewise strike me as intellectual progress within the sciences of human nature.  But none of these advances needed recondite language!  Ordinary words sufficed for Thomas Paine and Frederick Douglass and John Stuart Mill, as they sufficed for Robert Axelrod and for Kahneman and Tversky.  So forgive me for thinking that whatever is true and important in the social world today, should likewise be defensible to every smart person in ordinary words, and that this represents a genuine difference between the social sciences and physics.

Which brings us to the central point that Prof. Laba disputed in that comment of mine.  I believe there are countless moral heroes in our time, as well as social scientists who struggle heroically to get the right answers.  But as far as I can tell, the people who build complex intellectual edifices around words like “privilege” and “delegitimation” and “entitlement” and “marginalized” are very much the same sort of people who, a few generations ago, built similar edifices around “bourgeoisie” and “dialectical” and “false consciousness.”  In both cases, there’s an impressive body of theory that’s held up as the equivalent in its domain of relativity, quantum mechanics, and Darwinism, with any skeptics denounced as science-deniers.  In both cases, enlightened liberals are tempted to side with the theorists, since the theorists believe in so many of the same causes that the enlightened liberals believe in, and hate so many of the same people who the enlightened liberals hate.  But in both cases, the theorists’ language seems to alternate between incomprehensible word-salad and fervid, often profanity-laced denunciations, skipping entirely over calm clarity.  And in both cases, the only thing that the impressive theoretical edifice ever seems to get used for, is to prove over and over that certain favored groups should get more power while disfavored ones should get less.

So I’m led to the view that, if you want to rouse people’s anger about injustice or their pity about preventable suffering, or end arbitrary discrimination codified into law, or give individuals more freedom to pursue their own happiness, or come up with a new insight about human nature, or simply describe the human realities that you see around you—for all these purposes, the words that sufficed for every previous generation’s great humanists will also suffice for you.

On the other hand, to restrict freedom and invent new forms of discrimination—and to do it in the name of equality and justice—that takes theory.  You’ll need a sophisticated framework, for example, to prove that even if two adults both insist they’re consenting to a relationship, really they might not be, because of power structures in the wider society that your superior insight lets you see.  You’ll need advanced discourse to assure you that, even though your gut reaction might be horror at (say) someone who misspoke once and then had their life gleefully destroyed on social media, your gut is not to be trusted, because it’s poisoned by the same imperialist, patriarchal biases as everything else—and because what looks like a cruel lynching needs to be understood in a broader social context (did the victim belong to a dominant group, or to a marginalized one?).  Finally, you’ll need oodles of theory (bring out the Marcuse) to explain why the neoliberal fanaticism about “free speech” and “tolerance” and “due process” and “the presumption of innocence” is too abstract and simplistic—for those concepts, too, fail to distinguish between a marginalized group that deserves society’s protection and a dominant group that doesn’t.

So I concede to Prof. Laba that the complicated discourse of privilege, hegemony, etc. serves a definite purpose for the people who wield it, just as much as the complicated discourse of quantum field theory serves a purpose for physicists.  It’s just that the purposes of the privilege-warriors aren’t my purposes.  For my purposes—which include fighting injustice, advancing every social and natural science as quickly as possible, and helping all well-meaning women and men see each other’s common humanity—I said last year and I say again that ordinary words will do.

Update (Oct. 26): Izabella Laba has written a response to this post, for which I’m extremely grateful. Her reply reveals that she and I have a great deal of common ground, and also a few clear areas of disagreement (e.g., what’s wrong with Steven Pinker?). But my most important objection is simply that, the first time I loaded her blog, the text went directly over the rock image in the background, making it impossible to read without highlighting it.

Six announcements

Monday, September 21st, 2015
  1. I did a podcast interview with Julia Galef for her series “Rationally Speaking.”  See also here for the transcript (which I read rather than having to listen to myself stutter).  The interview is all about Aumann’s Theorem, and whether rational people can agree to disagree.  It covers a lot of the same ground as my recent post on the same topic, except with less technical detail about agreement theory and more … well, agreement.  At Julia’s suggestion, we’re planning to do a follow-up podcast about the particular intractability of online disagreements.  I feel confident that we’ll solve that problem once and for all.  (Update: Also check out this YouTube video, where Julia offers additional thoughts about what we discussed.)
  2. When Julia asked me to recommend a book at the end of the interview, I picked probably my favorite contemporary novel: The Mind-Body Problem by Rebecca Newberger Goldstein.  Embarrassingly, I hadn’t realized that Rebecca had already been on Julia’s show twice as a guest!  Anyway, one of the thrills of my life over the last year has been to get to know Rebecca a little, as well as her husband, who’s some guy named Steve Pinker.  Like, they both live right here in Boston!  You can talk to them!  I was especially pleased two weeks ago to learn that Rebecca won the National Humanities Medal—as I told Julia, Rebecca Goldstein getting a medal at the White House is the sort of thing I imagine happening in my ideal fantasy world, making it a pleasant surprise that it happened in this one.  Huge congratulations to Rebecca!
  3. The NSA has released probably its most explicit public statement so far about its plans to move to quantum-resistant cryptography.  For more see Bruce Schneier’s Crypto-Gram.  Hat tip for this item goes to reader Ole Aamot, one of the only people I’ve ever encountered whose name alphabetically precedes mine.
  4. Last Tuesday, I got to hear Ayaan Hirsi Ali speak at MIT about her new book, Heretic, and then spend almost an hour talking to students who had come to argue with her.  I found her clear, articulate, and courageous (as I guess one has to be in her line of work, even with armed cops on either side of the lecture hall).  After the shameful decision of Brandeis in caving in to pressure and cancelling Hirsi Ali’s commencement speech, I thought it spoke well of MIT that they let her speak at all.  The bar shouldn’t be that low, but it is.
  5. From far away on the political spectrum, I also heard Noam Chomsky talk last week (my first time hearing him live), about the current state of linguistics.  Much of the talk, it struck me, could have been given in the 1950s with essentially zero change (and I suspect Chomsky would agree), though a few parts of it were newer, such as the speculation that human languages have many of the features they do in order to minimize the amount of computation that the speaker needs to perform.  The talk was full of declarations that there had been no useful work whatsoever on various questions (e.g., about the evolutionary function of language), that they were total mysteries and would perhaps remain total mysteries forever.
  6. Many of you have surely heard by now that Terry Tao solved the Erdös Discrepancy Problem, by showing that for every infinite sequence of heads and tails and every positive integer C, there’s a positive integer k such that, if you look at the subsequence formed by every kth flip, there comes a point where the heads outnumber tails or vice versa by at least C.  This resolves a problem that’s been open for more than 80 years.  For more details, see this post by Timothy Gowers.  Notably, Tao’s proof builds, in part, on a recent Polymath collaborative online effort.  It was a big deal last year when Konev and Lisitsa used a SAT-solver to prove that there’s always a subsequence with discrepancy at least 3; Tao’s result now improves on that bound by ∞.

Common Knowledge and Aumann’s Agreement Theorem

Sunday, August 16th, 2015

The following is the prepared version of a talk that I gave at SPARC: a high-school summer program about applied rationality held in Berkeley, CA for the past two weeks.  I had a wonderful time in Berkeley, meeting new friends and old, but I’m now leaving to visit the CQT in Singapore, and then to attend the AQIS conference in Seoul.

Common Knowledge and Aumann’s Agreement Theorem

August 14, 2015

Thank you so much for inviting me here!  I honestly don’t know whether it’s possible to teach applied rationality, the way this camp is trying to do.  What I know is that, if it is possible, then the people running SPARC are some of the awesomest people on earth to figure out how.  I’m incredibly proud that Chelsea Voss and Paul Christiano are both former students of mine, and I’m amazed by the program they and the others have put together here.  I hope you’re all having fun—or maximizing your utility functions, or whatever.

My research is mostly about quantum computing, and more broadly, computation and physics.  But I was asked to talk about something you can actually use in your lives, so I want to tell a different story, involving common knowledge.

I’ll start with the “Muddy Children Puzzle,” which is one of the greatest logic puzzles ever invented.  How many of you have seen this one?

OK, so the way it goes is, there are a hundred children playing in the mud.  Naturally, they all have muddy foreheads.  At some point their teacher comes along and says to them, as they all sit around in a circle: “stand up if you know your forehead is muddy.”  No one stands up.  For how could they know?  Each kid can see all the other 99 kids’ foreheads, so knows that they’re muddy, but can’t see his or her own forehead.  (We’ll assume that there are no mirrors or camera phones nearby, and also that this is mud that you don’t feel when it’s on your forehead.)

So the teacher tries again.  “Knowing that no one stood up the last time, now stand up if you know your forehead is muddy.”  Still no one stands up.  Why would they?  No matter how many times the teacher repeats the request, still no one stands up.

Then the teacher tries something new.  “Look, I hereby announce that at least one of you has a muddy forehead.”  After that announcement, the teacher again says, “stand up if you know your forehead is muddy”—and again no one stands up.  And again and again; it continues 99 times.  But then the hundredth time, all the children suddenly stand up.

(There’s a variant of the puzzle involving blue-eyed islanders who all suddenly commit suicide on the hundredth day, when they all learn that their eyes are blue—but as a blue-eyed person myself, that’s always struck me as needlessly macabre.)

What’s going on here?  Somehow, the teacher’s announcing to the children that at least one of them had a muddy forehead set something dramatic in motion, which would eventually make them all stand up—but how could that announcement possibly have made any difference?  After all, each child already knew that at least 99 children had muddy foreheads!

Like with many puzzles, the way to get intuition is to change the numbers.  So suppose there were two children with muddy foreheads, and the teacher announced to them that at least one had a muddy forehead, and then asked both of them whether their own forehead was muddy.  Neither would know.  But each child could reason as follows: “if my forehead weren’t muddy, then the other child would’ve seen that, and would also have known that at least one of us has a muddy forehead.  Therefore she would’ve known, when asked, that her own forehead was muddy.  Since she didn’t know, that means my forehead is muddy.”  So then both children know their foreheads are muddy, when the teacher asks a second time.

Now, this argument can be generalized to any (finite) number of children.  The crucial concept here is common knowledge.  We call a fact “common knowledge” if, not only does everyone know it, but everyone knows everyone knows it, and everyone knows everyone knows everyone knows it, and so on.  It’s true that in the beginning, each child knew that all the other children had muddy foreheads, but it wasn’t common knowledge that even one of them had a muddy forehead.  For example, if your forehead and mine are both muddy, then I know that at least one of us has a muddy forehead, and you know that too, but you don’t know that I know it (for what if your forehead were clean?), and I don’t know that you know it (for what if my forehead were clean?).

What the teacher’s announcement did, was to make it common knowledge that at least one child has a muddy forehead (since not only did everyone hear the announcement, but everyone witnessed everyone else hearing it, etc.).  And once you understand that point, it’s easy to argue by induction: after the teacher asks and no child stands up (and everyone sees that no one stood up), it becomes common knowledge that at least two children have muddy foreheads (since if only one child had had a muddy forehead, that child would’ve known it and stood up).  Next it becomes common knowledge that at least three children have muddy foreheads, and so on, until after a hundred rounds it’s common knowledge that everyone’s forehead is muddy, so everyone stands up.

The moral is that the mere act of saying something publicly can change the world—even if everything you said was already obvious to every last one of your listeners.  For it’s possible that, until your announcement, not everyone knew that everyone knew the thing, or knew everyone knew everyone knew it, etc., and that could have prevented them from acting.

This idea turns out to have huge real-life consequences, to situations way beyond children with muddy foreheads.  I mean, it also applies to children with dots on their foreheads, or “kick me” signs on their backs…

But seriously, let me give you an example I stole from Steven Pinker, from his wonderful book The Stuff of Thought.  Two people of indeterminate gender—let’s not make any assumptions here—go on a date.  Afterward, one of them says to the other: “Would you like to come up to my apartment to see my etchings?”  The other says, “Sure, I’d love to see them.”

This is such a cliché that we might not even notice the deep paradox here.  It’s like with life itself: people knew for thousands of years that every bird has the right kind of beak for its environment, but not until Darwin and Wallace could anyone articulate why (and only a few people before them even recognized there was a question there that called for a non-circular answer).

In our case, the puzzle is this: both people on the date know perfectly well that the reason they’re going up to the apartment has nothing to do with etchings.  They probably even both know the other knows that.  But if that’s the case, then why don’t they just blurt it out: “would you like to come up for some intercourse?”  (Or “fluid transfer,” as the John Nash character put it in the Beautiful Mind movie?)

So here’s Pinker’s answer.  Yes, both people know why they’re going to the apartment, but they also want to avoid their knowledge becoming common knowledge.  They want plausible deniability.  There are several possible reasons: to preserve the romantic fantasy of being “swept off one’s feet.”  To provide a face-saving way to back out later, should one of them change their mind: since nothing was ever openly said, there’s no agreement to abrogate.  In fact, even if only one of the people (say A) might care about such things, if the other person (say B) thinks there’s any chance A cares, B will also have an interest in avoiding common knowledge, for A’s sake.

Put differently, the issue is that, as soon as you say X out loud, the other person doesn’t merely learn X: they learn that you know X, that you know that they know that you know X, that you want them to know you know X, and an infinity of other things that might upset the delicate epistemic balance.  Contrast that with the situation where X is left unstated: yeah, both people are pretty sure that “etchings” are just a pretext, and can even plausibly guess that the other person knows they’re pretty sure about it.  But once you start getting to 3, 4, 5, levels of indirection—who knows?  Maybe you do just want to show me some etchings.

Philosophers like to discuss Sherlock Holmes and Professor Moriarty meeting in a train station, and Moriarty declaring, “I knew you’d be here,” and Holmes replying, “well, I knew that you knew I’d be here,” and Moriarty saying, “I knew you knew I knew I’d be here,” etc.  But real humans tend to be unable to reason reliably past three or four levels in the knowledge hierarchy.  (Related to that, you might have heard of the game where everyone guesses a number between 0 and 100, and the winner is whoever’s number is the closest to 2/3 of the average of all the numbers.  If this game is played by perfectly rational people, who know they’re all perfectly rational, and know they know, etc., then they must all guess 0—exercise for you to see why.  Yet experiments show that, if you actually want to win this game against average people, you should guess about 20.  People seem to start with 50 or so, iterate the operation of multiplying by 2/3 a few times, and then stop.)

Incidentally, do you know what I would’ve given for someone to have explained this stuff to me back in high school?  I think that a large fraction of the infamous social difficulties that nerds have, is simply down to nerds spending so much time in domains (like math and science) where the point is to struggle with every last neuron to make everything common knowledge, to make all truths as clear and explicit as possible.  Whereas in social contexts, very often you’re managing a delicate epistemic balance where you need certain things to be known, but not known to be known, and so forth—where you need to prevent common knowledge from arising, at least temporarily.  “Normal” people have an intuitive feel for this; it doesn’t need to be explained to them.  For nerds, by contrast, explaining it—in terms of the muddy children puzzle and so forth—might be exactly what’s needed.  Once they’re told the rules of a game, nerds can try playing it too!  They might even turn out to be good at it.

OK, now for a darker example of common knowledge in action.  If you read accounts of Nazi Germany, or the USSR, or North Korea or other despotic regimes today, you can easily be overwhelmed by this sense of, “so why didn’t all the sane people just rise up and overthrow the totalitarian monsters?  Surely there were more sane people than crazy, evil ones.  And probably the sane people even knew, from experience, that many of their neighbors were sane—so why this cowardice?”  Once again, it could be argued that common knowledge is the key.  Even if everyone knows the emperor is naked; indeed, even if everyone knows everyone knows he’s naked, still, if it’s not common knowledge, then anyone who says the emperor’s naked is knowingly assuming a massive personal risk.  That’s why, in the story, it took a child to shift the equilibrium.  Likewise, even if you know that 90% of the populace will join your democratic revolt provided they themselves know 90% will join it, if you can’t make your revolt’s popularity common knowledge, everyone will be stuck second-guessing each other, worried that if they revolt they’ll be an easily-crushed minority.  And because of that very worry, they’ll be correct!

(My favorite Soviet joke involves a man standing in the Moscow train station, handing out leaflets to everyone who passes by.  Eventually, of course, the KGB arrests him—but they discover to their surprise that the leaflets are just blank pieces of paper.  “What’s the meaning of this?” they demand.  “What is there to write?” replies the man.  “It’s so obvious!”  Note that this is precisely a situation where the man is trying to make common knowledge something he assumes his “readers” already know.)

The kicker is that, to prevent something from becoming common knowledge, all you need to do is censor the common-knowledge-producing mechanisms: the press, the Internet, public meetings.  This nicely explains why despots throughout history have been so obsessed with controlling the press, and also explains how it’s possible for 10% of a population to murder and enslave the other 90% (as has happened again and again in our species’ sorry history), even though the 90% could easily overwhelm the 10% by acting in concert.  Finally, it explains why believers in the Enlightenment project tend to be such fanatical absolutists about free speech—why they refuse to “balance” it against cultural sensitivity or social harmony or any other value, as so many well-meaning people urge these days.

OK, but let me try to tell you something surprising about common knowledge.  Here at SPARC, you’ve learned all about Bayes’ rule—how, if you like, you can treat “probabilities” as just made-up numbers in your head, which are required obey the probability calculus, and then there’s a very definite rule for how to update those numbers when you gain new information.  And indeed, how an agent that wanders around constantly updating these numbers in its head, and taking whichever action maximizes its expected utility (as calculated using the numbers), is probably the leading modern conception of what it means to be “rational.”

Now imagine that you’ve got two agents, call them Alice and Bob, with common knowledge of each other’s honesty and rationality, and with the same prior probability distribution over some set of possible states of the world.  But now imagine they go out and live their lives, and have totally different experiences that lead to their learning different things, and having different posterior distributions.  But then they meet again, and they realize that their opinions about some topic (say, Hillary’s chances of winning the election) are common knowledge: they both know each other’s opinion, and they both know that they both know, and so on.  Then a striking 1976 result called Aumann’s Theorem states that their opinions must be equal.  Or, as it’s summarized: “rational agents with common priors can never agree to disagree about anything.”

Actually, before going further, let’s prove Aumann’s Theorem—since it’s one of those things that sounds like a mistake when you first hear it, and then becomes a triviality once you see the 3-line proof.  (Albeit, a “triviality” that won Aumann a Nobel in economics.)  The key idea is that knowledge induces a partition on the set of possible states of the world.  Huh?  OK, imagine someone is either an old man, an old woman, a young man, or a young woman.  You and I agree in giving each of these a 25% prior probability.  Now imagine that you find out whether they’re a man or a woman, and I find out whether they’re young or old.  This can be illustrated as follows:


The diagram tells us, for example, that if the ground truth is “old woman,” then your knowledge is described by the set {old woman, young woman}, while my knowledge is described by the set {old woman, old man}.  And this different information leads us to different beliefs: for example, if someone asks for the probability that the person is a woman, you’ll say 100% but I’ll say 50%.  OK, but what does it mean for information to be common knowledge?  It means that I know that you know that I know that you know, and so on.  Which means that, if you want to find out what’s common knowledge between us, you need to take the least common coarsening of our knowledge partitions.  I.e., if the ground truth is some given world w, then what do I consider it possible that you consider it possible that I consider possible that … etc.?  Iterate this growth process until it stops, by “zigzagging” between our knowledge partitions, and you get the set S of worlds such that, if we’re in world w, then what’s common knowledge between us is that the world belongs to S.  Repeat for all w’s, and you get the least common coarsening of our partitions.  In the above example, the least common coarsening is trivial, with all four worlds ending up in the same set S, but there are nontrivial examples as well:


Now, if Alice’s expectation of a random variable X is common knowledge between her and Bob, that means that everywhere in S, her expectation must be constant … and hence must equal whatever the expectation is, over all the worlds in S!  Likewise, if Bob’s expectation is common knowledge with Alice, then everywhere in S, it must equal the expectation of X over S.  But that means that Alice’s and Bob’s expectations are the same.

There are lots of related results.  For example, rational agents with common priors, and common knowledge of each other’s rationality, should never engage in speculative trade (e.g., buying and selling stocks, assuming that they don’t need cash, they’re not earning a commission, etc.).  Why?  Basically because, if I try to sell you a stock for (say) $50, then you should reason that the very fact that I’m offering it means I must have information you don’t that it’s worth less than $50, so then you update accordingly and you don’t want it either.

Or here’s another one: suppose again that we’re Bayesians with common priors, and we’re having a conversation, where I tell you my opinion (say, of the probability Hillary will win the election).  Not any of the reasons or evidence on which the opinion is based—just the opinion itself.  Then you, being Bayesian, update your probabilities to account for what my opinion is.  Then you tell me your opinion (which might have changed after learning mine), I update on that, I tell you my new opinion, then you tell me your new opinion, and so on.  You might think this could go on forever!  But, no, Geanakoplos and Polemarchakis observed that, as long as there are only finitely many possible states of the world in our shared prior, this process must converge after finitely many steps with you and me having the same opinion (and moreover, with it being common knowledge that we have that opinion).  Why?  Because as long as our opinions differ, your telling me your opinion or me telling you mine must induce a nontrivial refinement of one of our knowledge partitions, like so:


I.e., if you learn something new, then at least one of your knowledge sets must get split along the different possible values of the thing you learned.  But since there are only finitely many underlying states, there can only be finitely many such splittings (note that, since Bayesians never forget anything, knowledge sets that are split will never again rejoin).

And something else: suppose your friend tells you a liberal opinion, then you take it into account, but reply with a more conservative opinion.  The friend takes your opinion into account, and replies with a revised opinion.  Question: is your friend’s new opinion likelier to be more liberal than yours, or more conservative?

Obviously, more liberal!  Yes, maybe your friend now sees some of your points and vice versa, maybe you’ve now drawn a bit closer (ideally!), but you’re not going to suddenly switch sides because of one conversation.

Yet, if you and your friend are Bayesians with common priors, one can prove that that’s not what should happen at all.  Indeed, your expectation of your own future opinion should equal your current opinion, and your expectation of your friend’s next opinion should also equal your current opinion—meaning that you shouldn’t be able to predict in which direction your opinion will change next, nor in which direction your friend will next disagree with you.  Why not?  Formally, because all these expectations are just different ways of calculating an expectation over the same set, namely your current knowledge set (i.e., the set of states of the world that you currently consider possible)!  More intuitively, we could say: if you could predict that, all else equal, the next thing you heard would probably shift your opinion in a liberal direction, then as a Bayesian you should already shift your opinion in a liberal direction right now.  (This is related to what’s called the “martingale property”: sure, a random variable X could evolve in many ways in the future, but the average of all those ways must be its current expectation E[X], by the very definition of E[X]…)

So, putting all these results together, we get a clear picture of what rational disagreements should look like: they should follow unbiased random walks, until sooner or later they terminate in common knowledge of complete agreement.  We now face a bit of a puzzle, in that hardly any disagreements in the history of the world have ever looked like that.  So what gives?

There are a few ways out:

(1) You could say that the “failed prediction” of Aumann’s Theorem is no surprise, since virtually all human beings are irrational cretins, or liars (or at least, it’s not common knowledge that they aren’t). Except for you, of course: you’re perfectly rational and honest.  And if you ever met anyone else as rational and honest as you, maybe you and they could have an Aumannian conversation.  But since such a person probably doesn’t exist, you’re totally justified to stand your ground, discount all opinions that differ from yours, etc.  Notice that, even if you genuinely believed that was all there was to it, Aumann’s Theorem would still have an aspirational significance for you: you would still have to say this is the ideal that all rationalists should strive toward when they disagree.  And that would already conflict with a lot of standard rationalist wisdom.  For example, we all know that arguments from authority carry little weight: what should sway you is not the mere fact of some other person stating their opinion, but the actual arguments and evidence that they’re able to bring.  Except that as we’ve seen, for Bayesians with common priors this isn’t true at all!  Instead, merely hearing your friend’s opinion serves as a powerful summary of what your friend knows.  And if you learn that your rational friend disagrees with you, then even without knowing why, you should take that as seriously as if you discovered a contradiction in your own thought processes.  This is related to an even broader point: there’s a normative rule of rationality that you should judge ideas only on their merits—yet if you’re a Bayesian, of course you’re going to take into account where the ideas come from, and how many other people hold them!  Likewise, if you’re a Bayesian police officer or a Bayesian airport screener or a Bayesian job interviewer, of course you’re going to profile people by their superficial characteristics, however unfair that might be to individuals—so all those studies proving that people evaluate the same resume differently if you change the name at the top are no great surprise.  It seems to me that the tension between these two different views of rationality, the normative and the Bayesian, generates a lot of the most intractable debates of the modern world.

(2) Or—and this is an obvious one—you could reject the assumption of common priors. After all, isn’t a major selling point of Bayesianism supposed to be its subjective aspect, the fact that you pick “whichever prior feels right for you,” and are constrained only in how to update that prior?  If Alice’s and Bob’s priors can be different, then all the reasoning I went through earlier collapses.  So rejecting common priors might seem appealing.  But there’s a paper by Tyler Cowen and Robin Hanson called “Are Disagreements Honest?”—one of the most worldview-destabilizing papers I’ve ever read—that calls that strategy into question.  What it says, basically, is this: if you’re really a thoroughgoing Bayesian rationalist, then your prior ought to allow for the possibility that you are the other person.  Or to put it another way: “you being born as you,” rather than as someone else, should be treated as just one more contingent fact that you observe and then conditionalize on!  And likewise, the other person should condition on the observation that they’re them and not you.  In this way, absolutely everything that makes you different from someone else can be understood as “differing information,” so we’re right back to the situation covered by Aumann’s Theorem.  Imagine, if you like, that we all started out behind some Rawlsian veil of ignorance, as pure reasoning minds that had yet to be assigned specific bodies.  In that original state, there was nothing to differentiate any of us from any other—anything that did would just be information to condition on—so we all should’ve had the same prior.  That might sound fanciful, but in some sense all it’s saying is: what licenses you to privilege an observation just because it’s your eyes that made it, or a thought just because it happened to occur in your head?  Like, if you’re objectively smarter or more observant than everyone else around you, fine, but to whatever extent you agree that you aren’t, your opinion gets no special epistemic protection just because it’s yours.

(3) If you’re uncomfortable with this tendency of Bayesian reasoning to refuse to be confined anywhere, to want to expand to cosmic or metaphysical scope (“I need to condition on having been born as me and not someone else”)—well then, you could reject the entire framework of Bayesianism, as your notion of rationality. Lest I be cast out from this camp as a heretic, I hasten to say: I include this option only for the sake of completeness!

(4) When I first learned about this stuff 12 years ago, it seemed obvious to me that a lot of it could be dismissed as irrelevant to the real world for reasons of complexity. I.e., sure, it might apply to ideal reasoners with unlimited time and computational power, but as soon as you impose realistic constraints, this whole Aumannian house of cards should collapse.  As an example, if Alice and Bob have common priors, then sure they’ll agree about everything if they effectively share all their information with each other!  But in practice, we don’t have time to “mind-meld,” swapping our entire life experiences with anyone we meet.  So one could conjecture that agreement, in general, requires a lot of communication.  So then I sat down and tried to prove that as a theorem.  And you know what I found?  That my intuition here wasn’t even close to correct!

In more detail, I proved the following theorem.  Suppose Alice and Bob are Bayesians with shared priors, and suppose they’re arguing about (say) the probability of some future event—or more generally, about any random variable X bounded in [0,1].  So, they have a conversation where Alice first announces her expectation of X, then Bob announces his new expectation, and so on.  The theorem says that Alice’s and Bob’s estimates of X will necessarily agree to within ±ε, with probability at least 1-δ over their shared prior, after they’ve exchanged only O(1/(δε2)) messages.  Note that this bound is completely independent of how much knowledge they have; it depends only on the accuracy with which they want to agree!  Furthermore, the same bound holds even if Alice and Bob only send a few discrete bits about their real-valued expectations with each message, rather than the expectations themselves.

The proof involves the idea that Alice and Bob’s estimates of X, call them XA and XB respectively, follow “unbiased random walks” (or more formally, are martingales).  Very roughly, if |XA-XB|≥ε with high probability over Alice and Bob’s shared prior, then that fact implies that the next message has a high probability (again, over the shared prior) of causing either XA or XB to jump up or down by about ε.  But XA and XB, being estimates of X, are bounded between 0 and 1.  So a random walk with a step size of ε can only continue for about 1/ε2 steps before it hits one of the “absorbing barriers.”

The way to formalize this is to look at the variances, Var[XA] and Var[XB], with respect to the shared prior.  Because Alice and Bob’s partitions keep getting refined, the variances are monotonically non-decreasing.  They start out 0 and can never exceed 1 (in fact they can never exceed 1/4, but let’s not worry about constants).  Now, the key lemma is that, if Pr[|XA-XB|≥ε]≥δ, then Var[XB] must increase by at least δε2 if Alice sends XA to Bob, and Var[XA] must increase by at least δε2 if Bob sends XB to Alice.  You can see my paper for the proof, or just work it out for yourself.  At any rate, the lemma implies that, after O(1/(δε2)) rounds of communication, there must be at least a temporary break in the disagreement; there must be some round where Alice and Bob approximately agree with high probability.

There are lots of other results in my paper, including an upper bound on the number of calls that Alice and Bob need to make to a “sampling oracle” to carry out this sort of protocol approximately, assuming they’re not perfect Bayesians but agents with bounded computational power.  But let me step back and address the broader question: what should we make of all this?  How should we live with the gargantuan chasm between the prediction of Bayesian rationality for how we should disagree, and the actual facts of how we do disagree?

We could simply declare that human beings are not well-modeled as Bayesians with common priors—that we’ve failed in giving a descriptive account of human behavior—and leave it at that.   OK, but that would still leave the question: does this stuff have normative value?  Should it affect how we behave, if we want to consider ourselves honest and rational?  I would argue, possibly yes.

Yes, you should constantly ask yourself the question: “would I still be defending this opinion, if I had been born as someone else?”  (Though you might say this insight predates Aumann by quite a bit, going back at least to Spinoza.)

Yes, if someone you respect as honest and rational disagrees with you, you should take it as seriously as if the disagreement were between two different aspects of yourself.

Finally, yes, we can try to judge epistemic communities by how closely they approach the Aumannian ideal.  In math and science, in my experience, it’s common to see two people furiously arguing with each other at a blackboard.  Come back five minutes later, and they’re arguing even more furiously, but now their positions have switched.  As we’ve seen, that’s precisely what the math says a rational conversation should look like.  In social and political discussions, though, usually the very best you’ll see is that two people start out diametrically opposed, but eventually one of them says “fine, I’ll grant you this,” and the other says “fine, I’ll grant you that.”  We might say, that’s certainly better than the common alternative, of the two people walking away even more polarized than before!  Yet the math tells us that even the first case—even the two people gradually getting closer in their views—is nothing at all like a rational exchange, which would involve the two participants repeatedly leapfrogging each other, completely changing their opinion about the question under discussion (and then changing back, and back again) every time they learned something new.  The first case, you might say, is more like haggling—more like “I’ll grant you that X is true if you grant me that Y is true”—than like our ideal friendly mathematicians arguing at the blackboard, whose acceptance of new truths is never slow or grudging, never conditional on the other person first agreeing with them about something else.

Armed with this understanding, we could try to rank fields by how hard it is to have an Aumannian conversation in them.  At the bottom—the easiest!—is math (or, let’s say, chess, or debugging a program, or fact-heavy fields like lexicography or geography).  Crucially, here I only mean the parts of these subjects with agreed-on rules and definite answers: once the conversation turns to whose theorems are deeper, or whose fault the bug was, things can get arbitrarily non-Aumannian.  Then there’s the type of science that involves messy correlational studies (I just mean, talking about what’s a risk factor for what, not the political implications).  Then there’s politics and aesthetics, with the most radioactive topics like Israel/Palestine higher up.  And then, at the very peak, there’s gender and social justice debates, where everyone brings their formative experiences along, and absolutely no one is a disinterested truth-seeker, and possibly no Aumannian conversation has ever been had in the history of the world.

I would urge that even at the very top, it’s still incumbent on all of us to try to make the Aumannian move, of “what would I think about this issue if I were someone else and not me?  If I were a man, a woman, black, white, gay, straight, a nerd, a jock?  How much of my thinking about this represents pure Spinozist reason, which could be ported to any rational mind, and how much of it would get lost in translation?”

Anyway, I’m sure some people would argue that, in the end, the whole framework of Bayesian agents, common priors, common knowledge, etc. can be chucked from this discussion like so much scaffolding, and the moral lessons I want to draw boil down to trite advice (“try to see the other person’s point of view”) that you all knew already.  Then again, even if you all knew all this, maybe you didn’t know that you all knew it!  So I hope you gained some new information from this talk in any case.  Thanks.

Update: Coincidentally, there’s a moving NYT piece by Oliver Sacks, which (among other things) recounts his experiences with his cousin, the Aumann of Aumann’s theorem.

Another Update: If I ever did attempt an Aumannian conversation with someone, the other Scott A. would be a candidate! Here he is in 2011 making several of the same points I did above, using the same examples (I thank him for pointing me to his post).