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Abstract

Stoquastic Hamiltonians, those for which all off-diagonal matrix elements in the
standard basis are real and non-positive, are common in the physical world. We survey
recent work on the complexity of stoquastic Hamiltonians. We discuss results relating
stoquastic Hamiltonians and Merlin-Arthur games, including the result that stoquastic
k-local Hamiltonian is StogMA-complete, focusing in particular on the first non-trivial
example of an MA-complete problem, stoquastic k-SAT.

1 Introduction

One of the central problems in physics and chemistry is that of finding the ground state
energy and wave function of a quantum many-electron system. An important question,
then, is how difficult it is to find the ground state energy of a given Hamiltonian. Kitaev
first formalized this problem by introducing the class QMA, and showing that the problem
of finding the ground state energy of local Hamiltonians is complete for QMA [I]. A more
formal definition is below.

Definition 1.1. Given an n-qubit Hamiltonian H = ZZI h; where each h; is a Hermitian
operator acting non-trivially on at most & = O(1) qubits that satisfies |h;| < poly(n) and
m = poly(n), two constants a and b such that 0 < a < b with b —a > 1/poly(n), k-local

Hamiltonian is the problem of determining whether

(YES) there exists an eigenvalue of H smaller than a, or

(NO) all eigenvalues of H are greater than b,
with the promise that one of these is true.

k-local Hamiltonian is a quantum generalization of k-SAT: both are quintessential com-
plete problems for their respective classes; k-local Hamiltonian is QMA-complete for k > 2
just as k-SAT is NP-complete for & > 3. (Kempe et al. showed QMA-completeness of k-local
Hamiltonian for & > 2 [2].) We can draw a stronger parallel with k-SAT by restricting to
the case where all the local Hamiltonians h; are k-local projectors.



Definition 1.2. Quantum k-SAT is k-local Hamiltonian with all the k-local Hamiltonians
h; restricted to be k-local projectors. In this case, the problem is of determining whether,
given an n-qubit Hamiltonian H = > ;" TI; where each II; is a k-local projection operator,
k = O(1), that satisfies m = poly(n), a constant b such that b > 1/poly(n),

(YES) there exists a zero eigenvalue of H, or

(NO) all eigenvalues of H are greater than b,
with the promise that one of these is true.

Bravyi showed that quantum k-SAT is QMA;-complete [3].
The two main results we review are complexity classifications of k-local Hamiltonian and
quantum k-SAT for stoquastic Hamiltonians.

Definition 1.3. Stoquastic Hamiltonians are those Hamiltonians for which all off-diagonal
matrix elements of the terms h; in the standard basis are real and non-positive, that is,

(alhaly) < OVi ¥ o,y € {0,1}". (1)

Stoquastic Hamiltonians arise naturally in the context of physics: the quantum transverse
Ising model, the ferromagnetic Heisenberg model, the Jaynes-Cummings model of light-
matter interaction, and most Hamiltonians reachable using Josephson-junction flux qubits
(the kind used by D-Wave) are stoquastic.

Observe that if H is stoquastic, 1 — SH for g sufficiently small has only non-negative
matrix elements. Thus we can apply the Perron-Frobenius theorem, setting the stage for
many results involving stoquastic Hamiltonians.

Theorem 1.4. (Perron-Frobenius theorem) If all elements of a real symmetric square matriz
A are non-negative, then A has a largest real eigenvalue; furthermore, the components of the
corresponding eigenvector can be chosen to be all non-negative.

The largest eigenvalue of 1 — SH corresponds to the ground state energy of H. The
eigenvectors in both cases are the same, so the ground state of a stoquastic Hamiltonian can
be chosen to have non-negative amplitudes!

Finally, let us define the two major problems of interest in the context of stoquastic
Hamiltonians.

Definition 1.5. Stoquastic k-local Hamiltonian is k-local Hamiltonian with a stoquastic
Hamiltonian. Similarly, stoquastic k-SAT is quantum k-SAT with a stoquastic Hamiltonian.

At this point, it is not clear how much the restriction that all off-diagonal elements in
the standard basis be non-positive might reduce the complexity of local Hamiltonian or
quantum k-SAT (if at all), what stoquastic Hamiltonian problems are still QMA-complete (if
stoquastic local Hamiltonian is not), and what insights stoquastic Hamiltonians might offer
to complexity theory.



In this survey, we will answer these questions and build insight and intuition about
what makes stoquastic local Hamiltonians ‘simpler’ than local Hamiltonians. We will follow
a different order than progress in the field. In [Section 2| we discuss the complexity of
stoquastic local Hamiltonian, and mention a natural QMA-complete problem in the context
of stoquastic Hamiltonians. In [Section 3| we prove that stoquastic 6-SAT is MA-complete
(indeed, the first such problem). Our proof leads into a brief discussion of those stoquastic
Hamiltonians for which adiabatic evolution can be efficiently simulated.

The main focus of this paper is on the result that stoquastic 6-SAT is MA-complete: all
proofs related to this result are included. Some other definitions and proofs are included in
appendices. includes a ‘quantum’ definition of MA and a matching definition of
StogMA as well as a discussion of the place of StogMA in the framework of Merlin-Arthur
games. [Appendix B| contains a sketch of the proof that stoquastic local Hamiltonian is
StogMA-complete.

2 Stoquastic local Hamiltonian

2.1 Stoquastic local Hamiltonian is MA-hard

The first question one might ask is how much k-local Hamiltonian is simplified by the con-
dition that the Hamiltonian be stoquastic. Without the stoquastic requirement, k-local
Hamiltonian was shown by Kitaev to be QMA-complete [I] using a clock construction.

We can show that stoquastic local Hamiltonian is MA-hard for & > 6 using a near-
identical clock construction. However, instead of using a universal set of quantum gates, we
use a classical reversible gate set that is universal (e.g. Toffoli gates). This is why we can
only show that stoquastic local Hamiltonian is MA-hard for £ > 6: we need 6-local terms in
the clock construction, 3 for the Toffoli gates and 3 for the clock.

Let us write the Hamiltonian using the quantum definition of MA in [Section A.1] Specif-
ically, we use the Hamiltonian H = Hi, + Hprop + Houe acting on r qubits in the state |+)
(‘coin’ qubits), K ancilla qubits, and an s-qubit witness state |¢)). Let V have L reversible
classical gates Ry, so we will use L qubits for the clock. Then with
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we can use Kitaev’s result [I] that if 3|¢)) such that P(1) > 1 — ¢, then there exists an
eigenvalue of H that is < ¢, and if V|¢), P(1) < ¢, then all eigenvalues of H are > ¢(1 —
V€)L™3 for some constant c¢. Noting that all the off-diagonal terms are non-positive—the
only off-diagonal terms in the standard basis are the coin projectors and the Toffoli gates
R/—we can reduce any problem in MA to a stoquastic 6-local Hamiltonian H.

2.2 Stoquastic local Hamiltonian is StogMA-complete

In the previous section we used Kitaev’s clock construction to show MA-hardness for sto-
quastic k-local Hamiltonian for £ > 6. A natural next question is whether stoquastic k-local
Hamiltonian is complete for any class. Indeed, it can be shown that stoquastic k-local Hamil-
tonian is StogMA-complete (StogMA was originally defined in [4]; a definition is included in
[Appendix A.2)for completeness). A sketch of the proof is included in [Appendix B|

Interestingly, though determining the ground state energy of a stoquastic local Hamil-
tonian is only StogMA-complete, finding the highest energy for a stoquastic Hamiltonian is
QMA-complete. Jordan et al. show this in [5] by proving that finding the lowest eigenvalue
of a symmetric stochastic matrix is QMA-complete (if S is a symmetric stochastic matrix,
then —S' is stoquastic).

3 The first MA-complete problem

3.1 Stoquastic k-SAT

The two great successes of the study of quantum computing are its contributions to our
understanding of complexity theory and to our understanding of the physical world. In this
section we will review the “discovery” of the first non-trivial MA-complete (promise) problem
[4]. Until this discovery, no non-trivial complete problems were known for either BPP or MA;
even now, no non-trivial complete problems for BPP are known (unless P=BPP). This first
non-trivial MA-complete problem is stoquastic 6-SAT. We will discuss the proof that it
is MA-complete in two stages, first showing MA-hardness by reduction from stoquastic 6-
local Hamiltonian, and then showing that stoquastic 6-SAT € MA by explicitly constructing
Arthur’s BPP algorithm. Surprisingly, the development of this algorithm additionally gives
us insight into which quantum Hamiltonians can be efficiently simulated classically.

3.2 Stoquastic 6-SAT is MA-hard

We begin by showing that stoquastic 6-SAT is hard for MA. Consider stoquastic k-local
Hamiltonian for k& > 6. As discussed earlier, and as shown in Lemma 3 of [0], stoquastic
k-local Hamiltonian is MA-hard for £ > 6; in particular, it is MA-hard for k = 6.

How can we solve stoquastic k-local Hamiltonian instances with stoquastic k-SAT? If
we replace each local Hamiltonian h; with a projector II; projecting onto the ground space
of h;, each projector II; has non-negative matrix elements because the corresponding local



Hamiltonian h; has non-positive off-diagonal elements. Furthermore, for the YES case, any
satisfying state of the stoquastic k-SAT problem is the ground state of the corresponding
stoquastic k-local Hamiltonian, and for the NO case, the best non-satisfying state of the
stoquastic k-SAT problem has penalty at least € (by the promise) and so is a NO case of
k-local Hamiltonian. Thus stoquastic k-SAT is MA-hard for k£ > 6.

3.3 Stoquastic 6-SAT is in MA

We will show that stoquastic k-SAT is in MA for any positive constant k by explicitly giving
Arthur’s BPP algorithm. Given an instance of stoquastic A-SAT with the projectors {II;}*,
define the Hermitian operator

1 m

Note that the matrix elements of G are non-negative in the standard basis. For a YES case,
the largest eigenvalue of GG is 1 (in which case a satisfying instance |0) exists and is in the
ground space of all the projectors, so G |0) = = 3~ 11;|6) = |0)). For a NO case, the largest
eigenvalue of G is less than or equal to 1 — ¢/m (at least one constraint is violated).

Arthur will distinguish between these two cases using a random walk. Merlin provides
the starting point, and Arthur performs the walk, as well as a series of checks at each step
which are passed for a YES case. Let us consider in more detail how the walk works for a
YES case.

Suppose that there exists a satisfying assignment [0) = > _ 01y 0o |x). By the Perron-
Frobenius theorem, this satisfying assignment can be chosen with 6, > 0 Vx. (We are finding
the ground state of the stoquastic Hamiltonian 1—3,(511;), where 8~! = >~ |h;| ensures sto-
quasticity.) Merlin provides Arthur with the starting point of the walk, zo = arg max, 0, €
{0,1}™. The steps Arthur takes to verify that there exists a satisfying assignment, given this
initial x, are as follows.

For i € [0, L]:
1. Arthur verifies that (z;|II; |x;) > 0 Vj.

2. Arthur finds the set {y € {0,1}": (z;] G'|y) > 0}. This set has at most 2*m = poly(n)
elements.

3. For each y, Arthur chooses the first j such that (x;|IL;|y) > 0, and computes the
transition probability
(Y11 |y)
Primy = (i G ly) PR (4)
o (i I |:)

4. Arthur checks that he actually has a random walk, i.e. that Zy P, =1



5. Arthur randomly chooses the next step in the walk, x;,1, according to the transition
probabilities. He stores

(5)

T =

Lo _ (i1 | T |zig1)
(2] G |wi41) (il 11 |:)

Finally, Arthur checks that [[-5' r; < 1. (r is unused.)

In general, the probability of passing the checks in Steps 1 and 4 depends on the largest

eigenvalue of G. Note that the seemingly strange square root term ézIEJB
J

6,/0,. This is obvious when Rank(Il;) = 1, and generalizing to Rank(Il;) > 1 is not difficult.
The condition (z|II; |y) > 0 ensures that |z) and |y) are in the same block of II; so that this
holds.

In a YES case, we succeed with probability 1. Arthur has a proper random walk be-
cause 3, Pryy = 3, (2l G 19) 0,/6: = 3, (2l Gly) ] 16) /6. = (2] G16) /6, = 1. More
details can be found in [4]. For a NO case, the success probability is upper-bounded
by the highest eigenvalue of G, which is < 1 — e/m. The success probability is P(1) =

S et sespn (150 Prvcvrins ) € Xty (1150 (@il G l2i11) ) (by the r product check).
The term in the product is necessarily smaller than the largest eigenvalue of G, so P(1) <
277/2(1 — ¢/m)* for a NO case. ¢ > 1/poly(n), m = poly(n), so we can make this smaller
than 1/3 with only L < poly(n) steps in the random walk.

It is interesting to note that the random walk works for simulating evolution or drawing
from the state |6(¢)) if the Hamiltonian is a YES case of stoquastic k-SAT, that is, if it
is “frustration-free”. This notion is explored more thoroughly in [7]. Research in this area
continues: last year Bravyi and Hastings showed that quantum annealing with the transverse-
field Ising model is equivalent to quantum annealing with a class of stoquastic Hamiltonians
that includes the current D-Wave machine Hamiltonian, that is, Hamiltonians which can be
written as a sum of a k-local diagonal Hamiltonian and a 2-local stoquastic Hamiltonian [§].

We have thus shown that stoquastic k-SAT is MA-hard for £ > 6 and in MA for any
positive k. Stoquastic 6-SAT is the smallest & for which the problem is known to be MA-
complete and indeed is the first non-trivial MA-complete problem.

As discussed in [Appendix A.2] StogMA C AM, so a proof of a separation between MA
and StogMA (for example, by showing that stoquastic k-local Hamiltonian is more difficult
than stoquastic k-SAT) would also show NP & P/poly. For reference, is an inclusion
diagram of the complexity classes discussed.

is in fact just

4 Conclusions

We have surveyed the complexity of stoquastic Hamiltonians, building up to a proof that
stoquastic k-SAT is MA-complete, and indeed, is the first such non-trivial problem. We



have shown how the added requirement of stoquasticity of the Hamiltonian simplifies k-
local Hamiltonian from QMA-complete to StogMA-complete, and how stoquasticity simplifies
quantum k-SAT from QMA;-complete to MA-complete. The introduction of StogMA leads
to another possibility for separating MA and AM, by separating MA and StogMA which seem
more comparable. We additionally discussed a natural QMA-complete problem for stoquastic
local Hamiltonians, as well as work on determining which Hamiltonians can be efficiently
classically simulated.

AM
| QMA
SBP\/
StogMA
MA
NP

Figure 1: Inclusion diagram of the complexity classes discussed.
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A Complexity classes: MA and StogMA

In this section we will introduce a ‘quantum’ definition of MA and a (also ‘quantum’) defi-
nition of StogMA.

A1l MA

We begin with a quantum definition of MA (“MA,”), which Bravyi et al. show to be equiv-
alent to the usual definition [6]. The quantum definition of MA simplifies the proof that the
stoquastic 6-SAT is MA-hard. The verifier takes as input a classical state |1)) from Merlin
and two sets of ancilla qubits, one with all qubits in the state |+) to simulate randomness
(the ‘coin’ qubits), and one with all qubits in the state |0). Arthur ultimately only measures
a single qubit in the z basis; in the YES case, he measures 1 with high probability, and in
the NO case he measures 0 with high probability. In essence, Merlin sends a witness state
which Arthur verifies with a BPP circuit.

Definition A.1. A problem belongs to the class MA, if and only if there exists a uniform
family of polynomial-time quantum verifier circuits V, with X, CNOT, and Toffoli gates
such that for classical input z,

(YES) 3) € (C?)®P12D guch that P[V (|z) [¢) |[+)¥" [0)®" = 1] > 2/3, and
(NO) ¥ [p) € (C)®UD | PV (| |9} |77 [0)*") = 1] < 1/3

where p is some polynomial, and r and K € poly(|z|) are the number of ‘coin’ and ancilla
qubits.

How can we see that this is equivalent to the regular definition of MA? MA, C MA
because P(1) = (| M |1p) where M = (++...+[(00...0[ VITIVV |+ + ... 4)]00...0) is
diagonal in the standard basis, with Hgl) the projector for the first qubit onto the 1 state. To
show MA C MA,, note for YES cases that the MA classical witness can be used for MA,. For
NO cases, Merlin cannot cheat by sending a quantum witness because P(1) = (z| M |z) <
1/3 Vz € {0,1}* and M is diagonal in the standard basis; all eigenvalues of M are thus
<1/3.

A.2 StogMA

There are two significant differences between MA and StogMA. First, the final measurement
for StogMA is non-classical: the final qubit measurement is |+) rather than |1), and the
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gap between the threshold probabilities has polynomial rather than constant separation.
Formally,

Definition A.2. A problem belongs to the class StogMA if and only if there exists a uniform
family of polynomial-time quantum verifier circuits V,, with X, CNOT, and Toffoli gates such
that for classical input x,

(YES) 3|9 € (C*)®P=) such that P[V(|z) |1b) |[+)¥|0)*" = +] > €yes, and
(NO) V [y) € (C*)=WD PV (|z) [0) [+)%710)*") = +] < €no,

where p is some polynomial, r and K € poly(|z|) are the number of ‘coin’ and ancilla qubits,
and 0 < €po < €yes < 1 With €yes — €40 > 1/poly(n).

In contrast to other probabilistic classes like BPP, MA, and QMA, for StogMA ampli-
fication of the gap between YES and NO by repeated measurement and majority vote is
impossible. We can show that StogMA C SBP by showing that stoquastic k-local Hamilto-
nian is contained in SBP. Because SBP C AM, this shows that StogMA C AM.

B Proof sketch that stoquastic local Hamiltonian is
StogMA-complete

The idea behind the proof is to find constants o > 0, 5 € R such that

P V() [9) |9 [0 = +] = (] (~aH + B1)[¥) Y [) € (C)°", (6)

where x is a classical description of H. But how can we convert H into observables propor-
tional to |+) (+|? Bravyi et al. prove this with two lemmas [4]: first, by showing that for any
k-local Hamiltonian H, there exist real constants a > 0 and [ such that a decomposition

aH + 1= pUHU, (7)

can be found efficiently, where Y . p; = 1 and U; is an n-qubit circuit using only X and
CNOT gates, and each H; is either — |0) (0/** or —X ® |0) (0/*""'. At this stage, both
measurements can be reduced by a ‘stoquastic isometry’ W; to measurement of X only.
Then we have

aH + 1 == pW:XW/, (8)

where X acts on the qubit to be measured, and {W;} is a family of stoquastic isometries
mapping k to 2k + 1 or 2k — 1 qubits (corresponding respectively to the terms — |0) (0"
and —X ®]0) (0]®* 7). Thus, for each term we can construct a verifier V; and use it for the
measurement. Using the fact that X = 2|+) (+] — 1, we find

2k [Vilah ) 10" 0y = +] = 1 - SeL(@H + A1),

. ©




The final thing to note is that stoquastic verifiers form a convex set: this allows us to
convert the sum over verifiers V; into a single verifier V. This shows that stoquastic k-local
Hamiltonian is in StogMA.

Stoquastic k-local Hamiltonian can be shown to be hard for StogMA using a perturbative
approach. For any stoquastic verifier with L gates and for any precision parameter § < L=
(the perturbative expansion is in §), one can define a stoquastic 6-local Hamiltonian whose
smallest eigenvalue is

J

A= —
L+1

(1 - mj}xP [V(|m> ) |+)" [0YF = —|—]> + O(6%). (10)
Up to first order in 6, then, we have A < §(1 — €ye5)/(L + 1) for YES instances and A >
d(1—€n0)/(L+1) for NO instances. €yes—€no > 1/poly(n) implies the same separation between
the ground state energies of YES and NO instances. Thus, stoquastic k-local Hamiltonian
is StogMA-complete.
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