
6.045 Pset 6

Assigned: Monday, April 30, 2012

Due: Friday, May 11, 2012
To facilitate grading, remember to solve each problem on a separate sheet of

paper, and to put your name on each problem separately! Also, please
indicate which recitation you attend by writing “11” or “2” on the first page.

1. (carried over from pset5) Let a puzzle generator be a polynomial-time algorithm that maps a random
string r to a pair (ϕr, xr), where ϕr is a 3SAT instance and xr is a satisfying assignment for ϕr , such
that for all polynomial-time algorithms A,

Pr
r
[A finds a satisfying assignment for ϕr]

is negligible (less than 1
poly(n) ). Show that puzzle generators exist if and only if one-way functions

exist.

2. Show that there is no one-way function where every bit of the output depends on only 2 bits of the
input. [Hint: Use the fact that 2SAT is in P.]

3. The following questions concern the RSA cryptosystem.

(a) Recall that, having chosen primes p and q such that p− 1 and q − 1 are not divisible by 3, a key
step in RSA is to find an integer k such that 3k ≡ 1mod (p− 1) (q − 1). Give a simple procedure
to find such a k given p and q, which requires only O (1) arithmetic operations.

(b) Given a product of two primes, N = pq, show that if an eavesdropper can efficiently determine
(p− 1) (q − 1) (the order of the multiplicative group mod N), then she can also efficiently deter-
mine p and q themselves.

4. Recall that, given a prime number p, a linear congruential generator starts with a random triple
a, b, x0 ∈ {0, . . . , p− 1} as the seed, then sets xt := axt−1 + b (mod p) for all t ≥ 1, and outputs the
sequence x1, x2, x3, . . .. Show that a linear congruential generator is not a cryptographic pseudorandom
generator, by describing a polynomial-time algorithm that given p, distinguishes x1, x2, x3, . . . from a
random sequence of numbers in {0, . . . , p− 1} with high probability.

5. A problem is said to have worst-case / average-case equivalence if, intuitively, any polynomial-time
algorithm that works on many instances of the problem can be transformed into a polynomial-time
algorithm that works on every instance. Or equivalently, if “every polynomial-time algorithm fails on
some instance” implies “every polynomial-time algorithm fails on most instances.” People often try
to base cryptographic codes on problems with worst-case / average-case equivalence, since then the
security of the code only relies a worst-case hardness assumption, rather than an average-case hardness
assumption.

Now, recall that the problem of breaking RSA boils down to the following: given a composite RSA
modulus N , together with an integer y relatively prime to N , find the cube root modulo N of y: that
is, an x such that x3 = y (modN). Show that this problem has worst-case / average-case equivalence.



More formally, suppose you have a polynomial-time randomized algorithm M that, for each RSA
modulus N , outputs outputs the cube root of y for a fraction c of all y’s in ZN , where c > 0 is some
universal constant. (Here “outputs” means “with high probability over M ’s random coin tosses.”)
Give another polynomial-time randomized algorithm M ′ that outputs the cube root of y with high
probability for every (N, y) pair. [Hint: Can you randomly transform the given y into another input,
whose cube root can be used to obtain the cube root of y?]

6. Show that if you apply Hadamard gates to qubits A and B, followed by a CNOT gate from A to B,
followed by Hadamard gates to A and B again, the end result is the same as if you had applied a
CNOT gate from B to A. This illustrates a principle of quantum mechanics you may have heard
about: that any physical interaction by which A influences B can also cause B to influence A (so for
example, it is impossible to measure a particle’s state without affecting it).

7. Consider the following game played by Alice and Bob. Alice receives a bit x and Bob receives a bit
y, with both bits uniformly random and independent. The players win if Alice outputs a bit a and
Bob outputs a bit b such that a+ b = xy (mod 2). (Alice and Bob are cooperating in this game, not
competing.) The players can agree on a strategy in advance, but once they receive x and y no further
communication between them is allowed.

(a) Give a deterministic strategy by which Alice and Bob can win this game with 3/4 probability.

(b) Show that no deterministic strategy lets them win with more than 3/4 probability.

(c) [Extra credit] Show that no probabilistic strategy lets them win with more than 3/4 probability.

Now suppose Alice and Bob share the entangled state 1√
2
(|00〉+ |11〉), with Alice holding one qubit

and Bob holding the other qubit. Suppose they use the following strategy: if x = 1, then Alice applies
the unitary matrix

(

cos π
8 − sin π

8
sin π

8 cos π
8

)

to her qubit, otherwise she doesn’t. She then measures her qubit in the standard basis and outputs
the result. If y = 1, then Bob applies the unitary matrix

(

cos π
8 sin π

8
− sin π

8 cos π
8

)

to his qubit, otherwise he doesn’t. He then measures his qubit in the standard basis and outputs the
result.

d. Show that if x = y = 0, then Alice and Bob win the game with probability 1 using this strategy.

e. Show that if x = 1 and y = 0 (or vice versa), then Alice and Bob win with probability cos2 π
8 =

1+
√

1/2

2 .

f. Show that if x = y = 1, then Alice and Bob win with probability 1/2.

g. Combining parts d-f, conclude that Alice and Bob win with greater overall probability than would
be possible in a classical universe.

You have just proved the CHSH/Bell Inequality—one of the most famous results of quantum mechanics—
which showed the impossibility of Einstein’s dream of removing “spooky action at a distance” from
quantum mechanics. Alice and Bob’s ability to win the above game more than 3/4 of the time using
quantum entanglement was experimentally confirmed in the 1980’s.
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