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1 Introduction

In this report we survey some results on the complexity of finding the spectral gap of a quantm
Hamiltonian. First, let us review some basic definitions. A k-local Hamiltonian acting on a sys-
tem of n qudits with local dimension d is a Hermitian positive semidefinite operator H with a
decomposition

H =
m∑
i=1

hi

of local terms hi, where each term satisfies ‖hi‖ ≤ 1 and only acts nontrivially on at most k qudits.
Physically, the Hamiltonian representes the energy of the system. The spectral gap of a Hamiltonian
H is defined to be the difference ∆(H) ≡ λ2 − λ1 ≥ 0 of its smallest two eigenvalues.

2 Finite systems

The first setting we study is the case of finite system sizes. This case has been most fully investi-
gated by Ambainis [Amb14]. This work studies the following decision problem:

Definition 1. Given a local Hamiltonian H over n qudits, and an error parameter ε(n) > 0, the problem
SPECTRAL-GAP is to decide whether the spectral gap ∆(H) is either (i) ≤ ε(n) or (ii) ≥ 2ε(n), promised
that one two cases holds.

We restrict our attention to the case where ε(n) = Ω(1/ poly(n)). Ambainis relates the complex-
ity of this problem to two classes PQMA[log(n)] and PUQMA[log(n)]. The class PQMA[log(n)] is the class
of polynomial-time machines that are allowed to make O(log(n)) queries to an oracle for QMA.
The definition of PUQMA[log(n)] is similar, but with queries to an oracle for UQMA: this is a class
similar to QMA but with the added promise that in the YES instance, there is a unique satisfying
witness state. The following two theorems are the main results achieved by Ambainis.

Theorem 2. SPECTRAL-GAP for O(log(n))-local Hamiltonians is contained in PQMA[log(n)].

Proof. Let the given Hamiltonian be H , and let the Hilbert space it acts on be H. Then we use
O(log(n)) queries to QMA oracle to determine by binary search a constant a such that the mini-
mum energy λ1 ofH lies in the interval [a, a+ε/4]. Next, we call the QMA oracle on the following
measurement acting on a state inH⊗H:
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1. First, project the input state to the antisymmetric subspace of H ⊗ H. If the measurement
succeeds, then the post-measurement state must have the form

|Ψ〉 =
∑
ij

cij(|ψi〉|φj〉 − |φj〉|ψi〉), (1)

where {|ψi〉} is an orthonormal basis of H; without loss of generality, we can choose this
basis to consist of eigenstates of H .

2. Next, estimate the value of H ⊗ I + I ⊗ H1 on the post-measurement state using phase
estimation, up to precision ε/5. Accept if the value is below 2a+ 7ε

4 , and reject otherwise.

It is easy to show that the state of the form (1) that minimizes the expectation value ofH⊗I+I⊗H
is the state

|Ψ〉 =
1√
2

(|ψ1〉|ψ2〉 − |ψ2〉|ψ1〉),

where ψ1 and ψ2 are the two lowest-energy eigenstates of H , with eigenvalues λ1 and λ2 respec-
tively. This state |Ψ〉 is in turn an eigenstate of H ⊗ I + I ⊗H with eigenvalue λ1 + λ2. Thus, in
the YES case, the result of phase estimation will be below (a + ε/4) + (a + 5ε/4) = a + 3ε

2 with
high probability, and in the NO case, the result of phase estimation will be above 2a+2εwith high
probability, thus establishing completeness and soundness.

Theorem 3. SPECTRAL-GAP for O(log(n))-local Hamiltonians is hard for PUQMA[log(n)].

Proof. This proof uses a “history state” construction, which each time step in the “history” corre-
sponds to a single oracle query. Suppose we are given a machine in PUQMA[log(n)]. This machine
makes a series of T = O(log(n)) queries to a UQMA oracle. It is fairly straightforward to show
that a complete problem for UQMA is to find a low energy state of a HamiltonianH promised that
at most one such state exists. Thus, every query to the UQMA oracle is specified by a Hamiltonian
obeying this promise. We denote the answer to the i-th oracle query by yi, and the Hamiltonian
sent as the i-th query by Hi|y1y2...yi−1

, acting on a Hilbert space H—the notation reminds us that
the i-th query is allowed to depend on the results of the previous queries. At the end, the ma-
chine decides to accept or reject based on the answers to its oracle queries. We construct a new
HamiltonianH whose spectral gap will encode whether the given machine accepts or rejects. This
Hamiltonian acts on an enlarged Hilbert spaceH′ = C2 ⊗ (C2 ⊗H)⊗T , and consists of two terms:

H = I ⊗Haccepting history + ε|0〉〈0| ⊗Hquery,

where the first term in the tensor product acts on the first qubit register in the Hilbert space.
The term Haccepting history enforces that the sequence of answers to the oracle queries cause the
PUQMA[log(n)] machine to accept; it is given by

Haccepting history =
∑

y1...yT rejecting

|y1〉〈y1| ⊗ IH ⊗ |y2〉〈y2| ⊗ IH ⊗ · · · ⊗ |yT 〉〈yT | ⊗ IH.

1In [Amb14] this is written as H ⊗H , which is presumably a typo
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The other term Hquery enforces that the answers in the history state are correct for the queries
issued by the machine. It is given by

Hquery =
T∑
i=1

1

4i−1

∑
y1...yi−1

|y1〉〈y1| ⊗ IH ⊗ · · · ⊗ |yi−1〉〈yi−1| ⊗ IH

⊗
(
|0〉〈0| ⊗ (H0) + |1〉〈1| ⊗Hi|y1...yi−1

)
⊗ I ⊗ IH ⊗ . . . .,

where H0 is a certain fixed Hamiltonian. It is shown by Ambainis that if the PUQMA[logn] machine
accepts, then the spectral gap of H is 0–i.e. there exist two orthogonal degenerate ground states,
and if the machine rejects, then the spectral gap is at least ε/4T , where ε is a constant related to the
completeness-soundness gap for the Hamiltonians sent to the UQMA oracle. The intuition is that
in the accepting case, the “accepting history” term and “query” term will both be satisfied by the
same history state |ψ〉, so |0〉 ⊗ |ψ〉 and |1〉 ⊗ |ψ〉 will both be ground states of H ; in the rejecting
case, this degeneracy is broken.

Ambainis’ results show that the problem SPECTRAL-GAP is closely related to the class QMA,
for which many interesting questions remain open. Any progress on QMA would also tell us
about the complexity of SPECTRAL-GAP. Below, we list some other open questions of interest.

Problem 4. What is the complexity of SPECTRAL-GAP for Hamiltonians of constant locality? Recent un-
published work of Wu et al. shows that PUQMA[log(n)] = PQMA[log(n)] but this does not completely resolve
the question. Can perturbative gadgets be used to reduce the locality of the history state Hamiltonian?

Problem 5. Can we put SPECTRAL-GAP in QMA(2)? Since coNP ∈ PUQMA[log(n)], and it’s not even
known whether coNP ∈ QMA(2), this problem may be intractable with present knowledge.

Problem 6. Is the SPECTRAL-GAP problem for frustration-free Hamiltonians any easier? Could results
analogous to Ambainis’s be found relating SPECTRAL-GAP for such Hamiltonians to PQMA1[log(n)]?

3 Translation-invariant infinite systems

The second setting in which the complexity of finding spectral gaps has been studied is the limit
of infinitely many particles. In this case, in order for the input size of the computational problem
to be finite, we restrict our attention to translation-invariant Hamiltonians acting on qudits laid out
spatially in a lattice. The decision problem we solve is to determine whether a given translation-
invariant Hamiltonian H has a spectral gap ∆ → 0 as the system size n tends to∞ (this limit is
known as the thermodynamic limit). If the gap tends to 0, the system is called gapless; otherwise, it is
called gapped. In a tour-de-force result, it was shown by Cubitt, Perez-Garcia, and Wolf [CPGW15]
that this problem is in fact undecidable for qudits on a 2D lattice, with local dimension above a cer-
tain universal constant. Their construction encodes the specification of a classical Turing machine
into the entries of a local term in the Hamiltonian. The ground state of the overall Hamiltonian is a
history state for quantum Turing machine that first applies phase estimation to read out the input,
and then applies a universal classical Turing machine on the input string. Thus, the halting prob-
lem is embedded into the spectral properties of this Hamiltonian. The full construction is quite
involved for several technical reasons; most importantly, in order to achieve a spectral gap in the
thermodynamic limit, the Hamiltonian must be “composed” with another Hamiltonian encoding
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a classical tiling problem. The ground state of the combined Hamiltonian consists of a pattern of
tiles, with copies of the quantum history state along edges of the tiles.

Problem 7. Can the construction of [CPGW15] be improved to 1D chains? How low can we reduce the
local dimension?

From the other end, recent work of Bravyi and Gosset [BG15] has shown that the thermodynamic-
spectral gap question is decidable for a restricted set of Hamiltonians with the important property
of being frustration free. For our purposes frustration-free Hamiltonian is one that can be writ-
ten as a sum of local projectors, such that the ground energy is 0. Bravyi and Gossett analyze
frustration-free Hamiltonians on 1D chains of qubits, and provide a simple criterion for whether
the Hamiltonian is gapped or gapless in the thermodynamic limit. (In fact, their criterion implies
that the spectral gap problem for these Hamiltonians is not only decidable but also solvable in
polynomial time.)

Theorem 8 ([BG15]). Let H be a translation-invariant Hamiltonian acting on a 1D chain of n qubits with
the form

H =
n−1∑
i=1

|ψ〉i,i+1〈ψ|i,i+1,

where |ψ〉 ∈ C2 ⊗ C2 is a fixed two-qubit state; by construction, this Hamiltonian is frustration free. Then
the spectral gap of H goes to 0 as n→∞ iff the eigenvalues of the matrix

Tψ =

(
〈ψ|0, 1〉 〈ψ|1, 1〉
−〈ψ|0, 0〉 −〈ψ|1, 0〉

)
have equal non-zero absolute vaue.

The proof of both directions of this result is quite nontrivial. One of the key tools used in this
proof is a remarkable result of Knabe [Kna88], which relates the spectral gap in the thermodynamic
limit to spectral gaps of fixed finite size.

Lemma 9 ([Kna88]). Let Π be a projector acting on two qudits, and consider the translation-invariant
Hamiltonians H◦n and Hn given by

Hn =

n−1∑
i=1

Πi,i+1, H◦n = Hn + Πn,1.

(We refer to Hn as the Hamiltonian over an n-qudit chain with open boundary conditions, and H◦n as the
Hamiltonian for periodic boundary conditions). Further suppose that Hn and H◦n are frustration free for
all n. Then for all m ≥ n ≥ 2, it holds that

∆(H◦m) ≥ n− 1

n− 2

(
∆(Hn)− 1

n− 1

)
.

Note that the right-hand side of the bound is independent of m. Thus, any value of n for which
∆(Hn) > 1

n−1 would be a certificate that H◦n is gapless in the thermodynamic limit. A recent work
of Gosset and Mozgunov [GM15] improves this result by replacing 1

n−1 with 6
n(n−1) , and shows
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that this is asymptotically tight by finding examples of gapless systems where ∆(Hn) = Ω( 1
n2 ).

The same work also establishes a variant of this lemma for 2D lattices.
The proofs of the original lemma of Knabe and its extensions all proceed by establishing the

positivity of a polynomial function of the Hamiltonians H◦m and Hn by decomposing it as a sum
of squared terms. For instance, in the original Knabe lemma, it is shown that

(H◦m)2 +
1

n− 2
H◦m �

1

n− 2

m∑
k=1

A2
n,k,

whereA2
n,k is a copy ofHn acting on the subchain of the system starting from index k. To complete

the proof, one uses the fact that for a frustration-free Hamiltonian H , H2 ≥ εH ⇔ ∆(H) ≥ ε to
bound the A2

n,k terms on the RHS. After some simple manipulations, one obtains

(H◦m)2 � n− 1

n− 2

(
∆(Hn)− 1

n− 1

)
H◦m,

which establishes the desired bound on the spectral gap of H◦m. The extensions of [GM15] are
proved by modifying the sum of squares decomposition that is used. While this approach seems to
be inherently limited to frustration-free systems (since lower bounds onH2 do not imply anything
the gap for a general Hamiltonian H), there is scope to achieve better results for other lattice
configurations than those studied to date.

Problem 10. Can an improved Knabe-type lemma be found for other lattices besides the 1D chain and 2D
square lattice?

Moreover, the Knabe lemma is only one of several crucial ingredients for the result of [BG15],
and generalizing their whole result to even the case of 1D qudits with local dimension d > 2
would be significant progress.

Problem 11. Can the classification of gapped and gapless phases of frustration-free systems in [BG15] be
extended to beyond the case of 1D chains of qubits?

Finally, the frustrated case remains wide open.

Problem 12. Is there a criterion for gapped and gapless phases of 1D qubit chains with non-frustration-free
Hamiltonians?
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