
Building and bounding quantum Bernoulli factories

Theodore J. Yoder1

1Department of Physics, MIT, Cambridge, MA 02139

A Bernoulli factory formalizes the notion of using one binary random variable (or coin) with
unknown distribution to simulate another binary random variable with some desired distribution.
This problem has been extensively studied classically, and recently Dale et. al. [1] have defined a
quantum generalization that uses pure state qubits, called quoins, instead of coins and characterized
the power of their factories when unlimited quoins are available. However, there are other gener-
alizations of Bernoulli factories to the quantum world, and some are even interesting in the case
of limited resources (e.g. quoins). Here we define a variety of resource limited quantum Bernoulli
factories, place lower bounds on their power, and characterize a particular kind of factory that we
call GCF1. GCF1 is a small part of the Bernoulli factory landscape, but it is not unimportant – we
also show that the problem of evaluating a symmetric boolean function in the standard quantum
query model reduces to GCF1. We also give a method to convert GCF1 into quoined factories of
the sort of Dale et. al.

I. INTRODUCTION

Von-Neumann famously proposed [2] the following
problem: provided with a coin that lands heads with
probability λ, simulate a fair coin that lands heads with
probability 1/2. His solution was to flip the biased coin
twice, and upon observing the results (heads, tails) or
(tails, heads) declare the output to be heads or tails, re-
spectively. In the cases of observing two heads or two
tails, repeat the procedure.

Since von-Neumann’s trick, the problem of generating
a desired coin from an unknown coin has been generalized
considerably. The generic problem is to construct (the
classical term is to “simulate”) a coin of bias f(λ) for
some function of the unknown coin’s bias λ. Necessary
and sufficient conditions on the function f(λ) were proven
by Keane and O’Brien [3] such that this construction is
possible, when one is allowed a potentially unbounded
number of coin flips.

With the introduction of quantum mechanics, we are
no longer limited to just discussing λ-coins, which in the
quantum notation may be written (1−λ)|0〉〈0|+λ|1〉〈1|.
We also have objects called “λ-quoins” [1], which are

qubits in the state
√

1− λ|0〉 +
√
λ|1〉. Upon measure-

ment in the z-basis, a quoin looks like a coin, but it
might offer even more power to a Bernoulli factory. In-
deed, Dale, Jennings, and Rudolph (DJR) [1] have found
that quoins allow one to construct f(λ)-coins for an even
larger class of functions f than classical coins allow, when
one is allowed a potentially unbounded number of quoins.

In fact, once we allow quoins there are many more
kinds of Bernoulli factories to consider because now the
inputs or outputs can both be either coins or quoins.
Moreover, we might continue to broaden the scope and
allow as input to the factory, instead of a coin or
quoin, the use of a λ-quoin preparation operator Aλ =(√

1−λ −
√
λ√

λ
√

1−λ

)
, which is perhaps an equally good gener-

alization of a classical coin – if it is applied to |0〉 and
followed by complete decoherence, Aλ also simulates a
coin flip. We will refer to Aλ as a λ-oracle. Similar use

of a state preparation oracle is considered in [4], but the
oracle there is built to hide quantum states rather than
a probability.

The kinds of Bernoulli factories considered in this pa-
per are included in Table I. Some types are newly defined
and others have already been studied in the literature.
We rename some types, removing from their names the
word “Bernoulli” and replacing it with a description of
the output type of the factory. For instance, the “quan-
tum Bernoulli factory” of DJR becomes a “quantum coin
factory” in our terminology since it uses quoins to make
coins. We will use the term “Bernoulli factory” to refer
generally to algorithms that use a black-box input hiding
a probability distribution, be it a state or operator.

One of the key distinctions in Bernoulli factories is
whether one is limited in copies of the input (say at most
L queries can be used) or whether one is allowed an un-
limited number of copies. In the unlimited case, such
as that considered classically by Keane and O’Brien and
quantumly by DJR, functions f(λ) are efficiently con-
structible if the average number of queries is small. In
the limited case, which we will consider exclusively in this
paper, bounds are proven on the exact number of copies
L need to construct a function f(λ).

Bernoulli factories can also be split along the lines of
which free resources are allowed. For instance, one might
allow as free resources a supply of |0〉 states, sampling
from λ-independent distributions, or any λ-independent
single-qubit gates. These distinctions sometimes disap-
pear in the unlimited case, however. For instance, copies
of |0〉 can be gotten by measuring enough quoins in the
0/1 basis and λ-independent distributions can be created
from coins or quoins using (necessarily) unbounded pro-
cedures similar to von-Neumann’s.

Here we seek to better understand the myriad
Bernoulli factories in the case of limited resources. We
explore one type of Bernoulli factor most substantially,
what we call a Groverlike coin factory (GCF) in Table I,
but meanwhile discover relations with the other types of
factories. We characterize exactly the f(λ)-coins that
can be created by GCFs restricted to one qubit of mem-

2

name input output gates allowed other names

classical coin factory (CCF) λ-coin f(λ)-coin classical Bernoulli factory [3]
quantum coin factory (QCF) λ-quoin f(λ)-coin quantum quantum Bernoulli factory [1]
quantum quoin factory (QQF) λ-quoin f(λ)-quoin quantum —
oracular coin factory (OCF) λ-oracle f(λ)-coin quantum —
oracular quoin factory (OQF) λ-oracle f(λ)-quoin quantum —
Groverlike coin factory (GCF) λ-oracle f(λ)-coin phase —
Groverlike quoin factory (GQF) λ-oracle f(λ)-quoin phase —

TABLE I: Some types of Bernoulli factories considered in this report. Each uses some black-box input parameterized by λ
and creates an output that depends on f(λ). For instance, von-Neumann’s coin problem is a CCF with f(λ) = 1/2. There are
of course other interesting problems of this Bernoulli factory form. Examples of converting coins to quoins can be found in [5]
or [6] for instance. Though not distinguished in the table, there is a difference between query unlimited factories and the query
limited factories. Unless otherwise stated, in the main text these three-letter acronyms refer to the limited case.

ory (a subclass of GCF denoted GCF1) with an optimal
constructive proof and note that evaluation of symmetric
boolean functions in the standard quantum query model
reduces to this case. GCFs use the λ-oracle to create
coins, and so we place lower bounds on how many queries
are needed to create a coin with given bias and also give
interesting examples of GCF1 algorithms. In addition,
we lower bound quantum coin factories (QCFs), which
use quoins to create coins, using known bounds on state
discrimination and show how approximate QCFs can be
designed from GCF1s.

Finally, we would like to list some differences between
our work and DJR [1]. First, as mentioned above, our
results, both upper and lower bounds, are in the re-
source limited scenario, as opposed to the resource un-
limited case. One consequence of this is that unlike
DJR, we do not have the ability to create perfect λ-
independent distributions, which require an unbounded
number of queries to construct and which DJR use heav-
ily in their proofs. Also unlike DJR, we consider a quan-
tum generalization of the classical factory that uses the
λ-oracle resource rather than a λ-quoin, though after con-
structing factories in this model, we do convert some of
our algorithms to (approximate) algorithms in the re-
source limited quoin model using a Hamiltonian simu-
lation technique due to Lloyd et. al. [7]. We also de-
fine and study Bernoulli factories restricted to applying
λ-independent quantum gates diagonal in the computa-
tional basis. Our motivation is to avoid trivializing the
creation of λ-independent distributions (such as that con-
structed in the von-Neumann coin problem) to just ap-
plying an X or Y rotation to |0〉. In contrast, DJR use
non-diagonal single-qubit gates in their constructions.

II. QUERY ALGORITHMS AND SYMMETRIC
BOOLEAN FUNCTIONS

We start with reviewing a well-studied field, that of
quantum query algorithms, so that we can, first, use some
of the same proof techniques and, second, so that we can
compare and contrast with oracular coin and quoin fac-
tories. Query algorithms are designed with the goal of

calculating a function on N -bits g : {0, 1}N → {0, 1} and
queries are counted as the number of bits of the input
x that need to be inspected before g(x) can be deter-
mined. Random algorithms and quantum algorithms are
allowed to fail, calculating f(x) correctly only ≥ 2/3 of
the time averaged over the algorithm’s internal random-
ness. In quantum algorithms, the oracle can be queried
in superposition, so its effect on a three register basis
state — index, (single-qubit) ancilla, and bystander — is
U |i〉|a〉|b〉 = |i〉|a⊕xi〉|b〉. In the query complexity model,
the maximum number of queries ever needed is N .

A few general purpose techniques are known for prov-
ing lower bounds on such query algorithms, including
the quantum adversarial [8, 9] and quantum polynomial
methods [10]. Most relevant to the results of this pa-
per, Beals et. al. [10] have completely determined the
query complexity of quantum algorithms for symmetric
boolean functions, those for which there exists a function
g∼ of a single variable such that g(x) = g∼(|x|) for |x|
the hamming weight of x. Their result is:

Theorem II.1. (Beals et. al. [10])
If g : {0, 1}N → {0, 1} is non-constant and sym-
metric, then the quantum query complexity Q(g) =

Θ
(√

N(N − Γ(g))
)

where

Γ(g) = min
{
|2k −N + 1| : g∼(k) 6= g∼(k + 1), (II.1)

0 ≤ k ≤ N − 1
}
.

One of their main proof tools is Paturi’s lemma, which
bounds the approximate degree of symmetric boolean

functions like f . The approximate degree d̃eg(g) is the
degree of the smallest degree single-variate polynomial p
such that |g(x)− p(|x|)| ≤ 1/3 for all x.

Lemma II.2. (Paturi [11])
If g : {0, 1}N → {0, 1} is non-constant and symmetric,

then d̃eg(g) = Θ
(√

N(N − Γ(g))
)

.

We will find Paturi’s lemma and Theorem II.1 make
interesting comparisons with some of our lower bounds
on Bernoulli factories. Also useful will be the Markov
brother’s inequality, which relates the degree of a poly-
nomial to its extreme values on a domain.

3

Lemma II.3. (Markov brother’s inequality [12])
If P is a single-variate polynomial of degree d, then

max0≤y≤1 |P (k)(y)|
max0≤y≤1 |P (y)| ≤ 2k

d2(d2 − 12) . . . (d2 − (k − 1)2)

1 · 3 . . . (2k − 1)
.

(II.2)

For all derivatives k, equality is achieved by the Cheby-
shev polynomials of the first kind, which will appear
again in an optimal factory for a quantum version of von-
Neumann’s coin that we present in Section V C.

III. COIN AND QUOIN FACTORIES

An oracular coin factory (OCF) uses the quoin prepa-
ration operator

Aλ =

(√
1− λ −

√
λ√

λ
√

1− λ

)
. (III.1)

and quantum operations independent of λ to create, for
some specified function f , coins

ρλ = (1− f(λ))|0〉〈0|+ f(λ)|1〉〈1|. (III.2)

When we want to clarify a coin’s bias, we will also call
these f(λ)-coins. An oracular quoin factory (OQF) has
the same set of allowed operations, but uses them to cre-
ate f(λ)-quoins

|ψλ〉 =
√

1− f(λ)|0〉+
√
f(λ)|1〉. (III.3)

Notice that a coin factory reduces to a quoin factory,
since a state |ψλ〉 is a coin ρλ upon measurement in the
z-basis. As such, we will prove lower bounds on coin
factories which will apply also to quoin factories.

OCFs differ from the standard oracle model discussed
in Section II by the type of oracle. Indeed the standard
oracle U exists only to provide (coherent) access to an
input bit string x, while in the OCF model there is no
such input string – the oracle Aλ, a quantum operator, is
itself the input! This means, for instance, that there is no
natural upper bound on the number of queries required to
make a f(λ)-coin, since the input can never be completely
“read” as is the case with N queries of U .

Notice that oracular coin and quoin factories allow the
use of arbitrary quantum gates, and therefore one effec-
tively has access to coins (or even quoins) of any bias
independent of λ that one wishes. This may appear
somewhat contrary to the spirit of, for instance, von-
Neumann’s problem, where the very goal is to create a
coin with bias independent of λ. Therefore, we also de-
fine, what we call, Groverlike coin and quoin factories
(GCFs and GQFs) which still use the oracle Aλ to cre-
ate f(λ)-coins and -quoins respectively, but which limit
the allowed λ-independent quantum gates to phase gates,
diagonal in the computational basis. With only phase

gates, |0〉 initial states, measurement in the computa-
tional basis, and classical postprocessing, it is impossi-
ble to create coins with arbitrary constant bias p 6= 0, 1
without using the resource Aλ. Note that a tomographic
solution in the GCF model is also disallowed, because
even if one were to somehow use f(λ) to estimate λ and
then calculate f(λ), creating a coin of bias f(λ) with only
phase gates is still impossible. The connection of GCFs
to Grover’s algorithm [13] should hopefully be made clear
later in Section V.

IV. OCF LOWER BOUNDS

A general algorithm for a coin factory is the alternation
of the oracle Aλ with λ-independent quantum operations,
applied to an initial state |0〉⊗n on n-qubits. That is, for
a L-query algorithm,

UL+1 (Aλ ⊗ I)UL (Aλ ⊗ I) . . . (Aλ ⊗ I)U1|0〉⊗n, (IV.1)

where I is the identity operator on n−1 qubits. Call the
output of this factory, |Ψ〉 =

∑
x αx|x〉. Using an induc-

tive method, it can easily be argued that the amplitudes

αx have the form
∑L
k=0 βk,x

√
1− λL−k

√
λ
k
. At the end

of the algorithm, without loss of generality, we can ob-
tain a coin by measuring a single qubit in the z-basis.
The probability that this coin is heads (i.e. |1〉) will have

the form f(λ) = a(λ) +
√
λ(1− λ)b(λ), where a is a real

polynomial of degree at most L and b is real polynomial
of degree at most L − 1. This can be seen by squaring
the amplitude – some terms in the sum pair up so that
the powers of

√
1− λ and

√
λ are both even, while other

pairs result in them both being odd powers.
This correspondence between output coin bias and

polynomials yields lower bounds on how many queries
to Aλ are required to make a f(λ)-coin, through use of
the Markov brother’s inequality.

Theorem IV.1. (OCF lower bounds)
If an OCF produces f(λ)-coins, and f(λ) = a0(λ) +√
λ(1− λ)a1(λ) where a0 and a1 are polynomials, then

it must use Aλ at least

L ≥ max
b∈{0,1}

(√
1

2

max0≤λ≤1 |a′b(λ)|
max0≤λ≤1 |ab(λ)| + b

)
(IV.2)

times.

Proof. We have already argued above that an OCF
making L queries can only make f(λ)-coins for f of the
form stated where a0 has degree at most L and a1 has
degree at most L − 1. A polynomial of degree L must
satisfy Eq. (IV.2) by the Markov brother’s inequality,
Lemma II.2. Since OCFs reduce to OQFs, QCFs, and
QQFs the same lower bound applies to those Bernoulli
factories as well.

�

4

Actually, although Theorem IV.1 applies to GCFs and
GQFs as well by the same reductive argument, we can
also make a slightly simpler statement in those cases.
This is because the output

∑
x αx|x〉 of a general GCF

making L queries can be shown to have amplitudes,

αx =

L∑
k=0

k−|x| even

βk,x
√

1− λL−k
√
λ
k
. (IV.3)

That is, the sum is only over values of k with the same
parity as the hamming weight of x. This implies that
|αx|2 is a polynomial in λ for any x, and therefore an
output coin from a GCF has a polynomial bias. As for
Theorem IV.1, this means that when applied to GCFs or
GQFs, Eq. IV.2 may be simplified to the b = 0 case.

Next, we move on to actually implementing Bernoulli
factories, but concentrate on the least complex and, as we
have seen, polynomial-biased type of factory, the GCF.

V. GCF ALGORITHMS

A. Grover’s algorithm

Our first example of a GCF is, fittingly, the eponymous
Grover’s algorithm [13]. Although Grover’s algorithm is
usually framed as computing the boolean function OR
on N -bits (indexed by the state of n = dlogNe qubits),
it is well-known that it acts non-trivially only within an
SU(2) subspace of the full N -dimensional Hilbert space.
This SU(2) subspace, called T from now on, is spanned
by the (normalized) states |t〉 = 1√

N−M
∑
xi=0 |i〉 and

|t〉 = 1√
M

∑
xi=1 |i〉. If we associate these states with

the vectors (1, 0) and (0, 1), respectively, then Grover’s
phase oracle acts as Z =

(
1 0
0 −1

)
and the initial state

preparation operator H⊗n takes the form
(√

1−λ −
√
λ√

λ
√

1−λ

)
,

which is exactly Aλ.
Grover tells us that to amplify the state |t〉, begin-

ning with the start state |s〉 = Aλ|0〉 = 1√
N

∑
x |x〉 =√

1− λ|t〉 +
√
λ|t〉, we should repeatedly apply the

“Grover iterate” G which is the phase oracle Z, followed
by S, a reflection about the start state. The reflection
about the start state can be implemented using Aλ by

S = AλZA
†
λ = A2

λZ, since ZAλZ = A†λ. But this means
G = SZ = A2

λ, and so Grover’s algorithm with l iterates

is a GCF making L = 2l + 1 queries like A2l+1
λ |0〉 =

cos ((2l + 1)θ/2) |0〉 + sin ((2l + 1)θ/2) |1〉 for θ defined

such that cos(θ/2) =
√

1− λ and sin(θ/2) =
√
λ.

B. Memory limited GCFs

Motivated by Grover’s algorithm, we will now consider
GCF algorithms of a specialized form, using only a single
qubit of memory, which we call GCF1. Despite the space

limitation, we find that such algorithms are remarkably
powerful, in that f(λ)-quoins can be created for a wide
variety of functions f . We can, in fact, exactly character-
ize the functions constructible in GCF1. Our proof also
gives the algorithm for each such function f . The sin-
gle qubit memory limitation is similar to that considered
by Aaronson and Drucker [14] in which they find that
quantum automaton with just two states can be made
arbitrarily sensitive to a input coin’s bias, though we use
our quantum memory for a different purpose.

When limited to a single qubit, a Groverlike factory
takes the following general form,

G|0〉 = AλPL−1 . . . AλP2AλP1Aλ|0〉 (V.1)

=
√

1− f(λ)|0〉+ eiχ(λ)
√
f(λ)|1〉,

where Pj = exp(−iφjZ). This is the most general GCF1

algorithm.
Actually, GCF1 is not completely irrelevant to the

standard query model. In fact, the evaluation of sym-
metric boolean functions (such as Grover’s algorithm for
OR) reduce to this class of Bernoulli factories.

Lemma V.1. (symmetric booleans reduce to GCF1)
Evaluating a symmetric boolean function g : {0, 1}N →
{0, 1} reduces to constructing an f(λ)-coin in the
GCF1 model with f approximating g∼ (i.e. |f(j/N) −
g∼(j/N)| ≤ 1/3 for all j ∈ {0, 1, . . . , N}).

This reduction works essentially because a GCF1 al-
gorithm in the form of Eq. (V.1) can be converted to a
function evaluation problem restricted to the subspace T
defined in Section V A. A complete argument is presented
in Appendix A.

By choosing the phases φj , what biases f(λ) can be
constructed by a GCF1? Or from the point of view of
query complexity of symmetric boolean functions, how
powerful are operations restricted to T ? Our next theo-
rem characterizes the power of these algorithms.

Theorem V.2. (GCF1 characterization)
A f(λ)-coin is constructible by a GCF1 if and only if f
is a polynomial, f(λ) ∈ [0, 1] for all λ ∈ [0, 1], and, if f
has odd degree,

1. f(λ) ≤ 0 for all λ < 0

2. f(λ) ≥ 1 for all λ > 1

or, if f has even degree,

1. f(λ) ≤ 0 for all λ < 0

2. f(λ) ≤ 0 for all λ > 1.

The proof of this theorem is a bit involved and so is
presented in Appendix B. The constructive part of the
proof uses a provably optimal number of queries (if f has
degree L, then L queries are made), which is perhaps in-
teresting as the characterizing constructions for resource
unlimited QCFs and resource unlimited CCFs by Dale
et. al. [1] and Keane, O’Brien [3] are non-optimal.

5

(�)

(�)

(�)

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

λ

�(
λ
)

FIG. 1: What you can do with L = 9 queries – some examples
of f(λ)-coins constructible in the GCF1 model. (a) Grover’s
algorithm (b) A von-Neumann coin that approximates a fair
coin over a wide range of λ (c) An approximate majority
algorithm with success probability 1−δ2 determining whether
λ ≤ 1/2 − ε or λ ≥ 1/2 + ε for ε ≈ 0.1 and δ2 = 0.05.

Because of Lemma V.1, we might also interpret Theo-
rem V.2 as a partial converse of the polynomial method of
Beals et. al. in the case of computing symmetric boolean
functions. It is not a complete converse because we re-
stricted to algorithms acting wholly in the subspace T .
Nevertheless, Theorem V.2 allows us to create query al-
gorithms, or GCF1 algorithms, by specifying only an ap-
propriate polynomial with the requisite properties. We
demonstrate next.

C. A quantum von-Neumann coin

The largest family of GCF1 algorithms we present is
a quantum version of von-Neumann’s coin when one is
limited to L queries. Let L be odd. The polynomials we
propose are

fvN(λ) = p+
1

2
δ2 − δ2TL

[√
λ0 + (λ1 − λ0)λ

]2
, (V.2)

where p ∈ (0, 1) is the desired bias of the output coin,
δ ∈ (0, 1] is an error parameter satisfying δ2/2 ≤ p and
δ2/2 ≤ 1− p,

λ0 = cosh

(
1

L
cosh−1

(√
p+ δ2/2

δ

))2

(V.3)

λ1 = − sinh

(
1

L
sinh−1

(√
1− (p+ δ2/2)

δ

))2

, (V.4)

and TL[x] = cos(L cos−1(x)) are the Chebyshev polyno-
mials of the first kind.

What do the functions fvN(λ) look like? It is easy to
see that fvN(0) = 0 and fvN(1) = 1 and that they are

degree L polynomials in λ. More interesting is that

λ0 − 1

λ0 + λ1
≤ λ ≤ λ0

λ0 + λ1
⇒ |fvN(λ)−p| ≤ 1

2
δ2. (V.5)

For very large L and small δ, the scaling of w0 = (λ0 −
1)/(λ0 + λ1) and w1 = λ0/(λ0 + λ1) becomes

w0 ∼
log2(2

√
p/δ)

L2
(V.6)

w1 ∼
log2(2

√
1− p/δ)
L2

, (V.7)

which implies that we can achieve a von-Neumann coin
with bias p± δ2/2 for all w0 ≤ λ ≤ w1 using the λ-oracle
Aλ

L = O

(
log(1/δ)√

min(w0, w1)

)
(V.8)

times. Additionally, this is optimal scaling in the param-
eters w0 and w1, because of Theorem IV.1, Eq. (IV.2).

We plot fvN in Fig. 1 along with Grover’s GCF1

and a constructible polynomial that computes approx-
imate Majority by rising quickly at λ = 1/2. See also
Appendix C for examples of approximating some non-
polynomial biases, like f(λ) =

√
λ, in the L→∞ limit.

D. GCF1 ⊂ GCF and CCF ⊂ GCF

Consider the bias f2(λ) = 4λ + (−6 +
√

2)λ2 + (2 −√
2)λ3. This polynomial does not satisfy the conditions

of Theorem V.2 – it has odd degree but f2(0) = f2(1) =
0. Nevertheless, f2 can be created by a GCF, shown in
Fig. 2. Thus, GCF must be strictly larger than GCF1.

Can f2(λ) be constructed by a CCF? We will argue
briefly that it cannot and so GCF is also strictly larger
than CCF. The most general CCF limited to L queries
can be constructed by sorting the strings {0, 1}L into
two sets for the output 0 and output 1 of the coin being
simulated. To write the simulated bias fCCF(λ), choose

non-negative integers ak ≤
(
L
k

)
for all k ∈ {0, 1, . . . L}, so

then fCCF(λ) =
∑
k ak(1 − λ)L−kλk. Therefore, a CCF

is restricted to constructing coins with polynomial biases
with integer coefficients. Evidently, f2 is not one of those.

Finally, to demonstrate that CCF is incomparable with
GCF1 we provide two more examples. Indeed, a coin con-
structible in GCF1 but not in CCF is that with bias fvN

from Section V C, since for some choices of δ and p this
polynomial does not have integer coefficients. A func-
tion constructible in CCF but not in GCF1 is the simple
f2heads(λ) = λ2 function, which note does not satisfy the
conditions of Theorem V.2 to be GCF1 constructible.

VI. CONVERTING GCF1 INTO QCF

Our constructions of Bernoulli factories have so far
been only in the GCF1 model, having only used the quoin

6

A�

A�

A� f2(�)-coin|0i

|0i T

FIG. 2: A GCF circuit that makes a f2(λ)-coin by mea-
suring the top qubit. Here the controlled-T phase gate is
diag(1, 1, 1, exp(iπ/4)). Neither GCF1 nor CCF can construct
such coins, as described in the text.

preparation operator Aλ. It might be argued that this
is also not in the spirit of von-Neumann’s coin problem.
The resource we should perhaps rather be using is a quoin
|ψλ〉 =

√
1− λ|0〉+

√
λ|1〉.

Our main result in this section is that the output f(λ)-
coin of a GCF1 making L queries to Aλ can be approxi-
mated arbitrarily closely by a QCF using asymptotically
at most L2 copies of |ψλ〉.
Theorem VI.1. (queries from quoins)
The GCF1 algorithm G|0〉 = AλPL−1 . . . AλP2AλP1Aλ|0〉
making L queries to Aλ alternatively with phase gates
Pj = e−iφjZ can be implemented with error ε using
O(L2/ε) copies of |ψλ〉.

Proof. To show this, we use a trick devised by Lloyd,
Mohseni, and Rebentrost (LMR) [7] in the context of
quantum principal component analysis. There, they sim-
ulate a positive semi-definite Hamiltonian (i.e. a density
matrix) given copies of that density matrix. The general
case is

Tr1

[
e−iSt(ρ⊗ σ)eiSt

]
= σ − it[ρ, σ] +O(t2) (VI.1)

= e−iρtσeiρt +O(t2),

where S is the swap operation between the two registers
initially containing states ρ and σ and Tr1 is the partial
trace over the first register. To simulate the Hamiltonian
ρ for a longer time T , break T into t = T/m sized pieces.
The accumulated error in the simulation of e−iρT will
then be ε = O(mt2), from which we get the relation
m = O(1/ε) [7].

For our purposes, we must simply note that pairs of
oracle calls can be replaced by this LMR algorithm. That

is, AλPjA
†
λ = AλPjZAλZ = e−iφj |ψλ〉〈ψλ|. Also, if L is

odd, the QCF algorithm will start with |ψλ〉 = Aλ|0〉
rather than from |0〉.

�

VII. QCF LOWER BOUNDS

Ultimately, what are the limits on the number of copies
of a λ-quoin |ψλ〉 needed to create a single f(λ)-coin?
Using Helstrom’s bound on state discrimination, we will
answer this question in this section.

Lemma VII.1. (Helstrom’s bound [15]) Any test to de-
termine the identity of an unknown state promised that
it is either |ψ〉 or |φ〉 with success probability 1 − ε and
overlap |〈ψ|φ〉|2 = 1− J , must use

k ≥ log 4ε(1− ε)
log |〈ψ|φ〉|2 (VII.1)

copies of the unknown state. For small J (i.e. states that
are close together), this bound is asymptotically

k = Ω

(
1

J
log

(
1

4ε(1− ε)

))
. (VII.2)

The main theorem of this section is the following.

Theorem VII.2. (QCF lower bound) A QCF must use
at least Ω

(
maxλ

[
f ′(λ)2λ(1− λ)

])
quoins to produce a

single f(λ)-quoin.

In Appendix D, we prove this theorem using Hel-
strom’s bound. We also provide examples for some ex-
emplary functions f(λ). Our lower bound on QCFs is
actually saturated for some functions f , such as the triv-
ial fheads(λ) = λL and also the non-trivial, Eq (D.7).

VIII. CONCLUSION

In this paper, we have attempted to map some of the
territory of Bernoulli factories. We have considered sev-
eral different types of such factories, depending on what
resource is given as input, what free resources and gates
are allowed within the factory, and what output is de-
manded. The other general distinction we made was be-
tween unbounded algorithms, that might run forever with
small probability, and query-limited algorithms.

One part of the quantum Bernoulli factory territory
was particularly mappable, that of coin factories with
limited uses of a resource oracle acting on a single-qubit
of memory, which we called GCF1. This is also an in-
teresting part of the landscape from the viewpoint of
query complexity, as quantum algorithms for symmet-
ric boolean functions reduce to GCF1 algorithms. We
managed to completely characterize the possible coins
constructible by GCF1s. We also converted GCF1 algo-
rithms into QCF algorithms, which use quoins as a re-
source rather than an oracle, and proved a lower bound
on QCF algorithms using Helstrom’s bound.

Further questions abound, however. Can all symmet-
ric boolean functions be evaluated optimally as GCF1

algorithms, that is, by the Groverlike method of alter-
nating reflections about the start state and target state
in the subspace we call T ? More broadly, can charac-
terization theorems like the one we proved for GCF1 be
proved for the other types of Bernoulli factories in Table I
(or for others unlisted)? Finally, the connection between
resource limited Bernoulli factories and those using un-
limited resources is worth exploring.

7

Acknowledgements

The author would like to thank Guang Hao Low for
useful discussion and for the proof of Lemma B.2. Special

thanks go to Scott Aaronson for encouraging this project
and teaching the course!

[1] H. Dale, D. Jennings, and T. Rudolph, Nature commu-
nications 6 (2015).

[2] J. Von Neumann, Appl. Math Ser. 12, 36 (1951).
[3] M. Keane and G. L. O’Brien, ACM Transactions on

Modeling and Computer Simulation (TOMACS) 4, 213
(1994).

[4] M. Ozols, M. Roetteler, and J. Roland, ACM Transac-
tions on Computation Theory (TOCT) 5, 11 (2013).

[5] L. Grover and T. Rudolph, arXiv preprint quant-
ph/0208112 (2002).

[6] G. H. Low, T. J. Yoder, and I. L. Chuang, Physical Re-
view A 89, 062315 (2014).

[7] S. Lloyd, M. Mohseni, and P. Rebentrost, Nature Physics
10, 631 (2014).

[8] A. Ambainis, in Proceedings of the thirty-second annual
ACM symposium on Theory of computing (ACM, 2000),
pp. 636–643.

[9] P. Hoyer, T. Lee, and R. Spalek, in Proceedings of the
thirty-ninth annual ACM symposium on theory of com-
puting (ACM, 2007), pp. 526–535.

[10] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and
R. De Wolf, Journal of the ACM (JACM) 48, 778 (2001).

[11] R. Paturi, in Proceedings of the twenty-fourth annual
ACM symposium on theory of computing (ACM, 1992),
pp. 468–474.

[12] W. Markoff and J. Grossmann, Mathematische Annalen
77, 213 (1916).

[13] L. K. Grover, in Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing (ACM, 1996),
pp. 212–219.

[14] S. Aaronson and A. Drucker, in Automata, Languages
and Programming (Springer, 2011), pp. 61–72.

[15] C. W. Helstrom, Journal of Statistical Physics 1, 231
(1969).

[16] M. Marshall, Positive polynomials and sums of squares,
146 (American Mathematical Soc., 2008).

[17] K. Weierstrass, Sitzungsberichte der Königlich Preußis-
chen Akademie der Wissenschaften zu Berlin 2, 633
(1885).

[18] F. Herzog and J. Hill, American Journal of Mathematics
pp. 109–124 (1946).

[19] T. J. Yoder, G. H. Low, and I. L. Chuang, Physical review
letters 113, 210501 (2014).

Appendix A: Proof of Lemma V.1

Proof. A generic L-query GCF1 algorithm can be writ-
ten in the form of Eq. (V.1), which we repeat here for
convenience.

G|0〉 = AλPL−1 . . . AλP2AλP1Aλ|0〉 (A.1)

=
√

1− f(λ)|0〉+ eiχ(λ)
√
λ|1〉, (A.2)

where Pj = exp(−iφjZ). Given this algorithm, we aim
to construct a standard query algorithm for a symmetric
boolean function g on N -bits that accepts string x with
probability f(|x|/N).

The idea is to use the subspace T that was so use-
ful in Grover’s algorithm, Section V A. Let λ = |x|/N ,
n = logN (for simplicity assume N is a power of two),
and H be the single-qubit Hadamard gate. Also let
U be the standard quantum oracle (i.e. U |i〉|a〉|b〉 =
|i〉|a ⊕ 1〉|b〉). The correspondence of states and oper-
ators between GCF1 and the standard oracle model is as
follows:

|0〉 ↔ |t〉 =
1√

N − |x|
∑
xi=0

|i〉 = |Rej〉 (A.3)

|1〉 ↔ |t〉 =
1√
|x|
∑
xi=1

|i〉 = |Acc〉 (A.4)

Aλ|0〉 ↔ (H|0〉)⊗n =
√

1− λ|t〉+
√
λ|t〉 = |s〉 (A.5)

e−iθZ ↔ U(I ⊗ e−iθZ ⊗ I)U, (A.6)

where the tripartite system implicit in the final equa-
tion is the index, ancilla, bystander partition used in
the definition of U . If we define also the reflections,
Rs(α) = I−(1−e−iα)|s〉〈s| and Rt(β) = I−(1−eiβ)|t〉〈t|
where |s〉 =

√
1− λ|t〉+

√
λ|t〉, then Eqs. (A.5) and (A.6)

imply also the correspondences,

Aλe
iαZ/2A†λ ←→ eiα/2Rs(α) (A.7)

e−iβZ/2 ←→ e−iβ/2Rt(β). (A.8)

Using Eqs. (A.7) and (A.8) repeatedly converts the
GCF1 algorithm in Eq. (A.1) into a standard query al-
gorithm C taking place in T . Output accept or reject
by applying the oracle U , and measuring the ancilla –
0 implies reject and 1 implies accept. If L is odd, use
Eq. (A.5) to convert the initial state Aλ|0〉 into |s〉. If L
is even, then applying the oracle U to |s〉 and measuring
the ancilla will collapse the state to either |t〉 or |t〉, and
either can be used as the initial state. (But, note, if |t〉
is obtained then proceed with the same algorithm C, but
reject if |Acc〉 is found and accept if |Rej〉 is.)

�

Appendix B: Proof of Theorem V.2

The characterization of GCF1 is the most involved
proof of this report. First, we introduce a well-known
result from mathematics on polynomials and provide a
proof following [16].

8

Lemma B.1. (polynomial SoS)
Suppose f : R → R is a real polynomial. Then f(x) =
g(x)2 + h(x)2 for real polynomials g, h iff f(x) ≥ 0 for
all x ∈ R.

Proof. The forward implication is obvious. For the re-
verse implication, we begin by factoring f into irreducible
polynomials over the reals as

f(x) = α
∏
i

(x− βi)ki
∏
j

((x− γj)2 + δ2
j)lj . (B.1)

Because f(x) ≥ 0 for all x, we must have ki even for
all i and also α ≥ 0. Therefore,

√
α, (x − βi)

ki/2 ∈ R
for all x and i. Furthermore, the second product in the
factorization of f can be reduced to a single sum of two
squares by repeated application of the identity (called
the ’two squares identity’ in [16])

(r2 + s2)(t2 + u2) = (rt± su)2 + (ru∓ st)2, (B.2)

where the possible choice of upper signs or lower signs
implies that the decomposition of f into a sum of two
squares is not unique.

�
Now we can begin studying L-query GCF1 algorithms,

whose general form we repeat here,

G = AλPL−1 . . . AλP2AλP1Aλ, (B.3)

where recall Pj = exp(−iφjZ) are phase gates. Because
G will be applied to the Z-eigenstate |0〉 and the final
output measured in the Z-basis, we can drop leading
and trailing Z-rotations, and convert G into the following
form,

G = RφL(λ)RφL−1
(λ) . . . Rφ1

(λ), (B.4)

where Rφ(λ) =
√

1− λI− i
√
λ (cos(φ)X + sin(φ)Y), and

we used the facts that Aλ is a single qubit Y-rotation (i.e.

Aλ = exp(−iθY/2) for θ defined such that
√
λ = sin(θ/2)

and
√

1− λ = cos(θ/2)) and also that

e−i(φ/2+3π/4)Ze−iθY/2ei(φ+3π/4)Z = Rφ(λ). (B.5)

Now we have the following Lemma.

Lemma B.2. (1-qubit compiling)
A unitary U = a(λ)I − ib(λ)Z − ic(λ)X − id(λ)Y can be
written as a sequence of L rotations around axes in the
XY-plane

U = RφL(λ)RφL−1
(λ) . . . Rφ1

(λ), (B.6)

if and only if the Pauli coefficients can be written as

a(λ) =

L∑
k=0
k even

akBL,k(λ), b(λ) =

L∑
k=0
k even

bkBL,k(λ),

c(λ) =

L∑
k=0
k odd

ckBL,k(λ), d(λ) =

L∑
k=0
k odd

dkBL,k(λ), (B.7)

where BL,k(λ) =
√

1− λL−k
√
λ
k

and ak, bk, ck, dk are
real numbers, satisfying a(λ)2 +b(λ)2 +c(λ)2 +d(λ)2 = 1.

Proof. The forward direction proceeds by induction.
Let a(p)(λ), b(p)(λ), c(p)(λ), d(p)(λ) be the Pauli coeffi-
cients of the unitary formed from the first p rotations.
That is,

a(p)I + ib(p)Z + ic(p)X + id(p)Y = Rφp(λ) . . . Rφ1(λ).
(B.8)

Then, by multiplying out the unitaries, one can easily
check that (suppressing function arguments λ),

a(p+1) =
√

1− λa(p) +
√
λ cosφp+1c

(p) +
√
λ sinφp+1d

(p),

b(p+1) =
√

1− λb(p) +
√
λ cosφp+1d

(p) −
√
λ sinφp+1c

(p),

c(p+1) =
√

1− λc(p) −
√
λ cosφp+1a

(p) +
√
λ sinφp+1b

(p),

d(p+1) =
√

1− λd(p) −
√
λ cosφp+1b

(p) −
√
λ sinφp+1a

(p).
(B.9)

The base case is p = 1, for which a(1) =
√

1− λ, b(1) =
0, c(1) = −

√
λ cosφ1, and d(1) = −

√
λ sinφ1 evidently

satisfy Eq. (B.7) of the lemma. The condition that the
squares sum to one, follows directly from unitarity of U .

The reverse implication is more complicated, but re-
verts ultimately to algebra once one has the right idea.
We have to find phases φj that will appropriately con-
struct U given the Pauli coefficients a, b, c, d of the form
specified in Eq. (B.7). Roughly, the trick is to again use
the recursion relations for a, b, c, d given in Eq. (B.9),
but with the goal of reducing the polynomial degree of
a, b, c, d. That is, find the Pauli coefficients of Rφ1(θ)U†

using the recursion relations, and choose φ1 to cancel the
highest order terms (in λ) in those coefficients. Repeat
L times to find all the phases. We make this procedure
explicit next.

Note first that writing a(λ), b(λ), c(λ), and d(λ) in the
power monomial basis is more convenient for canceling
leading orders in λ. That is, for L = 2l + 1 odd,

a(λ) =

l∑
j=0

ã2j+1

√
1− λ2j+1

, (B.10)

b(λ) =

l∑
j=0

b̃2j+1

√
1− λ2j+1

, (B.11)

c(λ) =

l∑
j=0

c̃2j+1

√
λ

2j+1
, (B.12)

d(λ) =

l∑
j=0

d̃2j+1

√
λ

2j+1
, (B.13)

where ãh, b̃h, c̃h, d̃h are simple linear combinations of
ah, bh, ch, dh, the coefficients from Eq. (B.7). For L = 2l

9

even, we likewise define tilde coefficients such that,

a(λ) =

l∑
j=0

ã2j

√
1− λ2j

, (B.14)

b(λ) =

l∑
j=0

b̃2j
√

1− λ2j
, (B.15)

c(λ) =
√
λ(1− λ)

l−1∑
j=0

c̃2j
√
λ

2j
, (B.16)

d(λ) =
√
λ(1− λ)

l−1∑
j=0

d̃2j

√
λ

2j
. (B.17)

Note that in this form, whether L is even or odd, the
unitarity condition that a(λ)2 +b(λ)2 +c(λ)2 +d(λ)2 = 1

implies that ã2
L + b̃2L = c̃2L + d̃2

L.

Now let a(p′)(λ), b(p
′)(λ), c(p

′)(λ), d(p′)(λ) be the Pauli

coefficients of Rφp(λ) . . . Rφ1(λ)U†. For instance, a(0′) =

a, b(0
′) = b, c(0

′) = c, and d(0′) = d is the base case,
and the recursion relation Eq. (B.9) (replace unprimed
superscripts with primed superscripts) defines the rest.

Now we go through finding φ1 in the case that L =
2l + 1 is odd. The even case is very similar, and finding
all φp for p larger than 1 also follows the same logic.
First, expand the Pauli coefficients,

a(1′) =(1− λ)l+1
(
ãL − (−1)l(c̃L cosφ1 + d̃L sinφ1)

)
+O

(
(1− λ)l

)
,

b(1
′) =(1− λ)l+1

(
b̃L − (−1)l(d̃L cosφ1 − c̃L sinφ1)

)
+O

(
(1− λ)l

)
,

c(1
′) =

√
λ(1− λ)

(
λl(c̃L − (−1)l(ãL cosφ1 − b̃ sinφ1))

+O(λl−1)
)
,

d(1′) =
√
λ(1− λ)

(
λl(c̃L − (−1)l(b̃L cosφ1 + ã sinφ1))

+O(λl−1)
)
.

Now it is easy to check that making the leading order
terms disappear simply requires choosing φ1 so that,

e−iφ1 = (−1)l
ãL + ib̃L

c̃L + id̃L
. (B.18)

Note also that φ1 ∈ R because ã2
L + b̃2L = c̃2L + d̃2

L.
In general (and showing this just requires doing the

algebra similar to the p = 1, L odd case above), one
should choose φj+1 according to

e−iφj+1 = (−1)d(L−j)/2e−1
ã

(j′)
L−j + ib̃

(j′)
L−j

c̃
(j′)
L−j + id̃

(j′)
L−j

, (B.19)

where ã
(j′)
L−j for instance is the largest degree coefficient

of a(j′)(λ) when a(j′) is expanded as in Eq. (B.10) or

Eq. (B.14) depending on the parity of j. This is an iter-
ative procedure for finding the phases φj .

�
Because Lemma B.2 is concerned with making a single-

qubit unitary from the oracle Aλ, it is in some sense a
characterization of Groverlike Oracle Factory (GOF) re-
stricted to one qubit of memory (GOF1), the first exam-
ple we have given and discussed of a Bernoulli factory
that makes operators rather than states. The possibility
of creating quoins as outputs (therefore GQF1s) using
Lemma B.2 should also be obvious.

In any case, returning to coin factories, we can now
finally complete the proof of Theorem V.2 and therefore
the characterization of GCF1 by combining Lemmas B.1
and B.2.

Proof of Theorem V.2. To use the notation of
Lemma B.2, note that f(λ) = c(λ)2 + d(λ)2, which im-
plies that 1−f(λ) = a(λ)2 +b(λ)2. Thus, by Lemma B.2,
to prove that f is GCF1 constructible we must only find
functions a, b, c, d of the form given in Eq. (B.7). There
are two cases to consider – deg(f) odd and deg(f) even
– which are similar, but we will treat them separately for
clarity.

Odd degree: In this case, L must be odd – even L
cannot generate an even degree polynomial bias f , as can
be checked by inspecting Eq. (B.7). In the odd L case,

we also note that c(λ) = c̃(
√
λ) for an odd polynomial c̃.

Likewise, there are odd polynomials ã, b̃, and d̃ such that
a(λ) = ã(

√
1− λ), b(λ) = b̃(

√
1− λ), and d(λ) = d̃(

√
λ).

For the forward implication of the theorem, we need
to prove the stated conditions on f assuming f is GCF1

constructible. First, f is certainly a polynomial in λ
because c̃ and d̃ are both odd polynomials in

√
λ. Also,

f(λ) ∈ [0, 1] for all λ ∈ [0, 1], because a(λ), b(λ), c(λ) and
d(λ) are real valued for all λ ∈ [0, 1]. For all λ < 0, we see
c(λ)2, d(λ)2 ≤ 0 and for all λ > 1, we have a(λ)2, b(λ)2 ≤
0. This implies f(λ) ≤ 0 for all λ < 0 and f(λ) ≥ 1 for
all λ > 1.

For the reverse implication things are only slightly
more complicated. We will first show the existence of
odd-polynomials c̃, d̃ such that f(λ) = c̃(

√
λ)2 + d̃(

√
λ)2.

It is easy to show that any odd polynomials can be put
into the form required by Eq. (B.7).

To show that c̃, d̃ exist, factor f(λ) as

f(λ) = α
∏
i

(λ− βi)ki
∏
j

(
(λ− γj)2 + δ2

j

)lj
. (B.20)

Now we know that f(λ) ≥ 0 for all λ ≥ 0, so all ki are
even if βi > 0. On the other hand, if any ki is odd while
βi < 0 then f(βi) = 0 and the ki-derivative f (ki)(βi) 6= 0.
But this would mean that somewhere near βi (say at
βi + ε < 0) we would have f(βi + ε) > 0, which violates
condition (1). Likewise, we must have a factor of λk0 in
the factorization of f , and k0 better be odd – otherwise,
f would not cross zero at λ = 0 and so violate either
condition (1) or the hypothesis that f(λ) ∈ [0, 1] for all
λ ∈ [0, 1].

10

Having settled the parities of the ki, it is easy to break
f into the sum of two squares of odd polynomials in

√
λ,

making use of the two squares identity, Eq. (B.2), on the
latter factors of Eq. (B.20).

Condition (2) provides, by a similar argument, the

proof that ã and b̃ exist and are odd polynomials. Simply
factor g(1− λ) = 1− f(λ) instead.
Even degree: In this case, L is even. Also, inspection

of Eq. (B.7) shows that c(λ) and d(λ) may be written as

c(λ) =
√
λ(1− λ)c̃(

√
λ) and d(λ) =

√
λ(1− λ)d̃(

√
λ) for

even polynomials c̃ and d̃. Likewise, a(λ) = ã(
√
λ) and

b(λ) = b̃(
√
λ) for even polynomials ã and b̃.

Now we prove the forward implication. Evidently, f(λ)
is a polynomial and f(λ) ∈ [0, 1] for all λ ∈ [0, 1]. Also,

because f(λ) = λ(1−λ)
(
c̃(
√
λ)2 + d̃(

√
λ)2
)

and c̃, d̃ are

even polynomials (and so actually functions of λ), we see
that f(λ) ≤ 0 for all λ < 0 and λ > 1.

For the reverse implication, we have to use the poly-
nomial SoS Lemma B.1 again. Let g(λ) = f(λ)/λ(1−λ).
By the hypotheses, f has roots at λ = 0 and λ = 1,
so g is also a polynomial. Indeed, we know also that
g(λ) ≥ 0 for all λ ∈ R. Thus, by the SoS lemma there
are two polynomials in λ such that g(λ) is the sum of

their squares. This gives us c̃ and d̃.
To get ã and b̃, simply note that 1 − f(λ) ≥ 0 for all

λ ∈ R. Thus, the SoS lemma implies the existence of
ã and b̃. Similar to the odd case, once ã, b̃, c̃, and d̃ are
found it is a matter of a linear transformation of their
polynomial coefficients to put them in the form required
by Eq. (B.7).

�

Appendix C: Bernstein approximations

In the query limited case, we have already seen that
the bias f(λ) of an output coin will always be a polyno-
mial in the input coin’s bias λ. However, we may sus-
pect that because of Weierstrass’ theorem [17], which
states that arbitrary continuous functions can be well
approximated by large degree polynomials, that we can
find a sequence of query limited algorithms, making say
L1 < L2 < L3 < . . . queries whose outputs get arbitrarily
close to a coin with desired non-polynomial bias.

We present some preliminary results towards this goal
in this section using Bernstein approximations. The Lth

Bernstein approximation to a function f(λ) is the poly-
nomial

BL [f(λ)] =

L∑
j=0

f(j/L)

(
L

j

)
λj(1− λ)L−j . (C.1)

As L increases, the Bernstein approximations approach
f(λ) uniformly, even for some discontinuous functions f
[18]. The Bernstein approximations are polynomials so
we at least have a chance of constructing them within
GCF1 for any function f and any L. But whether, for

all f(λ), there exist L1 < L2 < L3 < . . . such that
BLj [f(λ)] are constructible polynomials (e.g. within
OCF, GCF, or GCF1) is non-obvious.

At least for specific functions, we can find a sequence
of Bernstein approximations that are constructible in
GCF1. Take the classic Bernoulli factory example
fsqrt(λ) =

√
λ. The Bernoulli approximations BL[fsqrt]

with odd L are 0 at λ = 0, are 1 at λ = 1, and have
non-negative derivative. Therefore, they satisfy the con-
ditions of Theorem V.2 and therefore BL[fsqrt]-coins are
constructible in GCF1.

We know of numerous other examples of GCF1 con-
structible Bernstein approximations. For instance, the
von-Neumann coin functions fvN in the p = 1 − δ2/2
and δ → 0 limit become Bernstein approximations to
the function fOR =

{ 0, λ=0
1, λ>0 . Other patterns of con-

structible Lj (rather than simply “L odd”) also ex-
ist. For instance, the Bernstein approximations to

fMAJ(λ) =
{ 0, λ≤1/2

1, λ>1/2
are constructible in GCF1 for all

L ≡ 1 (mod 4). A general case encompassing at least
these two cases and possibly worth further consideration
might be the Bernstein approximations to the threshold
functions θt(λ) =

{ 0, λ≤t
1, λ>t .

Appendix D: Proof and examples of the QCF lower
bound

Here we prove Theorem IV.1.
Proof. Consider two input quoins |ψλ1

〉 and |ψλ2
〉 with

λ2 = λ1 + ∆λ, and say we have a QCF producing f(λ)-
coins using k quoins. Given km copies of an unknown
state promised to be either |ψλ1

〉 or |ψλ2
〉, we can de-

termine which we have by sampling m coins using the
QCF, getting binary values x1, x2, . . . xm. If (

∑
i xi)/m

is closer to λ1 than λ2, we report that we were given
the state |ψλ1

〉, and otherwise we report |ψλ2
〉. This pro-

cedure has error probability ε ≤ e−m∆f2/2 bounded by
Hoeffding’s inequality, where ∆f = f(λ2)− f(λ1).

This procedure for distinguishing states must be lim-
ited by Helstrom’s bound, Lemma VII.1. In this case,
1 − |〈ψλ1 |ψλ2〉|2 = ∆λ2/4λ(1 − λ) + O(∆λ3), where we
have set λ = λ1. So by Hoeffding and Helstrom we have
mk = 2k ln(1/ε)/∆f2 ≥ 4λ(1 − λ) ln(1/4ε(1 − ε))/∆λ2.
Thus,

k ≥ 2
ln(4ε(1− ε))

ln(ε)

(
f ′(λ)2λ(1− λ)

)
. (D.1)

Treating ε as a (small) constant and noticing that the
bound on k holds for all λ, we arrive at the theorem.

�
Now we provide some examples of using this bound.
Ex. 1 Consider the bias function for L odd,

f(λ) =

(L−1)/2∑
j=0

(
L

j

)
(1− λ)jλL−j , (D.2)

11

which is the Lth Bernstein approximation to the function
fMAJ(λ) introduced at the end of Section C. It is simple
to check that the maximum of f ′(λ) always occurs at
λ = 1/2 (this is where fMAJ changes most rapidly after
all). Also, the maximum of λ(1 − λ) occurs at λ = 1/2.
Therefore, the bound on the number of copies k of the
quoin |ψλ〉 needed to create a f(λ)-coin is

k = Ω

(
max
λ

(
f ′(λ)2λ(1− λ)

))
(D.3)

= f ′(1/2)2/4 = Ω(L). (D.4)

This is in fact an optimal lower bound, because the algo-
rithm to create f(λ) is a classical one – simply sample k
quoins (they may just as well be coins) and report 0 or 1
depending on the majority of those samples.

Example 1 gave a trivial bound, because the degree of
f was L and so we already know that at least L copies
are required to construct it. Example 2 is not so trivial.

Ex. 2 Let the bias be the Grover bias,

f(λ) = sin2
(
L cos−1

√
1− λ

)
. (D.5)

Therefore, f ′(λ) = L sin(2L cos−1
√

1−λ)

2
√
λ(1−λ)

, and so we obtain

the bound

k = Ω
(
L2
)
. (D.6)

This bound implies that the quadratic speedup of
Grover’s algorithm is lost if instead of Aλ we have only
the start states |ψλ〉 as our resources (i.e. in the QCF
model rather than the OCF model). Similar to Example
1, this bound is satisfiable by a naive classical algorithm
– simply sample k quoins and report 1 if any of them are
found to be 1.

However, the satisfying algorithm is not even classical
if we generalize the bias in Eq. (D.5) to create a bias

ffp(λ) = 1− δ2TL

[
T1/L[1/δ]

√
1− λ

]2
, (D.7)

which is the fixed-point algorithm of [19] and becomes
the Grover bias in the δ = 1 limit. In this case, the lower
bound on the number of quoins needed can also be shown
to be k = Ω(L2), but ffp is not even in CCF for some
values of δ (because the coefficients in the polynomial
ffp will be non-integer). So in this case, an optimal (ap-
proximate) algorithm can be created using the method
of Theorem VI.1 to convert the O(L) query GCF1 algo-
rithm into a O(L2) query QCF algorithm.

Ex. 3 Say we have a non-constant symmetric boolean
function g : {0, 1}N → {0, 1} and we want a f(λ)-coin
such that f(λ) approximates g. Let’s also say that g
changes value at the hamming weights h1, h2, . . . (i.e.
g∼(hj−1) 6= g∼(hj)) and that h∗ is the hamming weight
hj closest to N/2. By the mean-value theorem, there is
some λ∗ ∈ [(h∗ − 1)/N, h∗/N] such that f ′(λ∗) = 1/3N .
So,

max
λ

[
f ′(λ)2λ(1− λ)

]
≥ 9N2λ∗(1− λ∗). (D.8)

This lower bound on QCFs is essentially the square of
the lower bound proved by Beals et. al. Theorem II.1
on oracle queries in the query model. Note that in a
Bernoulli factory, there is no such thing as an input string
consisting of N -bits, so there is no natural upper bound
of N queries to “learn” the input; the input is instead the
coin, quoin, or oracle, which depends on a continuous bias
parameter λ that can never be exactly learned.

	I Introduction
	II Query algorithms and symmetric boolean functions
	III Coin and quoin factories
	IV OCF Lower Bounds
	V GCF Algorithms
	A Grover's algorithm
	B Memory limited GCFs
	C A quantum von-Neumann coin
	D GCF1GCF and CCFGCF

	VI Converting GCF1 into QCF
	VII QCF Lower bounds
	VIII Conclusion
	 Acknowledgements
	 References
	A Proof of Lemma V.1
	B Proof of Theorem V.2
	C Bernstein approximations
	D Proof and examples of the QCF lower bound

